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Snapshot of Mg Electrolyte Development

• Mg metal anode + high voltage cathode = transformative
energy storage

• Significant growth in Mg electrolyte development — expansion
of stability window

• Growing electrolyte toolkit provides opportunity for systematic
investigation - predictive electrolyte design
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Computational Screening Drives New WCA Development
Computational screening of ion association and redox stability leads to
Mg(AIORF4)2 with expanded redox window
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TFSI- as a Benchmark Weakly Coordinating Anion

TFSI provides diverse conformations and interactions
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Outstanding Questions New Approach

What is the role of the solvent in dictating the following:

• TFSI reactivity?

• the limits of efficiency?

• performance of WCAs?

Our approach:

Explore impact of competitive solvent and anion
complexation on efficiency.

• Treat the ether — glyme solvent series as a
continuum of energy of complexation

• Treat contact ion pairing anions as displacive ligands

• Bulk speciation — interfacial speciation - reactivity
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What about intrinsic reductive stability of the solvent?
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Solveni AGt

G1 0.54

G2 0.42
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AE t AEd st(glyme) AEred(g fyine) AEllit A E0.(Mg±)
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0.55 0.98 1.68 -16.81 14.70

0.58 0.77 1.56 -16.44 14.70
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Chelating ability of the ether drives ion separation
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• Free or solvent separated ion pairs are dominant in multidentate ethers

• Contact ion pairs and aggregates are dominant in the cyclic ethers
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Solvent anion exchange is tracked by 25Mg NMR

Relaxed MD or created complexes
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• Mg(solv)n complexes exhibit downfield shifts

• Mg-TFSI contact ion pairs and aggregates exhibit upfield shifts
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Deposition efficiency is correlated with ion separation

Descriptors for electrolyte properties and reactivity

Coordination environment Coulombic efficiency
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• Chelating ability of solvent drives ion separation

• Passivation (G1) remains an issue even at low Mg-TFSI pairing
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Demonstration of Solvent Controlled Ion Separation

Add a stronger coordinating solvent to a highly ion associated electrolyte

G2 addition at select G2:Mg2+ molar ratios maintain Mg2+ at 0.5M
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• G2 up to 17 mol% yields descriptors consistent with a glyme electrolyte

• Mg deposition is greatly enhanced

• Generalized strategy for regulating reactivity
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Reduced TFSI Decomposition with Displacement
lnterphase composition should yield less TFSI products with THF ""4 G2

Localized deposit — filmed substrate Localized deposit — fibrous morphology
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Key Lessons

Solvent regulates the extent of Mg-TFSI ion pairing

lon pairing is always present at mid to high concentration for the cyclic to low
order glyme series impacting Mg deposition efficiency

Stronger coordinating co-solvent addition reduces ion pairing - increases
efficiency
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Tuning Interactions with a MgCl2 Co-salt

Previous work highlights the benefit of MgCl2 addition to MgTFSI2/G1

1:1 MgCl2:MgTFSI2 2:1 MgCl2:MgTFSI2
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Shterenberg et al. Journal of The Electrochemical Society, 162 (13) A7118-A7128

What about the solvent impact with stronger coordinating anion addition?
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Deposition behavior exhibits critical Cl- concentration
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• Coulombic efficiency is maximized at a unique CI-:TFSI- ratio

• Overpotentials are lower than for TFSI- and comparable across ether
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Solvent plays a key role in defining speciation

THF G1

G2

Details of the MD simulation

P2

P1 • .1* • si*-. —3:1 THF

—2:1 G1

—1:1 G2

aggregates
trimers, etc.

-  - 

2 3 4 5 6 7 8

r (Å)

• Stronger chelating G2 limits lan-Cl dimer and multimer formation

• Minimal differentiation between THF and G1
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Mg coordination environment exhibits a critical Cl-
concentration
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Compare measured and computed öMg as a function of CI-:TFSI-
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• Mg environment is different than that of the expected µn-CI complex

• Upfield ömg consistent with the TFSI- induced shift
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Without a strong chelating solvent, TFSI- continues
to coordinate in the presence of Cl-
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appreciable TFSI- coordination at critical [01-] and max CE

• THF 23%, 100% > G1 15%, 98% > G2 7%, 98%

Why reduced activity? CIPs displaced from the interface, Cl- prevents electron
localization on TFSI, surface Cl- plays a protective role
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Methods for Determining Interfacial Speciation

hv

Operando XAS 10-8 torr

Electrochemical static liquid cell

(1) Working electrode

(2) Counter electrode

(3) Reference electrode

(4) X-ray membrane

Si3N4

e- out = interfacial

Pt electrolyte
e- hv 0

.0

hv out = bulk electrolyte ,c!

0.5 M MgTFSI2:G1

675 680 685 690 695

Energy (eV)

potential dependent response of interface

soft and tender x-rays enable an interfacial compositional inventory
Cations: Mg, Ca, Zn
Ligands: B , CI, C, O, F

700
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Anion Speciation at the Interface
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Multimer µ-CI Systems Yield Defined Crystallography

Continuous deposits textured (0001) to random (p-1000)

Reduced surface faceting
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Key Lessons

• Ether solvent chelation regulates CI:Mg2+ multimer structure and Mg°
deposition efficiency

• Critical CI:TFSI ratios exist

• Greater solvent chelation ability suppresses p-CI sharing

• More p-CI sharing favors high efficiency despite bulk TFSI interactions

• Interfacial behavior of these complexes require further exploration
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Transitory nature of protection without an SEI

Penalty for moving divalent cations freely

Electrolyte Structure

APC

MACC

faceted

dense

porous

dense

dense

porous

MgCB11H12:G3 TBD

Coulombic Efficiency, %

Control
1 cycle

50 cycles 30 min, 50 cycles 2 hr, 50 cycles
continuous discontinuous discontinuous

99.7 + 0.3 100.2 ± 0.3 100.0 + 0.1 96.6

99.4 + 0.2 99.4 + 0.1 99.3 + 0.1 97.3

99.4 ± 0.3 99.0 ± 0.5 98.1 ± 0.9 96.9

100.3 ± 0.2 99.9 ± 0.1

99.6 ± 0.2 99.4 ± 0.3 97.8 ± 0.2

99.1 1 0.2 98.9 1 0.3* 98.2 1 0.1

99.210.3 98 95

Free Cl- plays a vital but temporary role in stabilizing Mg

No equivalent effect for a WCA- ether combination
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How is reversible Ca deposition enabled?

• First demonstration of reversible Ca deposition and
stripping coupled

• CaH2 formation as a passivant to further reactivity

• Dehydrogenation of solvent

D. Wang et al. Nature Materials 2017
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(a) Au UME Experiment (b) Au UME Simulation
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Voltage (V versus Ca/Ca2+)/ .....

-100 • CE mechanism S + BH4- + THF S-H- + BH3-THF—>

-200 • CaH2 produced by H- abstraction from BH4- not

-300 dehydrogenation of solvent

-400
20 mV/s
10 mV/s

20 mV/s •
10 mV/s-.

• H- transfer subsequent surface transport and Ca2+
- - 5 mV/s
- • - • 2 mV/s

- - - 5 mV/s
- 2 mV/s reduction are linked — continuous vs. localized deposition

-500  
-0.4 -0.3 -0.2 -0.1

V (vs. Ca/Ca')

0 0 -0.4 -0.3 -0.2 -0.1 0 0

V (vs. CalCa')

K. Ta et al. ACS Appl Mater interfaces 2019

• Neither paper describes speciation nor links it
to deposition mechanism

N. Hahn et al. submitted
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Unique Ca2+ speciation evolves with concentration

Experiment plus computation drives an understanding of speciation
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• Efficiency is a strong function of concentration and rate

• Increased concentration drives driving ion species formation

• Redistribution of BH4-

• Cationic multimers are the likely agents of Ca2+ delivery
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Ca2+ polarizability facilitates ionization

Dissociation energetics dictate activity originates from minority species
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Probable ionization products
• are not free ions Multimer formation should drive
• are ion aggregates — cationic mono- and • decreased THF coordination
di-mers • decreased H bridging

AGG stabilized with increased permittivity —
solvation of neutrals
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Demonstration of decreased THF coordination with
concentration
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lonic AGG population evolves for Ca2+, static for Mg2+

DFT shows BH4- formation does not drive lower THF CN, Ca(BH4)3- and Ca2(BH4)3+ do

BH4- exchange occurs among AGG — Ca2(BH4)4 driven by Ca2+ polarizability
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BH4- Coordination Signature is more Difficult to Decipher
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• v(B-H) mode is sensitive to change in coordination

• v(B-H) spectral change is consistent with conductivity — Ca2+ variant, Mg2+ invariant

• no free BH4-, < 2250 cm-1 neutral aggregate formation
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Dehydrogenation of THF is unlikely

1 N

i 1.42 eV ‘
, %
I N

I (LG) %

C4H80:Ca+

0.0 eV

`‘ C4H70-:Ca2+ + H.

0.77 eV

Reaction profile for reduction of THF via dehydrogenation by a
reduced Ca+ species

Large thermodynamic and kinetic barriers — reaction improbable
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Key Messages

Transport and deposition are driven by charged aggregates formed
through BH4- exchange between neutral aggregates

Strong association of Ca2+- BH4- no free cation and minimal free anion

Proposed chemical reaction step could be due to AGG dissociation

Dehydrogenation of THF is energetically and kinetically disfavored
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New Techniques for Characterizing Interphases
Cryogenic characterization of cycled lithium anodes using electron
microscopy

Cryo-EELS in STEM of Li Dendrites
Cryo-STEM

Electrolyte

e Cryo-EELS

.. Dendrite
. (type 11)

Electrolyte

Carbon Oxygen ,- 1,-

Zachman et al. Nature 2018

Cryo-SEM and X-ray Spectroscopy of Li
Electro•lated on Cu in 4 M LiFSI in DME

lOpm

K. Jungjohann, CINT

Interfacial structure and composition determination
with the electrolyte intact

7.•
C Kal 0 Kal F
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Intentional Interphases for Selective Cation Transport
Polymer membranes as selective ion conducting hosts
Demanding EV

applications
require significant

improvements in
lithium anode

cycle life to enable

enable lithium

metal batteries
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Liquid electrolyte-filled nanopores in rigid
polymers are demonstrated to dramatically
increase selective Li cation transport, in turn
suppressing dendrite formation during lithium
metal electrodeposition.

• The Li+ transference number is measured to
increase from 0.2 to 0.72 when a standard
ether electrolyte is confined to the
nanometer diameter pores of the structurally
rigid PIM-1 membrane.

• The enhanced stability of the lithium anode
results from repeated formation of compact,
dense lithium metal deposits driven by
selective Li+ transport within the PIM-1
membrane.

Fixed anion scaffolds from polymers of intrinsic microporosity, porous
aromatic frameworks, block copolymers

L. Ma, Nano Lett. 2019 D01:10.1021/acs.nanolett.8b05101
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BH4- Coordination Signature is more Difficult to Decipher
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• v(B-H) mode is sensitive to change in coordination

• v(B-H) spectral change is consistent with conductivity — Ca2+ variant, Mg2+ invariant

• no free BH4-, < 2250 cm-1 neutral aggregate formation
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