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Snapshot of Mg Electrolyte Development

80 kW, 100 kWh___ 360 V
700

maller

Mg metal anode + high voltage cathode = transformative o ’
energy storage i

500

« Significant growth in Mg electrolyte development — expansion
of stability window

400
Li/O, open

300 \ Li/O, closed

« Growing electrolyte toolkit provides opportunity for systematic
investigation - predictive electrolyte design
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Computational Screening Drives New WCA Development

Computational screening of ion association
Mg(AIORF,), with expanded redox window

and redox stability leads to
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K.C. Lau et al. J. Electrochem. Soc. 2019 DOI: 10.1149/2.0751908jes
Computational screening of Mg(RCB,H,,), target derivatives leads to
improved anodic stability with no penalty to cathodic stability
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TFSI- as a Benchmark Weakly Coordinating Anion

TFSI provides diverse conformations and interactions

TFSI Conformational Sensitivity Predicted Stability Dependence
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Outstanding Questions — New Approach
What is the role of the solvent in dictating the following:

* TFSI reactivity?

 the limits of efficiency?

« performance of WCA's?

Our approach:

Explore impact of competitive solvent and anion
complexation on efficiency.

* Treat the ether — glyme solvent series as a
continuum of energy of complexation

» Treat contact ion pairing anions as displacive ligands

» Bulk speciation — interfacial speciation - reactivity

""""""""""""""""""
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What about intrinsic reductive stability of the solvent?

Comparable free energy barriers
for Mg*-solv reduction

TS1g;

Dual, concerted

—J‘/ C-O dissociation
0.42

N

TS2;,
. Alternating C-O
~.. -0.66 association/dissociation
1.43 -1.34 " 1.39

AE* = AEais(glyme) + ABix + AErea(glyme) + AEox(Mg")

Solvenf AG* AE*| AEgs(glyme) AEwd(glyme) AEix  AEox(Mg")

Gl 054 0.68| 091 1.63 -16.56  14.70
G2 042 055 098 1.68 -16.81 14.70
G3 051 058 0.77 1.56 -16.44  14.70

{GJENERGY 6  N.T. Seguin et al. Frontiers in Chemistry. 2019, 10.3389/fchem.2019.00175  JCESR B3 hesnncy



Chelating ability of the ether drives ion separation

Structures or degree of

5 M MgTFSI,:sol it i
0.5 gTFSly:solvent association with ether type

Spectrum 100
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Solvent Denticity (n)

* Free or solvent separated ion pairs are dominant in multidentate ethers

» Contact ion pairs and aggregates are dominant in the cyclic ethers
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Solvent — anion exchange is tracked by 2°Mg NMR

Relaxed MD or created complexes

Mg, TFSI,*
% . MgTFSI,
) { Py
14 . \ il )
= R Y g MgTFSI,
é THF \«.\,M _ GZMg™ THEMATESE  aTFsIe "oz
1 2-MeTHF e 4 . 2 \}Jf Mg2* = THF
" T N R . . .
30 20 10 0 -10 -20 -30 -40 ‘ 4 0 -4 -8 -12
25Mg NMR Chemical Shift o ‘ Computed 22Mg Chemical Shift (ppm)
* Mg(solv),, complexes exhibit downfield shifts
« Mg-TFSI contact ion pairs and aggregates exhibit upfield shifts
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Deposition efficiency is correlated with ion separation

25Mg Chemical Shift (ppm)
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Descriptors for electrolyte properties and reactivity

Coordination environment Coulombic efficiency
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» Chelating ability of solvent drives ion separation

« Passivation (G1) remains an issue even at low Mg-TFSI pairing
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Demonstration of Solvent Controlled lon Separation

Add a stronger coordinating solvent to a highly ion associated electrolyte

G2 addition at select G2:Mg?* molar ratios maintain Mg?* at 0.5M
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« G2 up to 17 mol% yields descriptors consistent with a glyme electrolyte

* Mg deposition is greatly enhanced

» Generalized strategy for regulating reactivity
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Reduced TFSI Decomposition with Displacement

Interphase composition should yield less TFSI products with THF - G2
Localized deposit — filmed substrate ocalized deposit — fibrous morphology

PN
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Key Lessons

Solvent regulates the extent of Mg-TFSI ion pairing

lon pairing is always present at mid to high concentration for the cyclic to low
order glyme series impacting Mg deposition efficiency

Stronger coordinating co-solvent addition reduces ion pairing - increases
efficiency
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Tuning Interactions with a MgCl, Co-salt

Previous work highlights the benefit of MgCl, addition to MgTFSI,/G1

1:1 MgCl,:MgTFSI, 2:1 MgCl,:MgTFSl,

0.02
0.4} &
I /| MgTFSI2/MgCl2 (DME)

0.2 A MgCl, + Mg(TFSI),
1 - < 001 - /
0.0 —_ /‘_,

02| /// F 3
. 1 " 1 " I . 1 o EQ 0 77 S— T
-1 0 1 2 3 4 g |
Voltage (V vs. Mg) ol / ? ‘\:\ % I
i / \ 2+ i / 1 A e‘
0
Y, O O/w 0,02 . 1 . 1 A
'D!, | I.\\CIJ,. ‘ -"\G“*«.. -2 -1 0 3 4
OI(MQ\.CI,MQ \.O E (Volts)
ICI') /O Shterenberg et al. Journal of The Electrochemical Society, 162 (13) A7118-A7128
stable

Cheng et al. Phys. Chem. Chem. Phys., 2015, 17, 13307--13314

What about the solvent impact with stronger coordinating anion addition?
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Deposition behavior exhibits critical Cl- concentration

Maintain Mg?* at 0.5M — vary CI:TFSI- molar ratio

100 - 30 -
—3:1in THF
90 A —2:1i
20 - 2:1in G1
3 80 3 &E\ —1:1in G2
> o 10 -
(6]
5 7] g }\
2 >
i 60 4 £ 0
(6] c
= [
Q0
50 A a
E € -10 -
3 o
8 40 A | L’s)
/ -20
30 1/
20 T T T 1 -30 T T T T T 1
0 1 2 3 -1.0 -05 0.0 0.5 1.0 1.5 2.0
MgCl,:MgTFSI, Potential (V vs. Mg/Mg?*)

« Coulombic efficiency is maximized at a unique CI:TFSI- ratio

« Overpotentials are lower than for TFSI- and comparable across ether
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Solvent plays a key role in defining speciation

Details of the MD simulation

—3:1 THF
- —2:1G1
=
(o1 I —1:1 G2
‘-D'- .
21
Qo
-
%0 T aggregates
trimers, etc.
] ) f . \
2 3 4 5 6 7 8
r (A)

« Stronger chelating G2 limits p -Cl dimer and multimer formation

 Minimal differentiation between THF and G1

ENERGY STORAGE RESEARCH
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Mg coordination environment exhibits a critical CI-
concentration

Compare measured and computed Jy, as a function of CI:TFSI-

12 - v~ G2,MgCI* X G2,Mg,Cl,**
10.0 ppm 9.4 ppm 5.7,7.2 ppm

{ &

T
o
=
wn
T
3
£
2
S X THFMg,Cl,* % G1,Mg;Cl,2*
[®)]
=

5.2, 6.3 ppm 8.7,9.4, 9. 6ppm

J;f/‘ ‘?z{ﬂ

0 1 2 3
MgCl,:MgTFSl,

5.7 ppm for 2MgCl,:AICI,

« Mg environment is different than that of the expected p -Cl complex

* Upfield 3,4 consistent with the TFSI-induced shift
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Without a strong chelating solvent, TFSI- continues
to coordinate in the presence of ClI-

100% A Spectrum
----- SSIP
0o " T T | NN\ T CIP-I
LR T 7 I . . W— CIP-II

80% - 3:1in THF

--a
-
S o

70% -

60% -
2:1in G1

50% -

Normalized Raman Intensity

40% -

Raman SSIP TFSI Percentage

30% 1:1in G2

20% T T " T . T .

0 1 2 3 720 730 740 750 760
MgCl,:MgTFSI, Raman Shift (cm-")

appreciable TFSI- coordination at critical [ClI] and max CE

« THF 23%, 100% > G1 15%, 98% > G2 7%, 98%

Why reduced activity? CIPs displaced from the interface, CI- prevents electron
localization on TFSI, surface CI- plays a protective role
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Methods for Determining Interfacial Speciation

0.5 M MgTFSI,:G1

hv - ‘
Operando XAS 108torr Si;N,Pt electrolyte
e By —TFY

€ - —
— —TEY

e” out = interfacial
hv out = bulk electrolyte

X-ray Absorption

Electrochemical static liquid cell

675 680 685 690 695 700

Energy (eV)

(1) Working electrode

(2) Counter electrode

potential dependent response of interface

(3) Reference electrode

(4) X-ray membrane

soft and tender x-rays enable an interfacial compositional inventory
Cations: Mg, Ca, Zn
Ligands: B, CI, C, O, F

{c_g’ U.S. DEPARTMENT OF OINT CENTER FOR
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Anion Speciation at the Interface

S 2MeTHF

MgTFSI, - i ey
= 2 F K-edge
=
2 3
> <
% TFSI displacement g
<
unique TFSI coordination
675 680 685 690 695 700 6;5 6;0 6;;5 séo 6;5
Energy (eV) Energy (eV)
2:1 molar ratio MgCl,:MgTFSI, G1
c S
2 s
= ?
3 2
< >
2 —TFY $
MgC|2 < —TEY x Cl disol o1
Interface # bulk IBplaces
1é6 1$IJ1 1;)6 2Cl)1 2(l)6 2‘II 1 2% 6 530 535 540 545 550

Energy (eV) Energy (eV) g c
JE PR R B i
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Multimer pu-Cl Systems Yield Defined Crystallography

Reduced surface faceting
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Key Lessons

« Ether solvent chelation regulates Cl:Mg?* multimer structure and Mg°
deposition efficiency

« Critical CI:TFSI ratios exist
« Greater solvent chelation ability suppresses u-Cl sharing
« More p-Cl sharing favors high efficiency despite bulk TFSI interactions

« Interfacial behavior of these complexes require further exploration
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Transitory nature of protection without an SEI

Penalty for moving divalent cations freely

Coulombic Efficiency, %

Electrolyte Structure  Control 50 cycles 30 min, S50 cycles 2 hr, 50 cycles

1 cycle continuous discontinuous discontinuous

APC faceted 997403 100.2+0.3 100.0 £0.1 96.6

‘ dense 99.4+0.2 994+0.1 99.3 0.1 973

. porous 994+0.3 99.0+ 0.5 98.1+0.9 96.9

dense 100.3+0.2 -— 99.9+0.1 ----
dense 99.6+0.2 994+03 97.8+0.2 ----
porous  99.1+02 989+0.3" 98.2+0.1

MgCB,H,;G3  TBD  99.2+0.3 98 95 Localized growth '

Free CI- plays a vital but temporary role in stabilizing Mg

No equivalent effect for a WCA — ether combination
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How is reversible Ca deposition enabled?

» First demonstration of reversible Ca deposition and

stripping coupled

« CaH, formation as a passivant to further reactivity

* Dehydrogenation of solvent

D. Wang et al. Nature Materials 2017

0 (a) Au UME Experiment (b) Au UME Simulation

4 £5
2 7
-100 e £
',‘, S
o f 7
€ i ¥
& -200 A ¥
£ 4 /
% . /, /'/
=-300 i %
= / E
7 7
4
v 20 mV/s b e 20 mV/s
-400 k.- -~ -10mV/s ] v P - ~10mV/s]
- 5mVis - - 5mVis
—-=-2mV/s —-=-2mV/s
-500 L i L 1 I n
-04 -03 -02 -01 00-04 -03 -02 -01 00

V (vs. Ca/Ca?") V (vs. Ca/Ca®")

K. Ta et al. ACS Appl Mater Interfaces 2019

* Neither paper describes speciation nor links it

to deposition mechanism

N. Hahn et al. submitted
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Current density (mA cm™2)

Time (min)

=15 — T T T T T T T T

-5 -10 -05 00

0.5

T

T T T T T

1.0 1.5 20 25

Voltage (V versus Ca/Ca’*)

CE mechanism S + BH, + THF — S-H- + BH;-THF

CaH, produced by H- abstraction from BH, not
dehydrogenation of solvent

H- transfer subsequent surface transport and Ca?*
reduction are linked — continuous vs. localized deposition

Current Density

Potential vs. M/MZ*
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Unique Ca?* speciation evolves with concentration

Experiment plus computation drives an understanding of speciation

1999 1040 : —8— Ca(BH,), e Cap(BHs)m?"~™ where n=2 e Ca(BH4); |
s : —e— Mg(BH,), o CaBHa); . CalBHy*
§ %0 —— NBu,BH
%) - K 4B g 10° = . =
5 © 1.00 - b .

3 80 E 3 a
2 —-165M & . "
L £ T .
4 -=-08M O o ~
5 70 —+-043M 2 8 4 . .
g g 0.10 4 S
2 < E C1072{ }
3 : 5
Q 60 4 .-./.,.—&-——.‘ p=
&) ] g .
- ® 1073 *
50 T T T 1 0.01 Ll T T .
0 2 4 6 8 0.0 0.5 1.0 15 025 030 075 100 125 150 175
Current Density (mA/cm?) Concentration (M)

« Efficiency is a strong function of concentration and rate
* Increased concentration drives driving ion species formation
 Redistribution of BH,

« Cationic multimers are the likely agents of Ca?* delivery
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Ca?* polarizability facilitates ionization

Dissociation energetics dictate activity originates from minority species

1.2 =t g=T4 4 4 - 0
- =10 3 1 - -0.1
1.0 1
. L 0.2
0.8 - = 11 —e— THF 03 _
EO.G- ;0' —e— BH, _04€
2 = -1 L
g L 05 <
0.4 - 2 4
3 - -0.6
0.2 4
4 - -0.7
0.0 - -5 — —— 0.8
) (&Q‘ . QN @Q\D ‘ xQ;Z‘ @Q‘D @Z‘D qﬁb,z\b- xQ’,bv @Q\}"; ) Q‘)Z*“ @2\}% Q«ﬁ”
¥ N S S a 2o (<N 4 @
® g) X éz\v x x & & L X Q\z\b- X <
C P F A A
C Olb& O’bg 00 00}? 0@§
lonic Products lonic Products
Probable ionization products
« are not free ions Multimer formation should drive
* are ion aggregates — cationic mono- and « decreased THF coordination
di-mers « decreased H bridging

AGG stabilized with increased permittivity —
solvation of neutrals
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Demonstration of decreased THF coordination with
concentration

THF,Ca(BH,), solvate THF.Ca(BH,), electrolyte
v(C-C) ; 0.6 1 .
Y(C-O) v(C-C) R 4
v(C-0O) 7 e
- 0.5 A .Mg ,/’
= « A - 4
Q| |5 5 04 1 o
g E > 7o
£ | : ég £ 03] S /'m—THF CN
© € T 043 M v/ o®
= o) S ar
T Q 0.2 A £
e 3 Pt
% 0.1 ’f:,‘/ <
z THF &
T T T T T 1 T T T T T 1 00 i T T T 1
850 870 890 910 930 950 970 850 870 890 910 930 950 970 0.0 0.5 1.0 1.5 20
Raman Shift (cm-1) Raman Shift (cm-1) M(BH,), Concentration (M)

lonic AGG population evolves for Ca?*, static for Mg?*
DFT shows BH, formation does not drive lower THF CN, Ca(BH,);- and Ca,(BH,);" do
BH,- exchange occurs among AGG - Ca,(BH,), driven by Ca?* polarizability

EEEEEEEEEEEE
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BH, Coordination Signature is more Difficult to Decipher

—02M Mg(BH,),

2050 2150 2250 2350 2450
Raman Shift (cm™)

Normalized Raman Intensity

[,-H v Vv v
—043M Hy Ca(BH,), 0
—0.85M mono v v v
1.18 M
e H multi v 2 v

2000 2100 2200 2300 2400 2500 2600

Raman Shift (cm™) Hp

I/l = 0.76 t0 0.79

Normalized Raman Intensity

T T T T T 1
2000 2100 2200 2300 2400 2500 2600
Raman Shift (cm™)

« y(B-H) mode is sensitive to change in coordination
« v(B-H) spectral change is consistent with conductivity — Ca?* variant, Mg?* invariant
« no free BH,", < 2250 cm-' neutral aggregate formation
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Dehydrogenation of THF is unlikely

j ', C4;H;0":Ca?" + H-

' 0.77 eV
C,HzO:Ca™ /

0.0 eV

Reaction profile for reduction of THF via dehydrogenation by a
reduced Ca* species

Large thermodynamic and kinetic barriers — reaction improbable

EEEEEEEEEEEE

§ e"‘i_"‘f@{_‘ u.s.
‘©/ENERGY 28 JCEESR Rie¥srorce research



Key Messages

Transport and deposition are driven by charged aggregates formed
through BH,~ exchange between neutral aggregates

Strong association of Ca?*- BH,” no free cation and minimal free anion
Proposed chemical reaction step could be due to AGG dissociation

Dehydrogenation of THF is energetically and kinetically disfavored

ENERGY STORAGE RESEARCH
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New Techniques for Characterizing Interphases

Cryogenic characterization of cycled lithium anodes using electron

microscopy
Cryo-EELS in STEM of Li Dendrites

Cryo-STEM fid

% a
e,
------
o*

Dendrite s

(type I) ““““

Se. PR
--------

--------
*

Dendrite
(type II)

.
......

.
-
.....
3

ST *
. 3
‘e LT TR L

Cryo-EELS R £}

Carbon Oxygen Fluorine

Zachman et al. Nature 2018

Interfacial structure and composition determination

with the electrolyte intact

9

e

,‘L'#, U.S. DEPARTMENT OF
.Y/ENERGY 30
Uns®

4

@

:

Cryo-SEM and X-ray Spectroscopy of Li

Electroplated on Cu in 4 M LiFSI

.

K. Jungjohann, CINT

JGESR
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Intentional Interphases for Selective Cation Transport
Polymer membranes as selective ion conducting hosts

Nanoporous polymer
membranes (PIM-1)
yield selective
transport of the small
radius Li* cation while
constraining motion of
the larger TFSI~ anion

Demanding EV
applications
require significant
improvements in
lithium anode
cycle life to enable
enable lithium
metal batteries

(

Li
| Cu

G & 6 &6 &G

Time (h)

No PIM-1

Porous ¥ growth

.30 400 500 660 . ) .
s [llustration of lithium
growth in the respective

Li—Li cell cycle life comparison with ells
C .

and without PIM-1 membrane.

Liquid electrolyte-filled nanopores in rigid
polymers are demonstrated to dramatically
increase selective Li cation transport, in turn
suppressing dendrite formation during lithium
metal electrodeposition.

The Li* transference number is measured to
increase from 0.2 to 0.72 when a standard
ether electrolyte is confined to the
nanometer diameter pores of the structurally
rigid PIM-1 membrane.

The enhanced stability of the lithium anode
results from repeated formation of compact,
dense lithium metal deposits driven by
selective Li* transport within the PIM-1
membrane.

Fixed anion scaffolds from polymers of intrinsic microporosity, porous
aromatic frameworks, block copolymers

L. Ma, Nano Lett. 2019 DOI:10.1021/acs.nanolett.8b05101
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BH, Coordination Signature is more Difficult to Decipher
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« y(B-H) mode is sensitive to change in coordination
« v(B-H) spectral change is consistent with conductivity — Ca?* variant, Mg?* invariant
« no free BH,", < 2250 cm-" neutral aggregate formation
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