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Polyurethane foams are widely used in manufacturing due to ease

of use and useful material properties
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We are developing models that can predict foam mold filling, void location, and final properties including

density and modulus for structural foams and thermal conductivity for insulating material.




Foam Filling is Complex
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Foam front moving past camera, with bubble sizes at

transparent wall determined with image processing. 3 views of foam filling with several plates spaced unevenly.
Vent location is critical to keep from trapping air.

Gas generation drives the foam

expansion, changing the material Two key reactions: Isocyanate reaction with polyols and water "
from a viscous liquid to a

multiphase material. H o el

Continuous phase is time- and Ri—N=C=0 + HO—R; —> Ry—N-C-O-R; crosslinking
temperature-dependent and g B

eventually vitrifies to a solid. |l ERRETAME FEaes o uatdlx

R—N=C=0 + H20 —» R{—N-C-OH — CO, * R4—NH, CO,andamine



Equations of Motion Include Evolving Material Models

Momentum equation and continuity have variable density, shear viscosity, and bulk viscosity

NMR imaging shows
coarse microstructure
(Altobelli, 2006)
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Experiments to determine foaming and curing

kinetics as well as parameters for model

ko= Ay oexp(=Ey,,/ RT)

Rao et al., “Polyurethane kinetics for foaming and
polymerization” , AICHE Journal, 2017




Complex Material Models Vary with Cure, Temperature,

and Gas Fraction

I Foaming reaction predicts moles of gas from which we can calculate density I
L, PM,,
gas RT Compressibility built
= Vgas _ M co, CC02 _ v ;EZC;IT;;SSIE\):E):I gaatshe
Vliq P s Y1+ density
Pram = pgas¢v + P, (1-9,)
I Thermal properties depend on gas volume fraction and polymer properties I

k=2 2ok, +1-Lok,

e e

Experiments to determine foaming
and curing kinetics as well as
parameters for model

Cpf - Cpl¢l + va¢v + Cpe¢e

I Shear and bulk viscosity depends on gas volume fraction, temperature and degree of cure I

- (ov E Cp _ ép
H=Ho PO )ty = ity exp(—)

P, e
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‘Foam Filling and Curing for Complex Mold

Time = 5.000000
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Simpler Model:

» Supports understanding of filling the mold and evolution of
the interface

* Model shows density evolution and filling profile over time

Rao et al., “A finite element/level set model of polyurethane foam
expansion and polymerization,” Computers & Fluids, 2018




Adding Bubble-Scale Information:
Population Balance Equations

Governing Equations

Bubble size distribution (BSD) is described by a number density function,
n(v), representing the number of bubbles per unit volume of liquid in
volume between the range vand v + dv

Evolution of the BSD is governed by the following Population Balance
Equation

an(v)_l_v (n(v)w) +—- [n(v)G(U)]

= lf L, v—v)inw)nwv—v)dv — jooﬁ(v, v n(w)n(w")dv'
2 ) 0

Where B (v, V) represents the coalescence kernel, and G (v) represents
the growth rate of bubbles.

References

Karimi et al. 2017, Computer Physics Communications
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Transformation to Moment-Based Transport Equations

(00]

my (t, x) =j n(v)vkdv
0

Transformed PBE:

am;,
W+u Vm, = G, + Si, k=01,23

* Gy isasource term relating to the growth rate, and Sy, relates to
coalescence

* Quadrature method of moments (QMOM) is used to compute the
source terms

» Use the first 4 moments to represent our PBE

* Moments offer useful information:
m,, total number of bubbles per unit liquid volume
m4, total bubble volume per unit liquid volume

m, and m; related to the variance and skewness of the BSD
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Physical Properties of Foam Can Be Related to Moments

We use the first moment, which is the total bubble volume per unit
volume of liquid mixture, for calculation of density, viscosity, etc.

Pfoam = pgasllj + pliquid(1 — )

- mew (L)
1N = No€Xp m

C. = Cp,liquid.Dliquid(1 - ¢) + Cp,Congas‘p
Viscosity is fit using a P Pfoam

Taylor-Mooney model
2 pfoam> ( Pfoam)
k=— kijguia +|1———1k
3 <pliquid Hauid Priquia) °°




Two-Phase Kinetics Formulation with Bubble-Size Information
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To account for growth rates of bubbles we have equations for both
concentrations of liquid CO, and gaseous C0O, and relate these based on
growth rate determined by the QMOM

G(vi) = GO (WC02 - Wmax) / Wmax

Where w¢g, and wyq, are
mass fraction of liquid CO,
and mass fraction related
to the maximum solubility
of liquid CO,

G, is the source for m,
(total bubble volume per
unit liquid volume)



Experimental Setup: Study of the Evolution of Bubble Size

Channel mold

T
v\
Close-up cameras

Foam in Vel F
channel ) Ll.,

N ]
{4 8

injection

Water bath
line

PMDI-4 packed to 8pcf (bottom camera)

Time=152s

Time=79.5s

* Three cameras record bubbles at transparent wall (top, middle, and bottom of a column) as

foam fills the column

* Light area in pictures below are where the wall is wetted by the bubble - edges are dark lines
dashed with bright spots (makes difficult to automatically analyze)
* Image processing developed to analyze - checks by hand shows software good until late times

when the bubbles distort severely

* Bubbles nominally about 200-300 microns in diameter

* Size and shape evolve in time, depend on temperature, foam density

* Over packing the foam helps keep the bubbles small and round

* Under packed foam often ends up with highly distorted bubbles near leading front

Top free rise
-~ F__

Results of image processing. Solid lines
are mean value. Dotted lines indicate top
and bottom 10% of values to indicate
spread.

Time=266 s since end of mixing
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Sample Uniformity: Distribution of Bubble-Size from Top to Bottom

Bubbles are first observed at the bottom camera, then middle and top as the

foam rises in the channel.

In general, bubbles at the top of the channel tend to be larger than those at the
bottom due to creaming. In other cases, the bubble distribution is fairly uniform.
The size distribution of bubbles broadens as the bubbles grow.

Bubbles become less spherical with time due to shear

with the channel wall
Encapsulation foam, 70 °C
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The mean circularity of the bubbles,
in PMDI-4 foam for restricted free
rise, as defined by

(Fmax = Fmin )/ Tavg This gives zero for
a perfect circle and > 0 for oblong
shapes
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Comparison of Methods

* Scanning electron
microscope images show a
slightly larger bubble size
than the optical method.

* This is because bubbles tend
to be smaller at the wall.

e All methods trend well
together
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evolution over time
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Effect of Temperature and Pressure on Bubble Size

* Bubbles are larger and grow faster when the oven temperature is higher due to both
faster reaction rates and lower gas density.

* Overpacking the foam in the channel results in smaller, more uniform bubbles.
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Over-packing creates a more
dense foam.

Pressures (not shown) are
also higher for over packed
foam.

Higher temperatures lead to
larger bubble size
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Initial Fitting of Bubble-Size Distribution to 0-D Model

* Forinitial values and distribution information we fit the BSD information
from Roberts et al. to a 0-D version of our model

* Following Ferkl et al. 2016 we initialized our moments to a log-normal
distribution

~ vohpexp(k log(v,) + 0.5k’c”)
exp(log(v,)+0.506°)

my

Where
v, corresponds to a mean volume in our initial BSD

ngy corresponds to the initial number density

o is the usual log-normal o relating to the variance of our initial distribution



Initial Fitting of Bubble Size Distribution to 0-D Model

* Distribution is recovered assuming a log-normal distribution using method
described by John et al. 2007 I
* Current distribution does not match as well as we would like
* Need to explore more robust fitting methods :
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Initial fitting using a 0-D model and Karimi Model

= Raoetal. 2018
= PBE model
=== Experiment

100 200
time (s)

Our initial density fits
reasonably well with
experimental data
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found by experiment
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Our bubble size distribution is
around the same range
though we are lacking the
longer tail.

Our recalculation of
distribution from moments is
not very robust



Improvements to PBE- QMOM Foam Model

Population balance equation, which is solved using QMOM.:
on(v)
dt

Initial model based on linking
our kinetics with Karimi PBE-
QMOM model could not
simultaneously fit density and
bubble size distribution

New bubble growth kernel to
account for decreased growth
with increasing viscosity

New coalescence kernels was
added to account for bubble size
and polymerizing viscosity

Y- () + 2 [ ()G ()]

= 1’[vﬁ(v’, v—v)n(w)n(v —v)dv' — jwﬁ(v, v )n(w)n(v")dv'
2y 0

B(v',v) isthe coalescence kernel, and G (v) represents the growth rate L
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Density Study for Structural Foam PMDI-10

Foam expanding in a mold at 30°C. Time
shown on frames is after the end of mixing
the resin and the curative together for 45
seconds.

X-ray image of PMDI-10 foam bars: 1)
free rise at 30°C, 2) free rise at 50°C, 3)
over packed (1.5) at 30°C

Can the model
predict the effects of
over packing seen
experimentally?
Over-packed sample
shows higher
density and greater
density variation
17% for free rise and
31% for over-packed
foam bars



Problem Setup Foam Bar

Kinematic + Capillary

Toven

*\ T = Typen

u-n=20

n-t==u—-ug) n

Mesh is restricted to
bar geometry

* Q1 8-node Hex elements

* PSPG + SUPG stabilization on momentum and continuity
» SUPG stabilization on species and moment equations

« Some surface tension is used to stabilize the interface

Boundary Conditions (BCs)

» Sides have no penetration condition

» Surface tension is applied to stabilize the interface

* A Navier-slip condition is applied on the edges to allow the
foam to slip

» Sides are set to the oven temperature

Mesh BCs

* Mesh is restricted to not leave initial plane on sides

» Kinematic BC is applied on top and the surface is allowed to
move in Lagrangian manner

s (u—x)-n=0

Other BCs

* Bottom curved surface (not shown) is restricted so that velocity
is zero and the mesh does not move



Interface Tracking

Arbitrary Lagrangian Eulerian (ALE) Method

Boundary fitted pseudo-solid approach is used, deformation
occurs due to motion at free surfaces

V-§=0, S =Asel + 2ucE
S is the Cauchy stress in the pseudo-solid.
Interface

The interface we track is the foam liquid-air interface.
We ignore all physics in the air and only track the foam phase

Remeshing is done after a set number of timesteps to avoid
low quality elements

Reference: Sackinger et al. 1996 J. Comp. Phys.
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3D ALE Bar Modeling Results
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Conclusions and Future Work

We have a mature engineering model for polyurethane

We have added a population balance method to predict bubble
size distribution

We have improved the population balance method with new
coalescence and growth kernels. We think a nucleation kernel
would also be useful.

We are testing this methodology on foam data, for which we have
more characterization and bubble size data from various methods
including optical, SEM, X-Ray uCT, and DSW

We are now applying this coupled CFD-PBE model to more
complex geometries and adding an adaptive meshing capability to
help stabilize the hyperbolic and poorly behaved moment
equations



