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INTRODUCTION

Mixing of high-Z ablator materials into thermonuclear fuel can spoil burn conditions. We
compare existing microscopic models such as Kohn-Sham density functional theory molec-
ular dynamics (KS-DFT-MD) and pair-potential molecular dynamics (PP-MD) and fit more
accurate models to compute transport coefficients.

INSTABILITIES IN INERTIAL CONFINEMENT FUSION (ICF) EXPERIMENTS

In ICF experiments, instabilities due to surface roughness of the shell, non-uniform heating,
etc. make obtaining a net gain in energy difficult. These instabilties result in mixing which can
be explained through molecular dynamics simulation.

Hohlraum

t = 0

Indirect drive

Capsul

I, Lasers

t 5-10 ns

Ablated plasma

A

Direct drive

Shell Ablator

t - 10-16 ns t peak compression

Ablated plasma

Figure 1: Indirect and direct drive ICF experimental setup. Note the instabilities depicted in the bottom right
image which are a result in mixing.

Goal: Have an accurate description of the mixing process over the entire temperature range of
the experiment.
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CORRELATION FUNCTIONS
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Figure 2: Radial distribution function for different temperatures.
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SELF-DIFFUSION COEFFICIENT

Temp [eV] PP-MD ifit41 KS-DFT-MD [Ifs

0.5 7.89e- 3 1.42e- 4
1 1.59e- 2 3.40e- 3
10 1.02e- 1 4.91e- 2
20 1.18e- 1 7.23e- 2

Table 1: Self-diffusion transport coefficient for both methods. This was computed using the slope of the line in
Figure 3.

COMPUTATION TIME

Temp [eV] PP-MD KS-DFT-MD[particle
s
x
e
t
c
ime step I [ 

particle
s
x
e
t
c
ime step

5 1.4e - 4 68.4
10 1.1e - 4 57.6
20 1.1e - 4 32.2

Table 2: PP-MD code uses a standard Yukawa interaction potential and KS-DFT-MD simulations are done with
VASP [3].

FORCE MATCHING

LOSS FUNCTION -11Mir-

In order to generate pair potentials from DFT calculations, we make use of the force-matching
method [2] for which we minimize a loss function given by
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► M: Total number of atomic configurations
► Nk: Number of atoms in the k-th configuration
► F° • Reference force on atom i in configuration k (obtained from DFT)

ik•

► F ik(a): Calculated force on atom i in configuration k due to parameters a

(1)

DATA AND OPTIMIZATION ROUTINES

Data:

► Data Set. 1,000 strided samples of each temperature
► 1 Large Training Set The entire data set
► 2 Small Training Sets: 500 configuration each of strided samples
These datasets will be used in the following optimization routines.
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Figure 4: The software "Potfit" [1] was used to perform the optimization.

High-Level Optimization Routines:

► Simulated Annealing
► Genetic Algorithm

Return
Parameters}

Low-Level Optimization Routine:

► Powell Least Squares Optimization

ANALYTIC POTENTIAL FORMS

We select four analytic potentials forms and perform the optimization:
Yukawa
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The red terms are fit from KS-DFT-MD data.
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FITTED POTENTIALS
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Figure 5: Fitted analytic potentials for T = 0.5 eV.
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Potential RMS Error

Yukawa Fit 1.35e+ 02
SRR Yukawa Fit 1.35e+ 02
EGS MON Fit 1.35e+ 02
EGS OSC Fit 9.08e+ 01

Table 3: The RMS error computed after fitting the ana-
lytic potentials for T = 0.5 eV.

SCREENING FUNCTIONS
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Figure 6: The screening functions for T = 0.5 eV. The screening function is given by a(r) = ru(r).
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Figure 3: Mean-Squared Displacement over time for each simulation. Fits that capture the early time quadratic
behavior and late time linear behavior have been added for computing self-diffusion coefficient.
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