INTRODUCTION

Mixing of high-Z ablator materials into thermonuclear fuel can spoil burn conditions. We
compare existing microscopic models such as Kohn-Sham density functional theory molec-
ular dynamics (KS-DFT-MD) and pair-potential molecular dynamics (PP-MD) and fit more
accurate models to compute transport coefficients.

In ICF experiments, instabilities due to surface roughness of the shell, non-uniform heating,
etc. make obtaining a net gain in energy difficult. These instabilties result in mixing which can
be explained through molecular dynamics simulation.
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Figure 1: Indirect and direct drive ICF experimental setup. Note the instabilities depicted in the bottom right
image which are a result in mixing.

Goal: Have an accurate description of the mixing process over the entire temperature range of
the experiment.
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Figure 2: Radial distribution function for different temperatures.
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Figure 3: Mean-Squared Displacement over time for each simulation. Fits that capture the early time quadratic
behavior and late time linear behavior have been added for computing self-diffusion coefficient.

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Temp [eV] PP-MD |f KS-DFT-MD | §]
0.5 7.89¢ -3 1.42¢—4
1 1.59¢ -2 3.40e—3
10 1.02¢—1 491e—2
20 1.18e—1 7.23¢—2

Table 1: Self-diffusion transport coefficient for both methods. This was computed using the slope of the line in
Figure 3.

lemp [eV] |PP-MD [particleiet(i:me step] KS-DFI-MD [particleiet(i:me step]
5 l.de—4 68.4
10 l.1e—4 57.6
20 l.1e—4 32.2

Table 2: PP-MD code uses a standard Yukawa interaction potential and KS-DFT-MD simulations are done with
VASP [3].

FORCE MATCHING

In order to generate pair potentials from DFT calculations, we make use of the force-matching
method [2] for which we minimize a loss function given by
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» M: Total number of atomic configurations
» Ni: Number of atoms in the k-th configuration
> F?k: Reference force on atom i in configuration k (obtained from DFT)

» F;i(a): Calculated force on atom i in configuration k due to parameters «

Data:

» Data Set: 1,000 strided samples of each temperature

» I Large Training Set. The entire data set

» 2 Small Training Sets. 500 configuration each of strided samples

These datasets will be used in the following optimization routines.

Optimization:

Figure 4: The software “Potfit"[1] was used to perform the optimization.

High-Level Optimization Routines:
» Simulated Annealing

Low-Level Optimization Routine:

» Powell Least Squares Optimization
» Genetic Algorithm
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We select four analytic potentials forms and perform the optimization:
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The red terms are fit from KS-DFT-MD data.

FITTED POTENTIALS

500 , Potential RMS Error
—— Bare Yukawa
400 o e T Yukawa Fit | 1.35e+02
200 —— EGS (MON) Fitled SRR Yukawa Fit 1.35e+ 02
3 —+— EGS (050} Fited EGS MON Fit | 1.35e+02
T 20 EGS OSC Fit | 9.08¢ + 01
=
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Table 3: The RMS error computed after fitting the ana-
lytic potentials for T'= 0.5 eV.
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Figure 5: Fitted analytic potentials for 7' = 0.5 eV.
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Figure 6: The screening functions for 7' = 0.5 eV. The screening function is given by o (r) = ru(r).
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