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Polyurethane foams are widely used in manufacturing due to ease
of use and useful material properties

thesleepjudge.com (CC-BY-
2.0 Horia Varlan (CC-BY-2.0)

We are developing models that can predict foam mold filling, void location, and final properties including
density and modulus for structural foams and thermal conductivity for insulating material.



Foam Filling is Complex
Frame #170 Distribution +/-20 Frames

1

N
u
m
b
e
r
 o
f 
Bu

bb
le

s 

0 8

0.6

0.4

0.2

-0 2

-0.4

-0 6

-0.8

-1
2 4 6

Bubble Size (14m2)

10

x 10'

Foam front moving past camera, with bubble sizes at
I transparent wall determined with image processing.

• Gas generation drives the foam
expansion, changing the material
from a viscous liquid to a
multiphase material.

• Continuous phase is time- and
temperature-dependent and
eventually vitrifies to a solid.

l 3 views of foam filling with several plates spaced unevenly.
Vent location is critical to keep from trapping air.

Two key reactions: Isocyanate reaction with poiyois and water
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Equations of Motion Include Evolving Material Models

NIMR imaging shows
coarse microstructure
(Altobelli, 2006)

Momentum equation and continuity have variable density, shear viscosity, and bulk viscosity
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Energy equation has variable heat capacity and thermal conductivity

including a source term for heat of reaction for foaming and curing reactions

ficpf aT + pcipfv• V T =V • (kV T) + pgAH  
at n at

Extent of reaction equation for polymerization: condensation chemistry
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Experiments to determine foaming and curing
kinetics as well as parameters for model

kH2O = AH2O exp(—EH20 / RT)

L
p
Rao et al., "Polyurethane kinetics for foaming and
olymerization" , AICHE Journal, 2017



Complex Material Models Vary with Cure, Temperature,
and Gas Fraction

Foaming reaction predicts moles of gas from which we can calculate density

Pgas

v=

PMCO2 
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Vgas M CCO2 CO2

liq P gas

P foam P gas0v + Plig(1-

Compressibility built
into this model via the
ideal gas law for gas
density

Thermal properties depend on gas volume fraction and polymer properties
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. Experiments to determine foaming
and curing kinetics as well as
parameters for model

Shear and bulk viscosity depends on gas volume fraction, temperature and degree of cure
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Foam Filling and Curing for Complex Mold

Time = 5.000000

Simpler Model:
• Supports understanding of filling the mold and evolution of

the interface
• Model shows density evolution and filling profile over time

Rao et al., "A finite element/level set model of polyurethane foam
I expansion and polymerization," Computers Et Fluids, 2018

May 22, 2017 11:50:27 977

May 240.2017 11:



Adding Bubble-Scale Information:
Population Balance Equations

Governing Equations

Bubble size distribution (BSD) is described by a number density function,
n(v) , representing the number of bubbles per unit volume of liquid in
volume between the range v and v + dv

Evolution of the BSD is governed by the following Population Balance
Equation

an(v)
+ V •• (n(v)u) + [n(v)G (v)]at av

fv
=  1(v' , v — v')n(v1)n(v — v')dv' —
2 0 loc° (v , v')n(v)n(v')dvi

Where [3(vi, v) represents the coalescence kernel, and G (v) represents
the growth rate of bubbles.

References

Karimi et al. 2017, Computer Physics Communications

Karimi et al. 2016 Macromolecular Symposia
Karimi et al. 2017 Computer Physics Communications
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Transformation to Moment-Based Transport Equations

Transformed PBE:

amk
at

00

mk(t , x) = n(v)vk dv

+ U • Villk = Gk + Sk , k = 0,1,2,3

• Gk is a source term relating to the growth rate, and Sk relates to
coalescence

• Quadrature method of moments (QMOM) is used to compute the
source terms

• Use the first 4 moments to represent our PBE

• Moments offer useful information:

mo, total number of bubbles per unit liquid volume

m1, total bubble volume per unit liquid volume

m2 and m3 related to the variance and skewness of the BSD

Volume fraction of gas

m1

N

Gk -. 11/1/iG(vi)vic-1

i=1

—11

Mean bubble diameter

8
References: Marcnisiu, Fox 2005 JW-11 I ILll of AeluJul ..3(../e/ /Le, Karimi er al. 2016 Mao umoleLular Symposia, & Karimi et al. 2017 Computer Physics Communications



Physical Properties of Foam Can Be Related to Moments

We use the first moment, which is the total bubble volume per unit
volume of liquid mixture, for calculation of density, viscosity, etc.

1P
1 + mi

m1

Viscosity is fit using a
Taylor-Mooney model
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Two-Phase Kinetics Formulation with Bubble-Size Information
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To account for growth rates of bubbles we have equations for both
concentrations of liquid CO2 and gaseous CO2 and relate these based on
growth rate determined by the QMOM

N

Gk ''IwiG(vi)v
k-1

i=1

G(v,) = Go(wco, — iv.) /

Where vvco2 and vvmci, are
mass fraction of liquid CO2
and mass fraction related
to the maximum solubility
of liquid CO2

G1 is the source for m1
(total bubble volume per
unit liquid volume)



Experimental Setup: Study of the Evolution of Bubble Si

Channel mold

Foam in
channel \

Foa m
injection

Water bath
line

Reticle for calibration
(not in use as shown)

PMDI-4 free rise (bottom camera)

PMDI-4 packed to 8pcf (bottom camera)

• Three cameras record bubbles at transparent wall (top, middle, and bottom of a column) as
foam fills the column

• Light area in pictures below are where the wall is wetted by the bubble - edges are dark lines
dashed with bright spots (makes difficult to automatically analyze)

• Image processing developed to analyze - checks by hand shows software good until late times
when the bubbles distort severely

• Bubbles nominally about 200-300 microns in diameter
• Size and shape evolve in time, depend on temperature, foam density
• Over packing the foam helps keep the bubbles small and round
• Under packed foam often ends up with highly distorted bubbles near leading front

Top free rise

Results of image processing. Solid lines
are mean value. Dotted lines indicate top
and bottom 10% of values to indicate
spread.
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Time=79.5 s Time=152 s Time=266 s since end of mixing Roberts et al. 2016 SAND2016-5445



Sample Uniformity: Distribution of Bubble-Size from Top to Bottom

• Bubbles are first observed at the bottom camera, then middle and top as the
foam rises in the channel.

• In general, bubbles at the top of the channel tend to be larger than those at the
bottom due to creaming. In other cases, the bubble distribution is fairly uniform.

• The size distribution of bubbles broadens as the bubbles grow.
• Bubbles become less spherical with time due to shear

with the channel wall

Encapsulation foam, 70 °C
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The mean circularity of the bubbles,
in PMDI-4 foam for restricted free
rise, as defined by
(rmax — rmin )/ ravg This gives zero for
a perfect circle and > 0 for oblong
shapes
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Comparison of Methods
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• Scanning electron
microscope images show a
slightly larger bubble size
than the optical method.

• This is because bubbles tend
to be smaller at the wall.

• All methods trend well
together
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Effect of Temperature and Pressure on Bubble Si7

• Bubbles are larger and grow faster when the oven temperature is higher due to both
faster reaction rates and lower gas density.

• Overpacking the foam in the channel results in smaller, more uniform bubbles.

Encapsulation foam, 4 lbs/ft3
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• Over-packing creates a more
dense foam.

• Pressures (not shown) are
also higher for over packed
foam.

• Higher temperatures lead to
larger bubble size



Initial Fitting of Bubble-Size Distribution to O-D Model

• For initial values and distribution information we fit the BSD information
from Roberts et al. to a O-D version of our model

• Following Ferkl et al. 2016 we initialized our moments to a log-normal
distribution

vonoexp(k log(v0)+0.5k2a2)
mk =

exp(log(v0)+0.5a2)

• Where

• vo corresponds to a mean volume in our initial BSD

• no corresponds to the initial number density

• 6 is the usual log-normal 6 relating to the variance of our initial distribution

C3



i Initial Fitting oi Bubnke Size Distribution to D Model

• Distribution is recovered assuming a log-normal distribution using method
described by John et al. 2007

• Current distribution does not match as well as we would like

• Need to explore more robust fitting methods
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Improvements to PBE-QMOM Foam Model

• Initial model based on linking
our kinetics with Karimi PBE-
QMOM model could not
simultaneously fit density and
bubble size distribution

• New bubble growth kernel to
account for decreased growth
with increasing viscosity

• New coalescence kernels was
added to account for bubble size
and polymerizing viscosity

• With these changes, we were
able to fit experimental data
well.

!,;••

d:

' fa .

C1/4j
friLLsi,

M.

sr0l12011.0VkV148c01A 5.1-118 Mrm rn2 xi] 1070 Drnm

SEM near middle of bar

0.8 -

co 0.7 -

E 0.6 -

0.2 -

— Rao et al. 2018

— Old Model Best Fit

— - New Model Best Fit

Population balance equation, which is solved using QMOM:
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Density Study for Structural Foam PMDI-10

o
110

t= 245s

Foam expanding in a mold at 30°C. Time
shown on frames is after the end of mixing
the resin and the curative together for 45
seconds.

• Can the model
predict the effects of
over packing seen
experimentally?

• Over-packed sample
shows higher
density and greater
density variation

• 17% for free rise and
31% for over-packed
foam bars

X-ray image of PMDI-10 foam bars: 1)
free rise at 30°C, 2) free rise at 50°C, 3)
over packed (1.5) at 30°C



Problem Setup Foam Bar

T = Toven

r Kinematic + Capillary

— Toven

u • n = 0
1

n • T = — (U — Us) • n
ig

Mesh is restricted to
bar geometry

• Q1 8-node Hex elements
• PSPG + SUPG stabilization on momentum and continuity
• SUPG stabilization on species and moment equations
• Some surface tension is used to stabilize the interface

Boundary Conditions (BCs)
• Sides have no penetration condition
• Surface tension is applied to stabilize the interface
• A Navier-slip condition is applied on the edges to allow the

foam to slip
• Sides are set to the oven temperature
Mesh BCs
• Mesh is restricted to not leave initial plane on sides
• Kinematic BC is applied on top and the surface is allowed to

move in Lagrangian manner
• (u — .i.) • n = 0

Other BCs
• Bottom curved surface (not shown) is restricted so that velocity

is zero and the mesh does not move



Interface Tracking

Arbitrary Lagrangian Eulerian (ALE) Method

Boundary fitted pseudo-solid approach is used, deformation
occurs due to motion at free surfaces

V • S = 0, S = AseI + 2,usE

S is the Cauchy stress in the pseudo-solid.

Interface

The interface we track is the foam liquid-air interface.

We ignore all physics in the air and only track the foam phase

Remeshing is done after a set number of timesteps to avoid
low quality elements
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3D ALE Bar Modeling Results
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23 Conclusions and Future Work

• We have a mature engineering model for polyurethane
• We have added a population balance method to predict bubble

size distribution
• We have improved the population balance method with new

coalescence and growth kernels. We think a nucleation kernel
would also be useful.

• We are testing this methodology on foam data, for which we have
more characterization and bubble size data from various methods
including optical, SEM, X-Ray µCT, and DSW

• We are now applying this coupled CFD-PBE model to more
complex geometries and adding an adaptive meshing capability to
help stabilize the hyperbolic and poorly behaved moment
equations


