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Motivation for a Peridynamic Anisotropic Stress Modelgm) sz

m Many materials are anisotropic so the model can accommodate
a larger class of materials.

m Plane stress models are utilized in a number of applications.

m Reduced computational expense.

m Facilitates damage modeling.




Example 1: Compact Tension Test on Cortical Bone )

Laboratories
m Cortical bone exhibits transversely isotropic symmetry.

m Cracks tend to propagate along the main axis of the bone.

y a=9.2

l,

M. Ghajari, L. lannucci, and P. Curtis. Computer Methods in Applied Mechanics and
Engineering, 276:431 - 452, 2014. 4
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Example 2: Polycrystalline Structure (Alumina) N

m Each grain exhibits transversely isotropic symmetry.
m The plane of isotropy within each grain is randomly oriented.

m Various ratios of the grain fracture energy to the grain boundary
fracture energy are considered.

Model dey/Ggm,'n =1 dey/Ggm,'n =05

M. Ghajari, L. lannucci, and P. Curtis. Computer Methods in Applied Mechanics and
Engineering, 276:431 - 452, 2014. 5




Why Consider A New Plane Stress Model? e,

Laboratories

m Most models begin with a two-dimensional peridynamic model
and match peridynamic constants to elasticity constants.

m Most models cannot accommodate all symmetry classes of
linear elasticity.

m Most peridynamic plane stress models ignore surface effects.




Classical (Local) Linear Elasticity N

In linear elasticity stresses and strains are related via a generalized
Hooke’s Law:

0jj = Cijki€kl
o: stress tensor, e: strain tensor, C: elasticity tensor.
C has the following symmetries:
Minor Symmetries :  Cjiy = Cjiw = Cijik
Major Symmetry :  Cjry = Cpyjj
Classical equation of motion:

2

PN, 6) = 5E0y(0,8) + (0. 0) = Cprg gl t) + ()

0x;0x

p: mass density, u: displacement, and b: body force density.




Symmetry Groups of C =

Definition
An orthogonal transformation Q between bases e and € is called a
symmetry transformation of C if

Cijkl = Qip qu Qir Qs Cpqrs )

i.e. Cis invariant under the transformation Q.

Proposition
The set of symmetry transformations of C forms a group which we
call the symmetry group of C.



The Eight Symmetry Classes of Linear Elasticity )

4" Monocliinic

Orthotropic

Transverse

Isotropy g

Isotropic

)

P. Chadwick, M. Vianello, S.C. Cowin, A new proof that the number of linear elastic
symmetries is eight, Journal of Mechanics and Physics of Solids, 49, 2471-2492, 2001.




Monoclinic Constraints () s

Suppose a material has monoclinic symmetry. Choose an orientation
so that the plane of reflection coincides with the plane z = 0. Then
the orthogonal transformation Q may be represented by the matrix

1 0 O
Q=01 0
0 0 -1

Since Q is a symmetry transformation of C, we know

Cijkl = Qip qu Qir Qs Cpqrs
:(—1)n5ip5jq5kr5lscpqrs
=(—1)"Cij

where n is the number of threes occurring in {i,j, k, /}. Consequently,

Ci123 = C1113 = C2223 = C2213 = C3323 = C3313 = C2312 = C1312 =0 y



Cauchy’s Relations i,

m Term coined by Love in [1].

m Derived from a molecular description of materials assuming
central forces between pairs of molecules.
m In three-dimensions it is six relations between the elasticity

constants in the elasticity tensor which forces C to be
completely symmetric:

Ci212 = Cr122, Co323 = Co233, C1313 = (1133,
Ci312 = Ci123, Co312 = (9213, C2313 = C3312.

m Reduces the number of independent constants in C from 21 to
15.

m Determined to be invalid for the majority of materials.

[1] A. E. H. Love. A Treatise on the Mathematical Theory of Elasticity, Volume I. Cambridge

University Press, 1892. i



Planar Approximations of the Classical Linear Elastic (@),
Equation of Motion

There are structural configurations where a three-dimensional object
may be simulated by a two-dimensional model.

m Plane strain: Typically associated with thick structures. Due to
the thickness of the structure, deformations in the direction of
the thickness component are constrained.

m Plane stress: Typically associated with thin structures such as
films. If the film is loaded biaxially, we may suppose there are no
normal or shear stresses in the direction perpendicular to the
film surfaces.

We consider a derivation of plane stress to motivate analogous
derivations in peridynamics. The classical derivation will follow:

T. C. T. Ting. Anisotropic Elasticity: Theory and Applications. Oxford University Press, 1996.
12




Classical Generalized Plane Stress Assumptions () s

(Co1) The body is a thin plate of thickness 2h occupying the region
—-h<z<h

(Co2) The density is constant in the third dimension: p = p(x,y).

(Co3) The body is subjected to a loading symmetric and parallel
relative to the plane z = 0.

(Cod) The surfaces of the plate are stress-free, i.e.
013 — 093 — 033 — 0 forz = %h.

(Co5) The average stress 33 is zero throughout the material.

(Co6) The material has at least monoclinic symmetry with a plane of
reflection corresponding to the plane z = 0.




Generalized Plane Stress Derivation N
Step 1: Show the following symmetries for the displacements:
ui(x,y,z) = ui(x,y, —z), forz € [—h,h],i = 1,2,
us(x,y,z) = —us(x,y, —z), forz € [—h, h].
Step 2: Impose monoclinic symmetry on the stress-strain relations
and then average in z over the thickness of the plate to obtain

8 <8u1 Buz

Otz
o11 = Cii11—— o + Ci112 + —) + Ci122—— + Ci13s[us],

0 Ox Oy

ouy ou ou
022 = Ci122—— O + Ca212 (—1 Cac Y S C2222 + Ca233(Us],

ox ox
023 =013 =0,
ou, | 0w

oty 0 Otz
033 = C1133—— + C3312 (i —) + C2233 + Cs333[us),
8_y Oox )

oty
012 = Cii12—— O + Ci212 ( + C2212 + Cs312[us].

where

h) — —h _
[U3] o U3(X,y, ) U3(X,y, ) and f: / de
2h on |,

14




Generalized Plane Stress Equation of Motion () s

Step 3: Utilizing o33 = 0, we may solve for [us3] in terms of functions
of the in-plane displacements:

{Cn:za our . Cszi2 (@ @) Co233 @}
dy Ox Cazszs Oy |

lus] = C3333 Ox1 (3333
Step 4: Take the average in z over the thickness of the plate of the
classical equation of motion and then substitute in o;:
P 0%ty o’uy  0%u 8%u
p(XQ)u1 — b1(x) =Ci111 5 e T Clinz <8x6; + aT;) + Chzzax—a;
8%u, A} 0%, i 8%U,
dy> ' dyodx 1222 g2

P 0%ty o*u; 9% 0%u
p(X)uz — ba2(x) =C111— - a2 TC 2112 <6x8; + 3)(2) + Co122 axﬁf/

8u1

+ Clan Y + Claio (

o%u o*u, | 0%u o’u
+C22118 81 + Caa12 <W; + 8y3)2(> + Coo22 By 227

Cij33C33ks
C3333

/ ..,
where Gy := Ciks




Peridynamics ) i

“The objective of peridynamics is to unify the mechanics of discrete

particles, continuous media, and continuous media with evolving
discontinuities.”

Continuous Discontinuous
m Communicates across length scales.

m Material microstructure aware.

m Models complex damage patterns and applies to highly irregular

functions; moreover, the fracture model is implemented before
discretization.

S. Silling. Journal of the Mechanics and Physics of Solids, 48, 175-209, 2000.

S. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari. Journal of Elasticity,

88, 151-184, 2007. 16



Fundamentals of Bond-Based Peridynamics e,

Laboratories

m Points interact with each other over
a finite distance 9 called the
horizon.

m Typically the set of points
interacting with x, Hy, is taken to
be B5(x).

m In the reference configuration, the
vector & from x to x” within § is
called a bond.

m Each bond has a pairwise force
density vector f(x, X', t).

m The equation of motion is an
integro-differential equation:

DR, £ = / §', %, £)dx'+b(x).

Hx 17




Bond-Based Linearized Equation of Motion e

Laboratories

p(x)Ui(x, t) = / A(€)&i&i(ui(x', 1) — uj(x,1))ax’ + bi(x, )

X

Here p is the mass density, u is the displacement field, Ais a
micromodulus function, and £ := x’ — x is the reference bond.

m The micromodulus measures
the interaction between
material points.

m How to determine \?

18
—



Micromodulus () s

One way of informing the micromodulus X is to relate it to commonly
measured quantities in classical linear elasticity such as the elasticity
tensor C.

Use the change of variable X' = £ + x, apply a Taylor expansion
about x, and then eliminate antisymmetric terms in the integral:

. 1 02
p(X)Ui(x,t) ~ §3ngi, (x, ) (/36(0) A(§)§i§j§k§/d$> + bi(x, t).

Equating with the classical elasticity equation results in

1

Ci = 5 /35(0) A(&)&i&i6r€idVe. (3)

Cauchy’s relations Cj = Cj; are imposed in bond-based

peridynamics.
19




Sandia

Symmetry Groups of A e
Definition
An orthogonal transformation Q is a symmetry transformation of

(&) if
Q€)= A(€), V€ € RY.

Proposition
Suppose X\ and C are related through (3). If Q is a symmetry
transformation of ), then it is also a symmetry transformation of C.

The converse implication is not necessarily true for an arbitrarily
chosen \.



Anisotropic Linearized Elastic Peridynamic Model N

Objectives:

1. Model is informed by the classical elasticity tensor.

2. Imposing material symmetries on the elasticity tensor is
equivalent to imposing symmetries on the micromodulus.

3. Model can describe elastic materials in any of the eight
symmetry classes of three-dimensional linear elasticity.

4. The peridynamic model has the same degrees of freedom as the
classical model (Cauchy’s relations imposed).



Three-Dimensional Linear Peridynamic Model =

Laboratories

We propose a micromodulus of the form

ME) = w(l€l) (€@ AL _ wl€l) &&céifin
€112 1€1* 1€l

where A is a completely symmetric fourth-order tensor. Using the
relationship between A\ and C we find

. - - 15 15 45 45 15
Aii11 15 = = = =5 = Ciinn
15 15 5 15 45
Asozo 3 5 2 > % T Ca222
15 15 15 45 45
Asass 2 3 3 15 2 5 —3 C3333
o 15 15 5 255 25 a5
Ai122 m| —F —F = o e Tm Ci122
A _1 5 _15 _325 255 _25 c
1133 7 v i 5 = 5 1133
A 5 _15 _15 _25 _25 25 c
| A2233 | L & - i = = = 2233
_ - r 105 105 105
Ai112 e Ciii2
A 2| 105 105  _ 105 c
212 | = — =5 = 2212
35 35
L Asziz | e 35 C3312




Plane Stress Considerations , L

Challenges:

m Surface effects are intrinsic to the problem.
m Attempting to relate C to A becomes problematic.

p(X)ui(x, t) %%(x, t) (/;_[ /\(E)E:‘Ejﬁkdx’)

6 Uk
3)9

(0 ([ M@sgagax ) +bixo),
Possible Remedy: )
m Let A := A(x,x').

m Averaged over the thickness, surface effects can be negated.
23




Peridynamic Generalized Plane Stress Assumptions @i,

(Pgl) The body is a thin plate of thickness 2h < § occupying the
region —h < z < h.

(Po2) The body is subjected to a loading b(x) symmetric and parallel
to the plane z = 0.

(Po3) The micromodulus function A(x', x) is null when x’ and x are not
material points of the plate.

(Po4) 73(x,e3) = 0, where 73(x, e3) is the third component of the
peridynamic stress averaged in the third spatial component.

(Po5) The density is constant in the third dimension: p = p(x, y).




Peridynamic Generalized Plane Stress Assumptions @i,

(Po6) The micromodulus function has the form:
AKX, %) = (&, 6,7, 2).

(Po7) The micromodulus function has at least monoclinic symmetry
with a plane of reflection corresponding to z = 0:

)\(5135272/72) = )‘(glagzvzaz/) = )‘(517627 _2/7 —Z).

(Po9) The displacement u(x) is smooth in z and its third component
u3(x) is smooth in x.



Derivation of Peridynamic Plane Stress (4 Steps) N

Step 1: Show the following symmetries for the displacements:

ui(x,y,z) = ui(x,y, —z), forz € [—t,t],i = 1,2,
us(x,y,z) = —us(x,y, —z), forz € [—t,t].

Step 2: Average over the thickness of the plate and apply (Po3):
h h
bi) =g [ [ AR () a0
2h —h J —h JB2P(x,y)
1 h h
+ %/ / / AX, X)&a(u2 (X)) — uz(x))dX dz
—hJ —h JB2P(x,y)
1 h h _
b [ ] A6 @) - us)dar + B3,
—h J —h JB2P(x,y)
wherer = /62 — (7 — 2)%.

26




Peridynamic Stress Tensor () i

The areal force density 7(x, e3) at a point x in the directions of e:

i(x, e3) / / §,§,(uj(x t) — uj(x,t))dx'ds.
Rt (x—ses)

wherex:x—se3,£=x — X, and

R (x — seg) = {x' € Bs(x —se3) : X3 > x3} .

D\ R (x — se3)

— =TT = S

S. Silling. Journal of the Mechanics and Physics of Solids, 48, 175-209, 2000. 27



Utilizing Peridynamic Stress Tensor ()

Step 3: Use 73(x, e3) to replace us in the in-plane equations of
motion with expressions in u; and us.

Lemma
Under the Assumptions of peridynamic generalized plane stress, we

have the following approximations:

dus = S0 Sy MK X0ERE (4 (X') — u(x)) o'z

E_(Xayvo) ~

Jo0 I Jepo o) A )E4d6r dEzdz'dz

forj=1,2and fori = 1,2 we additionally have:

h h
/ / / A, %) &€ (uz (X') — uz(x))dx'dz
—hJ—h JBZP(x,y)
1 h h , ) LI3 ., )
3 A %)&€5 = (X, y', 0)dxX dz.
2 J_nJ-nte2o0y) 0z




Peridynamic Generalized Plane Stress e
Step 4: Utilize approximations to remove integrals in z, 7.

1

pu1(x) Row 32D(x)

T ouB /an(x) /Bzo(x/ O, )22 (", x)61 (Cl @) ~ Tzl ))) dx’ax’

Ao (¥, )€1 [61(TT () — TT(x)) + E2(T2(x') — T2(x))] dx’

T utB ./BQD(x) /azo(x, 0022 (", X} (G (@) — T2 (x'))) dx"dx’ + b1 (x).
pliz (x) Non /329( ))\ o', x)€2 [€1(TT(X) — TT(x)) + E2(T2(X') — T2(x))] ax’

5 i Ly 200120306 00 <) o

b /2D(x) /2D(x') (', x) A2 (x", X' )€2 (G (U2(x") — T2(X'))) dx”dx’ + ba(x).

where x € R?,

h o b h o b )
B ::/ / / A, x')¢3dC1dCadZ dZ and Ni(x'y', x,y) ::/ / (X', x)€5dzdZ’.
—h J—h JB2P(0) —hJ—h 29




Peridynamic Generalized Plane Stress Reformulation i,

We can reformulate the peridynamic generalized plane stress model
as a two-dimensional state-based peridynamic model:

ii(x, ) /{Txt _Tix+ £, (—€))} d€ + B(x, t),

where

T, €(6) = 5 Do(€)€ © E(ax-+ &, 0) — U, 1) — XalE)AM 0]

and

A(x fHM dC/ A2(€)¢ - (U(x+ ¢, t) —u(x, t))d¢.

30




Connection to the Classical Plane Stress Model e

Proposition
Suppose the micromodulus function \ satisfies

1 h h
2hCjy = 5 A%, X) &€& dx dz.
2 ) nJ-hn B2°(x,y)

Then under a smooth deformation, the peridynamic plane stress
equation of motion agrees with the classical equation of motion up to
second-order terms.




Plane Stress Simulations () s

Isotropic Cubic Orthotropic
(Pyroceram 9608) (MgAl;,04) (TeoW)

Classical

")
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Conclusions and Future Work () s

Conclusions:

m Developed a three-dimensional anisotropic peridynamic model
for every symmetry class in linear elasticity.

m Derived peridynamic analogue of plane stress from a
three-dimensional anisotropic peridynamic model.

Future Work:
m Derive anisotropic state-based models.

m Remove restrictions on the peridynamic plane stress model.
m Bond-breaking criteria for anisotropic and planar models.
m Validation of the peridynamic plane strain and stress models.

m Material stability.

33
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