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anodes are needed for next generation lithium ion batteries

Goripart et al., Journal Power Sorces (2014)



4 Nanoporous Carbon Pulsed Laser Deposition (PLD)

• PLD C deposition using background Ar gas to attenuate energy of ablated C
• Result: 3D graphene-like, zero-residual-stress C films
• Control density and surface area by tuning laser energy, target-to-substrate distance, and
Ar pressure
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1
5 NPC = 3D Nanocrystalline Graphene

• Nanoporous carbon

• Randomly-stacked 1-2 nm-sized platelets of 3-5 layer thick graphene

• lnterlayer spacing up to 5.4 A (compare to 3.35 A for graphite)
• Density: 0.2 - 2.0 g/cm3

• Clean, binderless, tunable 3D form of graphene!
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6 Procedures

Deposition

1. Grow NPC on SS current collectors

2. Simultaneously grow NPC on Si witness samples

3. Weigh witness sample before and after deposition

(microbalance)

4. Measure film thickness via SEM and calculate density

5. Determine mass of NPC on SS (mass =

density*thickness*area)

2.0 g/cm3 200 nm

Electrochemical Testing

• 2032 half cells versus Li

• 1 M LiPF6 in 1:1 ethylene carbonate:diethyl carbonate

• Constant areal loading = 0.05±0.01 mg/cm2 (-0.22 um graphite equivalent)

0.6 g/cm3 200 nm

2.0 g/cm3 200 nm



7 I Charge Discharge Performance

+ NPC behaves like graphene

+ Capacity increases with decreasing the

+ Higher capacity with 0.8 g/cm3 compare to other

densities
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8 Cycle Life and Coulombic Efficiency vs Density

• Capacity l• with 4, density between 2 and 0.8 g/cm3

• 0.4-0.6 g/cm3 lower capacity than 0.8 g/cm3

• Capacity much higher if l• cutoff voltage to 3.5 V
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9 Cycle Life and Coulombic Efficiency vs Density

• Capacity per unit weight or atom C 1` with NI. p

• Capacity for 0.8 g/cm3 sample increases with cycling

• Capacity per unit volume maximized at 0.8 g/c

• With 4, p, high voltage delithiation capacity 1`
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10 Cycle Life and Coulombic Efficiency vs Density

• Capacity per unit weight or atom C 1` with NI. p

• Capacity for 0.8 g/cm3 sample increases with cycling

• Capacity per unit volume maximized at 0.8 g/c

• With 4, p, high voltage delithiation capacity t

limited electrolyte penetration

p = 0.4 g/cm3

electrolyte penetration

• Cycle 1: 1` irreversible capacity loss (ICL) when p .1.

• CE 4, when 1` C-rate and CE 1` when 4. C-rate

• CE 1` when delithiation potential to 3.5V
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Capacity and Coulombic Efficiency vs Delithiation Potential
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12 Mechanisms for Li storage in graphite and graphene

Graphite

LiC6 (372 mAh/g)

Li+ intercalated

alternating C ringsa

0 0 0 0 0

0E:ir:wiliamiaM:=1.

Graphene and Other Carbon

Li2C6 (744 mAh/g)

Li+ adsorbed both sides

of sheets in hard carbonb,c
o

0 0 0 
1

Li3C6 (1157 mAh/g) LiC6 + pores (? mAh/g) Li3C8 + Li° (? mAh/g) LiC6 + edges (? mAh/g)

Li+ intercalated Li+ intercalated defects adsorb Li+ Li+ intercalated

Li2 other C ringsd Li+ adsorbed poreso Li° between sheetsg Li+ store on edge groups"
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• Ab lnitio: Li can only be adsorbed at defect sites (no pristine graphene)g
• Capacity 11` with H contenti increased d spacingi
• NMR: quasimetallic Li clusters form in nanopores (<1 nm) and removed at high voltagelo

•
1"-nrirre

aSu et al. Chem. Sus. Chem. (2010). "winter et al. Li-ion Battery: Fundamentals and Performance (1998). cZheng et al. Carbon (1996). dSato et al. Science (1994).
eMabuchi et al., Tanso (1994). fTokumitsu et al., J. Electrochem. Soc. (1996). gMukhergee et al. Nature Comm. (2014). "Larcher et al. Electrochim. Acta. (1999). iYata et

al., Synthetic Metals (1990). iYoo et al. Nano Letters, (2008). kLetellier et al. J. Chem. Phys. (2003). Tatsumi et al. J. Electrochem. Soc. (1996).



13 Mechanism for Lithium Storage and Irreversible Capacity Loss (ICL)
I

• NPC: l• ICI_ with p .1.
• Li+ can be trapped at edges1
• Li 4 Li20 at oxygen edge groups2
• NPC 4 lots of edges to trap Li
• NPC ICL: trapped Li + SEI

1 Mori et al. J. Power Sources (1995).
2Larcher et al. Electrochim. Acta. (1999).

1 Mori et al. J. Power Sources (1995).

Schedy et aL, J. Chem. Educ. (2018).

p = 0.4 g/cm3

edge groups/C = high

ICL/C = high 
r • •-•
0-0* •

0--• 

I 0101 •

• • • 1

• •

e• • y
40-0

0-0

flib "ley

• • •

 }

p = 2.0 g/cm3

edge groups/C = low

ICL/C = low

I

I

I



14 I Ex-Situ Raman Analysis of NPC
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1 5 Summary

+ NPC capacity increases with decreasing the density between 2.0

g/cm3 and 0.8 g/cm3

+0.4-0.6 g/cm3 lower capacity than 0.8 g/cm3 (mechanical integrity)

+Capacity increases with higher cut off delithiation potential 3.5 V,

particularly for low density samples

+ Best specific capacity >1400 mAh/g after 100 cycles
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Thank you

Questions?
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