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Micron-scale resistive inclusions can transform into —10X wider, deeper craters, important for
later magneto Rayleigh-Taylor instability growth.
Inclusions seed plasma formation, which is a 3D effect.
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Accelerating liners are magneto Rayleigh-Taylor (MRT) unstable
Magneto-inertial fusion (MagLIF)

Magnetization Laser heating Compression
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D. Sinars(FR1) — From Astrophysics to Z-pinches: HED Science with Pulsed Power
M. Gomez(GI3) — Performance Scaling with drive parameters in Magnetized Liner Inertial Fusion experiments

Q: what seeds MRT?



In sufficiently smooth liners, magneto Rayleigh-Taylor (MRT)
instability is NOT seeded b surface rou • hness

Less MRT unstable

Machining
grooves

Metallic liner

Experimental radiography
(D. Sinars) is qualitatively

the same!

Q: what seeds MRT?
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Another important design consideration is plasma formation

A

Metallic liner

Outer surface of liner will Joule heat, and eventually explode



Plasma formation can compromise liner performance

f it,
Metallic liner

/Plasma

Plasma will take some of the liner's current, as well as develop
MHD instabilities



1 Plasma can result in current losses in pulsed power accelerators
Inner MITL

power feed

Plasma in the anode-cathode gap can short a
fraction of current before it reaches the target.

Magnetically insulated transmission line (MITL)

GI3:N. Bennett — Kinetic simulations of power flow in the Z accelerator



UNR experiments inform how metal heats and develops
plasma, when subject to intense current

Visible emission (I-0.7 MA)
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hotter

The electrothermal instability (ETI) is important to metal
deformation

05T>066<0—>o(j2/6)>0

ETI is a Joule heating-driven instability.
In a metal (cla/dT<O), the dominant mode
manifests as hot/cold bands -- "striations".

ETI striations
can seed the
MRT instability
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ETI striation?

Q: what seeds the striation?



hotter

colder

J

The electrothermal instability (ETI) is important to plasma
formation

In a plasma (d6/dT>0), the dominant mode
manifests as hot/cold "filaments".

0 200

X(i111)

4C10 6C0

ETI filament?

Q: How do striationsfilaments?

This is a 3D process, and likely
requires a 3D perturbation
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Metals generally possess resistive inclusions and voids

SEM chKacte'rization
of AP6061 rod surfa
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Can resistive inclusions or voids seed striations/filaments?►

SEM chKacte'rization
of AP6061 rod surfa
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SEM characterization
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Q: How does current density .1 divert and
amplify around inclusions, surface roughness?
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Can resistive inclusions or voids seed striations/filaments?
►

SEM characterization

of AP6061 rod surfac .
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Q: Can J amplification allow gm-

scale inclusions to transform into
much larger striations?
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I Can resistive inclusions or voids seed striations/filaments?
ISEM characterization
of AP6061 rod surface
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Q: How do striations convert to
filaments?



1 Stea y-state, electrical current flow
around resistive inclusion
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J•n(r=R)=0

h =

J = a  E = —o-V

V•J=0 > V2 0

J•n(R) — 0 > V n 0

Analogy between electrical current and fluid flow*
Incompressible, potential fluid flow around sphere

o i\\// 1v(r /11
•n(r=R)=0

v — V

0•v=0 > V2 0

v • n(R) 0  V • n 0

v

J and v satisfy the same
equations we get "for
free" from hydrodynamic
solution.

*H. Lamb, Hydrodynamics (1879)
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1 Resistive sphere amplifies J around its equator
Steady-state, electrical current flow (assuming skin depthE6 >> R)
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Stream lines deflect around the sides of sphere,
leading to faster flow there.
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R! Amplification is significant, even for tiny
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Inclusion is dominant perturbation in UNR experiment

Machining grooves on rod surface 
Steady-state, electrical current flow 2

Hydrodynamic analogy: flow over rippled
surface io

•

metal vacuum

minimum

peak

Lr

Amplification
depends on A/A,
not just A

JRI= (3 2110
I I I I I I 1 1 1 1

In experiment of interest*

JsR-j-0(1+27/-A/A) A-42 nm,

JSIZ:-1 1.051 inclusion is
assuming 6 >>
A<A. 

dominant perturbation

*Tj. Awe et al., IEEE Trans. Plasma
Sci. 45, 4 (2017)



Can resistive inclusions seed striations/filaments?
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1 J and a constantly evolve through feedback
Al 6061 rod surface
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topography
determines flow
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topography*flow
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Feedback transforms gm-scale inclusions into larger striations
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In a metal, the feedback between a
and J is mediated by Joule heating:

flow topography
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Need 3D MHD to study this process.



3D MHD simulation of A1 rod + resistive inclusion
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3D MHD Code (ALEGRA) 

-Periodic BCs axially and azimuthally
-Hemispherical inclusion (Rpit= 3 fim): Al with a/10, K/10
-LMD thermal/electrical conductivity
-SESAME EOS Al 6061* (Thanks, K. Cochrane, T. Sjostrom, T. Hutchinson!)
-No radiation
-All units are SI

200 *T. Sjostrom, S. Crockett, S. Rudin, PRB 94, 144101 (2016)
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3D MHD simulation of A1 rod + resistive inclusion
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3D MHD simulation of A1 rod + resistive inclusion
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I Initially, simulation reproduces flow around a sphereJ along lineout £
t=40 ns
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I Initially, simulation reproduces flow around a sphereJ along lineout £
t=40 ns
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Flow around s
t=85, outer surface

Overheated
region bulges
out radially
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Flow around s• here converts to flow over bulge
t=85, outer surface

r=.5015 mm
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Simulation qualitatively matches
hydrodynamic solution.
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Flow around s• here converts to flow over bulge
t=85, outer surface
r=.5015 mm
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An ETI striation has developed
t=115
r=.524 mm
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An ETI striation has develo
t=115
r=.524 mm
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transforms from flow over bulge to flow over mound
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J transforms from flow over bulge to flow over mound
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enough that da<0 there



transforms from flow over bulge to flow over mound
t=115

r=.524 mm
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t=115
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Bulge flow converts to mound flow
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Throu
t=115
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The ETI striation continuously widens
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I Can resistive inclusions or voids seed striations/filaments?
SEM chKacte'rization
of AP6061 rod surface
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Q: How do striations convert to
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The striation ex
t=115
r=.1111111 mm
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The striation ex
t=115
r=.524 mm
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t=101
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t=101
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concave P contours
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Filament forms through azimuthal focusing and axial expansion
t=115

r=.525111trm
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Filament forms throu • h azimuthal focusing and axial expansion
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Following the hot spot in a Lagrangian sense, it has elongated
axially, 6 ns later; it is transforming into a filament.

Also, despite the strong pdV expansion cooling, the hot spot
has heated.
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ETI filament instabilit is vital to •lasma formation
t=121
r=.55 mm
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The hot spot continues
to heat, despite pdV
cooling, due to the ETI
filament instability (i.e. J
concentration)
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ETI filament instabilit is vital to plasma formation
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1 CO visible emission

(SPECT3D), t=123
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Once the hot spot spans the mesh axially, J "reconnects", driving explosive heating.

Plasma formation is a 3D process. In an equivalent 1D simulation, which can't
model the ETI filament, plasma forms —25 ns later.
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Deeper in the metal, the striation has developed into a crater
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er in the metal, the striation has developed into a crater
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• 486266

The crater is —10X wide and deep as the original inclusion,
important for MRT.
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I Can resistive inclusions or voids seed striations/filaments?
SEM chKacte'rization
of AP6061 rod surface

I,

c

4 1.

•
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•
SEM characterization
of Be rod surface
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Visible eMission (I-0.7
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3D MHD simulation

o  
0 200
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400

Q: How much can we really
believe simulations?
Need experiment!



Experiments with pre-machined perturbations on 99.999% pure
A1 provide a known initial condition for 3D MHD simulations

Al 5N rod (99.999% pure)
i.e. no inclusions

-
24 aum

- machined pits
(Thanks, K. Tomlinson!)  

•
SEM characterization
of Be rod surface

9
20 !urn

THEORY

•

Large pits are easier to diagnose

M. Hatch  (CP10.00051): Development of a novel
dual view, 4-frame imaging system to study ETI

S. Kreher(JP10.00090): Magnetohydrodynamic
calculations of resistively exploding aluminum rods
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First experiments did not match simulation prediction
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Figure 6-9. Ra=397/rim
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No evidence of the
predicted pit
emission! Looks like
standard "pitless"
case.
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heory predicts grooves dominate pits
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Figure 6-9. Ra=397 nm

Jpit= .51

JgrooveJo( 1 + 27A/Ä)

For A-1 prn, A-7 pM,

Jgroove 1 .91

Need a smoother rod!



I In smoother rods, pits should dominate grooves
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Figure 6-12. Ra=57 nm

This rod is —7X smoother.
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1 Simulation prediction is similar to experiment for smooth rods
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Figure 6-12. Ra=57 nm
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• 3D MHD can model metal explosion

•A first step towards a controlled metal explosion
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Summary

Al 6061 rod surface
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Visible emission (I-0.7 MA)
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crater
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3 00
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Micron-scale resistive inclusions can transform into —10X wider, deeper craters, important for
later magneto Rayleigh-Taylor instability development
Inclusions seed plasma formation, which is a 3D effect.
•We are using the new understanding of MRT seeding mechanism to devise stabilizing strategies
(e.g. pure, void-free metal coating).

THANK YOU!


