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Why are Fluid-Structure Interactions (FSI) important?

Tacoma Narrows Bridge destruction caused by FSI
. el M S e

Disaster
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A canonical experiment was designed in a shock tube, to develop diagnostics
for FSI measurements.

Driver Section 7 Fast Valve Driven Section Test Section

Shock tube creates impulsive . . .
start and periodic vortex Fluid loads a jointed DIC is used to measure the
shedding loads beam structure response of the structure
/ Schlieren video of wake \ Test specimen:
behind test specimen Stainless steel bolted beam Optical’ DIC
Thin shell <
Rigid backbone
(bolts to
shock tube)

Test
specimen

Bolted | ™
interfaces

Schlieren imaging shows density (:é(?;l;:]ts:trong
gradients in the fluid.
Primary goal: measure the input fluid loading and output structural response,

to test the predictivity of constitutive models on jointed structures,
under real fluid dynamic loading.
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‘ Spoiler Alert!

Motion of the front surface of the beam.
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Optical and X-Ray DIC were both developed to measure the beam motion.

Optical DIC

(combined with pressure sensitive paint)
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Optical and X-Ray DIC were both developed to measure the beam motion. GO

Optical DIC

(combined with pressure sensitive paint)

Flow
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Optical and X-Ray DIC were both developed to measure the beam motion. =
Optical DIC X-Ray DIC

(combined with pressure sensitive paint)

Flow Flow

Beam mount
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Specialized DIC patterns were applied to the beam.
Optical DIC X-Ray DIC

(combined with pressure sensitive paint)

» Base layer of pressure sensitive paint » Ta powder mixed with epoxy
» Sparse pattern applied with ink stamp » Dots applied by hand (can be optimized)
» Pattern applied on front face of C-shell « Pattern applied on interior of C-shell

* Central 25 mm patterned * Central 50 mm patterned
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Specialized DIC patterns were applied to the beam. )
Optical DIC X-Ray DIC

(combined with pressure sensitive paint) l
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» Base layer of pressure sensitive paint » Ta powder mixed with epoxy
» Sparse pattern applied with ink stamp » Dots applied by hand (can be optimized)
» Pattern applied on front face of C-shell « Pattern applied on interior of C-shell
» Central 25 mm patterned * Central 50 mm patterned
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| Many challenges must be overcome to obtain accurate and precise optical DIC

measurements of the beam.

Fast Valve

( Driver Section

Driven Section

Test Section >

Top view of test section

Challenges:
1.
2.

Severe astigmatism distortions

Refraction and diffraction due to time-
varying wavelength of lights

. Low-frequency shock tube recoil

. Refraction through fluid density gradients]
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Schlieren imaging shows density gradients in the fluid,
from the initial shock front, reflected shocks, and turbulence.

Cam 1

Light

Top View —y

Light of Schlieren video
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Side View
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False displacements from shock front are explained through a simple ray-
tracing model.

Displacement error due to refraction through shock front

Hm
Camera (a) Measured, t = -350 ;s
Detector

Aperture
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Region Region
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Optical and X-ray DIC were applied to measure beam motion in the shock tube. =
Optical DIC Results X-Ray DIC Results
B
Rocking Mode Rocking Mode: Vertical Displacement 0.30
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X-ray DIC elucidates beam motion that was previously obfuscated

by bias errors in optical DIC.

Rocking Mode
Vertical Displacement
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Conclusions

Fluid-structure interactions were studied with

a canonical beam in a shock tube.

Thin shell
_

Rigid backbone
(bolts to
shock tube)

Bolted ; \
lnterfaces

exhibit strong

response

Optical DIC suffered from bias due to density
gradients in the flow.

Measured, t = -350 us

D[]
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Optical and X-ray DIC were both developed to
measure structure motlon

OpticalDIC X- Ray DIC |

X-ray DIC elucidated beam motion on the interior of the structure
that was obfuscated in the optical DIC measurements.
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More info on X-ray stereo DIC: EMC Jones, EC Quintana, PL Reu, JL Wagner (2019) Exp. Tech.







Challenge 1: Thick windows and a glancing view angle cause significant
astigmatism distortions.

F/2.8 (large aperture), ~ 0.4 ms exposure ‘

F/32 (small aperture), 40 ms exposure I

Solution: Decrease aperture. But, requires ~100x light!
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High-intensity Xenon flash lamps are required to have sufficient light for high-

speed imaging with small apertures.

Static beam illuminated with two sequential Xenon flash lamps
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Challenge 2: Time-varying wavelength of flash lamp causes refraction and
diffraction errors.

Time-resolved spectrogram of Xenon flash lamp
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Challenge 2: Time-varying wavelength of flash lamp causes refraction and
diffraction errors.

Time-resolved spectrogram of Xenon flash lamp
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Challenge 2: Time-varying wavelength of flash lamp causes refraction and
diffraction errors.

Refraction through window and lens, and diffraction, all depend on wavelength!

Solution: Cavilux laser provides high-intensity light, with a constant wavelength.
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Challenge 3: Shock tube recoils when fired.

Beam subjected to fluid loading in shock tube.

Measured Beam Motion Oscillations of Structure
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Challenge 3: Shock tube recoils when fired.

Beam subjected to fluid loading in shock tube.

Y (V)

T—>x (U)

LDV = Laser Doppler Vibrometer 0 20 40 60 80 100
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Challenge 3: Shock tube recoils when fired.

Beam subjected to fluid loading in shock tube.

FFT of Measured Displacements
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Challenge 3: Shock tube recoils when fired.

Beam subjected to fluid loading in shock tube.

High-Frequency
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Challenge 3: Shock tube recoils when fired.

Solution: High-pass filter deconvolves shock tube recoil from structure response.

Oscillations of Structure High-Pass Filter (250 Hz)
Convolved with Shock Tube Recoil Recovers Structure Response
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Solution: Principal Component Analysis (PCA)
separates beam motion from refraction through fluid.

* Goal: decompose displacements d into
modes ¢ with amplitudes a:

d(x,t) = A = ) an(Opm ()
m
d ={u, v, w}is displacement, a vector quantity

x is the spatial coordinate
a,,(t)are the time-dependent modal amplitudes

Raw DIC Movie (displacements x 10)

x/D[] z/D [-] ¢ (x) = {u, v,w} are spatially-dependent mc
shapes
Mode 1 Mode 2 Mode 3
T =
= = 05
o 70 ot #/PL]
x/D[- 2/D [-] ‘ I
x/D [-] " [-] ‘Impact’ Bending

{ . Vi
Rockin
IDIGS 2013 8 First three modes comprise 80% of total energy.
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Solution: Principal Component Analysis (PCA)
separates beam motion from refraction through fluid.

Reconstruction with
first three modes only

Raw DIC Movie (displacements x 10)

flow 2 ;1 P Substantially
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Left Camera

Right Camera

Image Acquisition Rate: 20 kHz
Total Duration: ~0.1 sec
Beam width: 3 inches
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Refraction through shock front cause beam steering and false DIC displacements.

Horizontal Displacement, U pm s
T T . 7
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X-rays do not refract significantly through density gradients in air.

xray
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Deviation of refractive
%1073 index from unity

n=1+6

Air Refractive Index
A =532 nm

X-Ray Refractive Index
E = 149 keV () = 0.008329 nm)

5] 10 16
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Illustrative example:

p,=1atm
p, = 10 atm
D =100 mm
6, =10°

Optical error:
n,=1+2.67%-4
n,=1+2.688e-3
Ax =44 pm |

Image
LEnhs Plane
P4
8]
(0]
]
y- z £
< D :I
< Z1 >|< 22 —_—

X-ray error:
n,=1-5.455e-12
n,=1-5.455e-11
(Ax<1pm |
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