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21 Outline

o Part I: TH Modeling of Stage 1 FEBEX in-situ test
using PFLOTRAN

Model development

o TH modeling results

o Part 11: THM Modeling of Stage 1 FEBEX in-situ
test using COMSOL (In Progress)

o Model development

o Future work

■



3

Sandia Geologic Disposal Safety
Assessment (GDSA) Framework

Input
Parameters

Parameter
database

L._ J 

[ 

Uncertainty

Sampling and

Sensitivity Analysis

DAKOTA

Computational Support

Pre-/Post-
Processing

iNkhon

d nWorks

Visualization

fi pavraView

Multi-Physics Simulation and integration

Source Term and 

EBS Evolution Model 

• inventory
• Decay, ingrowth

• WT degradation
NI WP degradation

• Radionuclide release

• Thermal, mechanical

\4
444....._V4164. Gas generation

WmA

PFLOTRAN
'4441\ CI Flow and Transport Model 

• Advection, diffusion, dispersion
• Discrete fracture networks

• Sorption, solubility, colloids
• isotope partitioning

• Decay, ingrowth
III Thermal effects
• Chemical reactions

\''"‘ 

Biosphere Model 

• Exposure
pathways

• Uptake/
transfer

• Dose
calculations

Results

https://pa.sandia.gov

1



I Part I: TH Modeling of Stage 1 FEBEX In-Situ4 Test using PFLOTRAN

o Conducted thermal-hydrology modeling of the
FEBEX in-situ test up to first dismantlement (5 years)

o Developed 3-D modeling domain and meshing based
on project specifications

o Assumed low permeability concrete plug isolates the
open tunnel from the test area
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5 TH 3-D Modeling Domain

• Domain Size: 60 m x 20 m x 40 m (x, y, z)

• Mesh size: 467,992 grid blocks
• Axisymmetric: Symmetry boundary

condition assumed



6 1 Meshing of TH Modeling Domain

o Simulation domain includes details of various regions
representing different materials:

o Granite, disturbed rock zone (DRZ), bentonite buffer, heaters,
plug, liner, microannulus, lamprophyre and fracture at back of
test area
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Material Properties

Units Granite Buffer Plug

Permeability m2 1.23 x 10-20 5.0 x 10-20 1.0 x 10-20

Porosity 0.01 0.365 0.01

Density Kg/m3 2700 1600 2600

Specific Heat kJ/kg 793 1091 1000

Thermal W/m K 3.2/3.3 0.5/1.0 3.0/3.0
Conductivity
Dry/sat

Thermal conductivity equation (Somerton et al.,1974):

kth = kdry + ji(ksat — kdry)

kth = thermal conductivity
kthy = dry thermal conductivity
ksat = fully saturated thermal conductivity



8 I Retention Curves

van Genuchten capillary pressure function:

1  -2

Se = [1 
+[(;0)1-1

Si — sir
Se = , r

Jis — olr

S1 = liquid saturation
51r = residual liquid saturation
Sts = maximum saturation
X = van Genuchten parameter
s = suction (capillary pressure)
P0 = air entry pressure



9 1 Retention Curves (Contd.)

Mualem relative permeability functions based on van
Genuchten saturation function:

Sel =

krl

kr g

Si — Sir

Sis Sir

2
/ )1

l — (1 — S
el/

1 / 22

— Seg — eg

s21

S1 — Sir
Seg =1  

1— Sir — Sgr

kri = liquid relative permeability
krg = gas relative permeability
Sgr = residual gas saturation



10 1 Retention Curve Parameters
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Relative Humidity Calculation

To calculate relative humidity Kelvin's law was used:

RH % = 100exp ( s .17w
6U0-R • T )

RH = relative humidity

s = suction (MPa)

Vw=molar volume of water (1.8 x 10-5 m3/mol)

R = universal gas constant (8.3143 J/mol K)

T = temperature in Kelvin



12 1 TH Model Setup

o Initial condition:
o T = 12 °C everywhere
o Hydrostatic pressure everywhere except in buffer

o Buffer initial condition

o liquid saturation = 0.36 at time zero

oliquid saturation = 0.7 at time = 135 days (at the start of heating)

o Boundary Condition:
o Top boundary at P = 4.5 MPa and T = 12 °C
o Domain sides at hydrostatic pressure and T = 12 °C

o Time varying heat applied at heaters

o PFLOTRAN numerical code was used for simulations
oSolved variables for single liquid phase: liquid pressure, temperature and

mole fraction of air

oSolved variables for two-phase: gas pressure, temperature and gas saturation
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Evolution of Heater Power

Power input at heaters Evolution of temperature at heater surfaces
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141 Temperature Distribution at 1800 Days
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151 Liquid Saturation Distribution at 1800 Days Ell
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Distribution of Relative Humidity:
Radial Sections
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Evolutions of Relative Humidity
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2, I Summary of Stage 1 Simulations

O Results of heater outputs are about the same for
Heater 1 but slightly lower for Heater 2.

o Temperature at heater surfaces are less than 100 C
at early time and slightly over predicted at later
time.

O Results of temperature in the bentonite buffer are
fairly close to the experimental.

O Relative humidity is sensitive to various input
parameters.
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PART 11: THM Model Exploring Effects of Gaps
and Wetting Heterogeneity (in progress)

o Model gas transport and gap closure
associated with swelling

o Computational Fluid Dynamics
coupled with heat and compositional
mass transport

o Explicit modeling of gaps, disturbed
rock zone, and bentonite
heterogeneity

o COMSOL MultiphysicsTM, attempting
parameter estimation w/ cluster
computing

o Biot poroelasticity in fractured
granite and cement plug, extended
Barcelona model in bentonite
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23 1 COMSOLTM Model Details

In tunnel, cement, bentonite, gaps:
• Variables in EBS are (T, Pgas, r)w
• rvt, is molar density of water

component, used as "persistent

variable"
• Ignore air dissolved in liquid phase

acopw = _ 
*( 

w 
+ fgw) + Qwat  ° f1

Pw = S1p1 + (1 — S1)Pv

a 
at (copaSg) = —V 

• fga + Qa

Gas flux modeled as Forscheimer flow (Navier-Stokes plus Brinkman equations):

In porous domains (with Forscheimer corrections):

Pg— at E 
+ — Pg01 • V)u— = V • (—pgl + K) — (µgk-1 + f3Flul +

Q. 
)11 -F F + Pagg

E E E

1 aU 1 r 1 

P P P P

2
K = itg 

1 
—(Vu+ (Vit)T) — — itg— 

1
(V • u)I

Ep 3 Ep
Ep = (pS9

In tunnel and initial barrier gaps (NS keeping inertial terms):
au

pg (+ pg(u • V)u = V • (—pgI + K) + F + pgg

K = itg(Vu+ (Vit)T)



24 1 CONCLUSIONS

o Presented results of PFLOTRAN TH Modeling

o In progress: Coupling PFLOTRAN with DAKOTA for
parameter estimation and uncertainty quantification

o CFD and FE THM modeling of FEBEX heater test
examining effects of DRZs, gas flux in gaps, and effects
of heterogeneous wetting and drying (in progress)


