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Motivation for a Peridynamic Anisotropic Stress Model.

• Many materials are anisotropic so the model can accommodate

a larger class of materials.

• Plane stress models are utilized in a number of applications.

• Reduced computational expense.

• Facilitates damage modeling.
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Example 1: Compact Tension Test on Cortical Bone

• Cortical bone exhibits transversely isotropic symmetry.

• Cracks tend to propagate along the main axis of the bone.
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M. Ghajari, L. lannucci, and P. Curtis. Computer Methods in Applied Mechanics and

Engineering, 276:431 - 452, 2014.
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Example 2: Polycrystalline Structure (Alumina)

• Each grain exhibits transversely isotropic symmetry.

• The plane of isotropy within each grain is randomly oriented.

• Various ratios of the grain fracture energy to the grain boundary
fracture energy are considered.

Model Gbdy Ggrain = 1 Gbdy/ Ggrain = 0.5
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Why Consider A New Plane Stress Model?

• Most models begin with a two-dimensional peridynamic model

and match peridynamic constants to elasticity constants.

• Most models cannot accommodate all symmetry classes of
linear elasticity.

• Most peridynamic plane stress models ignore surface effects.
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Classical (Local) Linear Elasticity

In linear elasticity stresses and strains are related via a generalized

Hooke's Law:

= CijklEkl

a: stress tensor, c: strain tensor, C: elasticity tensor.

C has the following symmetries:

Minor Symmetries : Cijkl = Cjikl = CUlk

Major Symmetry : Cijkl = CklU

Classical equation of motion:

a 02
p(x)bi(x,t) = —o-i  (x, t) bi(x,t) = Cod K (x, t) bi(X, t)aX; OXI

p: mass density, u: displacement, and b: body force density.
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Symmetry Groups of C

Definition
An orthogonal transformation Q between bases e and ei is called a
symmetry transformation of C if

Cijkl = ClipQjqQkrQlsCpqrs,

i.e. C is invariant under the transformation Q.

Proposition

The set of symmetry transformations of C forms a group which we

call the symmetry group of C.
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The Eight Symmetry Classes of Linear Elasticity
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P. Chadwick, M. Vianello, S.C. Cowin, A new proof that the number of linear elastic

symmetries is eight, Journal of Mechanics and Physics of Solids, 49, 2471-2492, 2001.
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Monoclinic Constraints fi 
N'.%P;1
L:noramlies

Suppose a material has monoclinic symmetry. Choose an orientation

so that the plane of reflection coincides with the plane z = 0. Then

the orthogonal transformation Q may be represented by the matrix

1 0 0
Q = 0 1 0 .

0 0 — 1

Since Q is a symmetry transformation of C, we know

Cijkl —QipQjqQkrQlsCpqrs

=(— 1) n p (5jqSkrOlsCpqrs

=(— 1 ) n Cijkl

where n is the number of threes occurring in fi,j, k, 11. Consequently,

C1123 = C1113 = C2223 = C2213 = C3323 = C3313 = C2312 = C1312 = 0
10



Cauchy's Relations

• Term coined by Love in [1].

• Derived from a molecular description of materials assuming

central forces between pairs of molecules.

• In three-dimensions it is six relations between the elasticity
constants in the elasticity tensor which forces C to be

completely symmetric:

C1212= C1122, C2323= C2233, C1313= C1133,

C1312= C1123 , C2312= C2213 , C2313= C3312 •

• Reduces the number of independent constants in C from 21 to

15.

• Determined to be invalid for the majority of materials.

[1] A. E. H. Love. A Treatise on the Mathematical Theory of Elasticity, Volume I. Cambridge
University Press, 1892.
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Planar Approximations of the Classical Linear Elastic

Equation of Motion

There are structural configurations where a three-dimensional object

may be simulated by a two-dimensional model.

• Plane strain: Typically associated with thick structures. Due to
the thickness of the structure, deformations in the direction of
the thickness component are constrained.

• Plane stress: Typically associated with thin structures such as

films. lf the film is loaded biaxially, we may suppose there are no
normal or shear stresses in the direction perpendicular to the
film surfaces.

We consider a derivation of plane stress to motivate analogous
derivations in peridynamics. The classical derivation will follow:

T. C. T. Ting. Anisotropic Elasticity: Theory and Applications. Oxford University Press, 1996.
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Classical Generalized Plane Stress Assumptions
(Cal) The body is a thin plate of thickness 2h occupying the region

—h z h.

(Ca2) The density is constant in the third dimension: p = p(x, y).

(Ca3) The body is subjected to a loading symmetric and parallel

relative to the plane z = O.

(Ca4) The surfaces of the plate are stress-free, i.e.

0-13 = 0-23 = 0-33 = 0 for z = ±h.

(Ca5) The average stress .T/33 is zero throughout the material.

(Ca6) The material has at least monoclinic symmetry with a plane of

reflection corresponding to the plane z = O.

z

b 
2h

[3 Sandia
Nabonal
Laboratones

13



Generalized Plane Stress Derivation
Step 1: Show the following symmetries for the displacements:

u,(x, y, z) = u,(x, y, —z), for z E [—h, 17], i = 1, 2,

u3 (x, y, z) = —u3(x, y, —z), for z E [—h, 17].

Step 2: Impose monoclinic symmetry on the stress-strain relations
and then average in z over the thickness of the plate to obtain

+ 112
au].  Ci.an = cum Cul + au2) + c112 —8u2 +2 ay C1133 [u3] )ax ay ax
aui

+ 
(au,. au2) + L, au 20-x L

, r 1
22 = C1122 +c2212 ay 

+ 
ax  2222 WI 2233 Lu3 J ,

aui
C1133T/33= + C3312

Ox

T/23= T/13 = 0,

(T)-12=
au].

C1112
 Ci.
+ 212ax

where

+ C2233 -8'12( aui 
+ au2)

+ C3333 [U3],
Oy Ox Oy

Cul + 8112) + c221 —8E7122 ay + C3312 [U3].ay ax

17.1 .2 e s

u3(x, y, h) — u3(x, y, —h) - 1 f 
fdz. 

h
h[u3] :=   and f=  —

2h 2h _ 14



Generalized Plane Stress Equation of Motion

Step 3: Utilizing .T/33 = 0, we may solve for [u3] in terms of functions
of the in-plane displacements:

[u31 [C1133 au, C3312 (au, au2 + C2233 au2 
C3333 0)(1 

+   + 
C3333 ay ax C3333 aY

Step 4: Take the average in z over the thickness of the plate of the
classical equation of motion and then substitute in -Cr j:

A, — E, 00 =c , , ( ',,,, 82u, , a2,7,1 82,72 , 82,2
p(x ax2 , ,1112 axay + ax2 

) 
+ C1122 axay

, 82„i , (82„i 82„2 ) , 82,2
+ C1211  + C1212  +  + C1222 ay2 )ayOx 0y2 ayOx
, 02,1 , ( 82,i 82,2 , 82,2

p(x)u2 — b2 (x) =c2111 + C2112 -
aXaY + aX2 

) + C2122 axay

, a_ 2u, , ,, (82ü, a2u2 ) ,, a2u2
+ C2211 ._:.2, + L2212 alp ± al ,. + L2222 ay2 5

WM

Cu33 C33ks i Cwhere Ck, := _uks
C3333 •
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Peridynamics (1) Sandia
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"The objective of peridynamics is to unify the mechanics of discrete
particles, continuous media, and continuous media with evolving
discontinuities."
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Discontinuous

• Communicates across length scales.

• Material microstructure aware.

• Models complex damage patterns and applies to highly irregular
functions; moreover, the fracture model is implemented before
discretization.

S. Silling. Journal of the Mechanics and Physics of Solids, 48, 175-209, 2000.
S. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari. Journal of Elasticity,
88, 151-184, 2007. 16



Fundamentals of Bond-Based Peridynamics

• Points interact with each other over

a finite distance S called the

horizon.

• Typically the set of points

interacting with x, is taken to

be B6(x).

• In the reference configuration, the

vector from x to x' within S is

called a bond.

• Each bond has a pairwise force

density vector f(x, t).

• The equation of motion is an

integro-differential equation:

p(x)ii(x, = f(xi, x, t)dxi+13(x).
Tix 17
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Bond-Based Linearized Equation of Motion

p(x)1.1;(x, t) = t) — uj( , t))dx' 131(x, t)
7-tx

Here p is the mass density, u is the displacement field, is a
micromodulus function, and := x' — x is the reference bond.

dlx

riool nes

• The micromodulus measures
the interaction between

material points.

• How to determine X?
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Micromodulus C Sandia
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One way of informing the micromodulus is to relate it to commonly

measured quantities in classical linear elasticity such as the elasticity
tensor C.

Use the change of variable x' = + x, apply a Taylor expansion

about x, and then eliminate antisymmetric terms in the integral:

1 02uk 
P(x)i../;(x, t) 

2 
0X(x, t) (f AWUAikd) b1(x, t).

j19)(1 s(0)

Equating with the classical elasticity equation results in

Cijkl = 
1 

A(Ajkdk/.
2 B6(0)

Cauchy's relations Cod = Cikji are imposed in bond-based
peridynamics.

(3)
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Symmetry Groups of Eb

Definition
An orthogonal transformation Q is a symmetry transformation of
A(') if

A(I:U) = A(), ̀v/ E Rd.

Proposition

Suppose and C are related through (3). lf Q is a symmetry
transformation of A, then it is also a symmetry transformation of C.

The converse implicabon is not necessarily true for an arbitrarily

chosen A.
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Anisotropic Linearized Elastic Peridynamic Model

Objectives:

1. Model is informed by the classical elasticity tensor.

2. Imposing material symmetries on the elasticity tensor is

equivalent to imposing symmetries on the micromodulus.

3. Model can describe elastic materials in any of the eight

symmetry classes of three-dimensional linear elasticity.

4. The peridynamic model has the same degrees of freedom as the

classical model (Cauchy's relations imposed).
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Three-Dimensional Linear Peridynamic Model

We propose a micromodulus of the form

A() = w(110) ® )A(  w(gll) WkOijkl

1102 1104

where A is a completely symmetric fourth-order tensor. Using the
relationship between A and C we find
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Plane Stress Considerations

• X2 X3

Challenges:

• Surface effects are intrinsic to the problem.

• Attempting to relate C to A becomes problematic.

p(x)bi(x, (au (x, (f A(U6,dx1)
7—Lx

02u,

Oxi0x 
(X, 1") (f b,(x, t).

1

Possible Remedy:

• Let A := A(x, x').
• Averaged over the thickness, surface effects can be negated.
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Peridynamic Generalized Plane Stress Assumptions Er

(Pal) The body is a thin plate of thickness 2h < S occupying the

region —h < z h.

(Pa2) The body is subjected to a loading b(x) symmetric and parallel

to the plane z = O.

(Pa3) The micromodulus function A(xi, x) is null when xl and x are not

material points of the plate.

(Pa4) T3(x, e3) = 0, where 7-3(x, e3) is the third component of the

peridynamic stress averaged in the third spatial component.

(Pa5) The density is constant in the third dimension: p = p(x, y).

z

b 
2h
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Peridynamic Generalized Plane Stress Assumptions

(Pa6) The micromodulus function has the form:

A(xi, x) := A( 1, Z).

(Pa7) The micromodulus function has at least monoclinic symmetry

with a plane of reflection corresponding to z = 0:

A(6, = Z, Z) = A(1) —z)•

(Pa9) The displacement u(x) is smooth in z and its third component

u3(x) is smooth in x.
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Derivation of Peridynamic Plane Stress (4 Steps)

Step 1: Show the following symmetries for the displacements:

u,(x, y, z) = u,(x, y, —z), for z E [—t, 1], i = 1, 2,

y, z) = —u3(x, y, —z), for z E [—t,

Step 2: Average over the thickness of the plate and apply (Po-3):

1 fhh fhh f

p(x,y)2h j 
L)4,x)Ui(ui(x/) — (x))dx/dz

+ 11 h fB,3D(x,y) x)6e2 (u2 (xi) — u2 (x))dxidz
2h

A(x)

h+ 1 i

2h f_
h j_h fB,?c,(x,y) A(x', x)(t/30(') — u3(x))dx'dz b1(x),

where r = \,/ (52 — (z' — z)2 .

Natiol
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Peridynamic Stress Tensor arz.
The areal force density r(x, e3) at a point x in the directions of e3:

ri(x, e3) := fo fR+ (x_se3)A(WALIAXI, — t))dx'd s .

where = x — se3, = x' — X, and

R+ (x — se3) = fx/ E Ba- (x — se3) : X3 > x31.

x — se3

S. Silling. Journal of the Mechanics and Physics of Solids, 48, 175-209, 2000. 27



Utilizing Peridynamic Stress Tensor

Step 3: Use T3(x, e3) to replace u3 in the in-plane equations of

motion with expressions in u1 and u2.

Lemma
Under the Assumptions of peridynamic generalized plane stress, we
have the following approximations:

0u3 — Ph P„ IB?D(x,y) À(x, x)ek(ul(x') (x))dx' dz
y, 0)

fh h fh h 

fB2
0(0)

x)e3d6dezdz'dz

for j = 1, 2 and for i = 1, 2 we additionally have:

fh fh f

A(x', x);e3(u3(x) — u3(x))dx'clz

J-h Lh ihp(x,y)

h fh

xg13 —
Oz 

(x , y, 0)thiclz.
f J-h 40(x,y) 2 0U3

28



Peridynamic Generalized Plane Stress
Step 4: Utilize approximations to remove integrals in z, Z.

Pul(x) /32D(x) Ao(x', x)6_ (t(x') — 1W(x)) Wt.W t.(x') — (x))] dx'

1 f
A2 (Xi/ )02 (X", )06- (-1. (U1 (X") 00)) dxi'dx'

- 4tB hroo Lgooe)

1 f
A2 (X', x)A2(x", x'gi. (d2 (e) — d2 (x'))) dx" dx' b (x).

- 4tB 00 IB!5D (x,)

PiT/ 2 (X) '-̂ 1 fB2b(x) Ao(e, x)2 — ,w.(x)) 2(,w(„f) — 1.(x))] dx
1

A2 x)A2(x",x')e2 (0.(1.W.(x") — (W.(x'))) dedx'
- 4tB fBr qx) fBr oe)

_ 1
A2 (X', x)A2 (X" )06 (C2 (,(x//) - ,(xf))) dx' b2(x).

4tB (x) fqo (x,)

where x E R2,

B :=
h fh f

A(x'' x')Old0 d(2dz" dz' and Ai (x Y, : = f 

h 

h 

f 

_ 

h

t/k(x', x)e3dzdz'.
h - h IBP (0) 29



Peridynamic Generalized Plane Stress Reformulation ffi

We can reformulate the peridynamic generalized plane stress model
as a two-dimensional state-based peridynamic model:

p(x)U(x, t) = {T[x,t],,, T[x t](— d + b(x, t),

where

T[x, = [Ao( Vri(x — ü(x, t)) — A2WA(x,t)]

and

A(x, t) =  
A4(odc 

A2(C) • (.(x+ _.(x,t))dc.
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Connection to the Classical Plane Stress Model

Proposition

Suppose the micromodulus function satisfies

h f 

2h cid =

2 J-17 1-h Lnx,y)

Then under a smooth deformation, the peridynamic plane stress
equation of motion agrees with the classical equation of motion up to

second-order terms.
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Plane Stress Simulations

Isotropic Cubic Orthotropic

(Pyroceram 9608) (MgA1204) (Te2W)
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Conclusions and Future Work OO Sandia
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Conclusions:

• Developed a three-dimensional anisotropic peridynamic model

for every symmetry class in linear elasticity.

• Derived peridynamic analogue of plane stress from a

three-dimensional anisotropic peridynamic model.

Future Work:

• Derive anisotropic state-based models.

• Remove restrictions on the peridynamic plane stress model.

• Bond-breaking criteria for anisotropic and planar models.

• Validation of the peridynamic plane strain and stress models.

• Material stability.
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