This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.
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*" Outline

o Part I: TH Modeling of Stage 1 FEBEX in-situ test
using PFLOTRAN

o Model development
o TH modeling results

o Part Il: THM Modeling of Stage 1 FEBEX in-situ
test using COMSOL (In Progress)

o Model development

o Future work




Sandia Geologic Disposal Safety
Assessment (GDSA) Framework

d Input

Parameters

\
| Parameter
k database

J/

!

(r

\\

N\ Computational Support
Uncertainty
Sampling and Pre-/Post- i Visualization
Sensitivity Analysis Processing ”'Para View
- DAKOTA % pythen ‘
) | dfnWorks]

i

4

Multi-Physics Simulation and Integration

PFLOTRAN

Source Term and
EBS Evolution Model

Inventory
Decay, ingrowth
WF degradation BT

Radionuclide release
Thermal, mechanical

WP degradation FMDM

\

Y

P,

&Gas generation

N

B Advection, diffusion, dispersion

Flow and Transport Model \

Discrete fracture networks
Sorption, solubility, colloids
Isotope partitioning

Decay, ingrowth

Thermal effects

Chemical reactions

_/

(Biosphere Mo@

B Exposure
pathways

B Uptake/
transfer

B Dose
calculations

N

k.

-

https://pa.sandia.gov




Part I: TH Modeling of Stage 1 FEBEX In-Situ
! Test using PFLOTRAN

> Conducted thermal-hydrology modeling of the
FEBEX 1n-situ test up to first dismantlement (5 years)

° Developed 3-D modeling domain and meshing based
on project specifications

> Assumed low permeability concrete plug isolates the
open tunnel from the test area
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5‘ TH 3-D Modeling Domain

e Domain Size:60mx20 mx40m(x,, z)
 Mesh size: 467,992 grid blocks
e Axisymmetric: Symmetry boundary
condition assumed
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Meshing of TH Modeling Domain

o Simulation domain includes details of various regions
representing different materials:

o Granite, disturbed rock zone (DRZ), bentonite buffer, heaters,
plug, liner, microannulus, lamprophyre and fracture at back of
test area




‘ Material Properties

I O o

Permeability 1.23x1020 5.0x102° 1.0x1020
Porosity - 0.01 0.365 0.01
Density Kg/m3 2700 1600 2600
Specific Heat kJ/kg 793 1091 1000
Thermal W/mK 3.2/3.3 0.5/1.0 3.0/3.0
Conductivity

Dry/sat

Thermal conductivity equation (Somerton et al.,1974):

kin = kdry + \/S_l(ksat - kdry)

ki, = thermal conductivity
Kqry = dry thermal conductivity
Ko« = fully saturated thermal conductivity




Retention Curves

van Genuchten capillary pressure function:

1 +—4
S\1-1
Se =1+ (—)
e=| P
S, — 8
o [ lr
Sis — Sy

S, = liquid saturation

S, = residual liquid saturation

S, = maximum saturation

A = van Genuchten parameter

s = suction (capillary pressure)
P, = air entry pressure




,| Retention Curves (Contd.)

Mualem relative permeability functions based on van
Genuchten saturation function:

ket = \/Sa {1 ~(1-s,/ ﬂ)ﬂ}

1) 124
ke =\/1—Seg {1—56g }

Sol — Sl — Slr Seg _1_ Sl o Slr
Sts = Sir 1—=5,— Sgr

2

k., = liquid relative permeability
k., = gas relative permeability
5S¢ = residual gas saturation
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" Relative Humidity Calculation

To calculate relative humidity Kelvin’s law was used:

—S°VW)

RH % = 100exp (10‘6R -

RH = relative humidity

s = suction (MPa)

V,,=molar volume of water (1.8 x 10> m3/mol)
R = universal gas constant (8.3143 J/mol K)

T = temperature in Kelvin




i TH Model Setup

o Initial condition:
o T =12 °Ceverywhere
o Hydrostatic pressure everywhere except in buffer
o Buffer initial condition
o liquid saturation = 0.36 at time zero
oliquid saturation = 0.7 at time = 135 days (at the start of heating)

o Boundary Condition:
o Top boundary atP=4.5 MPaand T=12 °C
o Domain sides at hydrostatic pressure and T =12 °C
o Time varying heat applied at heaters

o PFLOTRAN numerical code was used for simulations

oSolved variables for single liquid phase: liquid pressure, temperature and
mole fraction of air

oSolved variables for two-phase: gas pressure, temperature and gas saturation




Evolution of Heater Power

13
Power input at heaters Evolution of temperature at heater surfaces
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‘ Temperature Distribution at 1800 Days

Temperature [C]
104
100

| 90

=

85
80
75
70
65
—1 60
B %5
E 50
= 45
40
35
B 30
B 25
20

=i

15
12




| Liquid Saturation Distribution at 1800 Days
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Temperature [C]
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Distribution of Temperature:
Radial Sections
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Distribution of Temperature:
Axial Sections
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Temperature [C]

Evolution of Temperature
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Relative Humidity [%]

Relative Humidity [%]

Distribution of Relative Humidity:
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»1 Summary of Stage 1 Simulations

° Results ot heater outputs are about the same for
Heater 1 but slightly lower for Heater 2.

o Temperature at heater surfaces are less than 100 C
at early time and slightly over predicted at later
time.

° Results of temperature in the bentonite buffer are
fairly close to the experimental.

o Relative humidity 1s sensitive to various input
parameters.




PART II: THM Model Exploring Effects of Gaps
2 and Wetting Heterogeneity (in progress)

o Model gas transport and gap closure

associated with swelling DRZ

Cement plug

o Computational Fluid Dynamics
coupled with heat and compositional
mass transport

o Explicit modeling of gaps, disturbed
rock zone, and bentonite

heterogeneity =

o COMSOL Multiphysics™, attempting R N Bentonite (middle
parameter estimation w/ cluster oL Initial gap between  section removed)
computing liner and bentonite

o Biot poroelasticity in fractured
granite and cement plug, extended
Barcelona model in bentonite




N COMSOL™ Model Details

In tunnel, cement, bentonite, gaps:  9¢Pw _
. . : g p ot __v.(flw-l_fgw)_'_QW
Variables in EBS are (T, Py, r\,)
* r, is molar density of water pw = Sip1 + (1 — SDpy
component, used as “persistent
. ” d
variable a(gopaSg) =-V-f#+Q°

* lgnore air dissolved in liquid phase

Gas flux modeled as Forscheimer flow (Navier-Stokes plus Brinkman equations):

In porous domains (with Forscheimer corrections):
1 ou 1 1 Q
—pg=—+—p;u-VYu—=V-(—p,I +K) — (ugk‘l + Bplul + —Tzn)u +F+pag9
g 70t g Ep &p

1 P4 1
K= Mgg(Vu + (Vu)T) —§ugg(v -w)l g, = ps,

In tunnel and initial barrier gaps (NS keeping inertial terms):
u
pga+pg(u-V)u =V-(—p,l+K)+F+p,g

K=p,(Vu+ (Vu)T)




24 CONCLUSIONS

o Presented results of PFLOTRAN TH Modeling
o In progress: Coupling PFLOTRAN with DAKOTA for

parameter estimation and uncertainty quantiﬁcation

o CFD and FE THM modeling of FEBEX heater test
examining effects of DRZs, gas flux in gaps, and effects
of heterogeneous wetting and drying (in progress)




