This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019-12653C

Linewidth enhancement in quantum dot lasers

Weng Chow
Sandia National Laboratories

An illustration of device modeling:
What calculations are useful for device development

What are the requirements on the theory

International Symposium "Semiconductor Nanophotonics*
Collaborative Research Centre 787, Technische Universitat Berlin, November 4th - 5th, 2019

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of
Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525.



Why quantum dots

* Quantum wells have replaced bulk active regions for virtually all commercial applications
* Quantum-well laser technology (> 20 years old) is reaching fundamental performance limits
» Search for improvement at underlying physics level

 Quantum-dot laser is a strong candidate

Some history

* Improvement via 1-d to 3-d quantum confinement (2-d to 0-d electron density of state) -- proposed 1982

e Demonstrated atomic-like laser emission — mid 1990

- Low threshold, high temperature, defect & optical-feedback tolerances, silicon integration — shown

Why linewidth enhancement factor

« Attention shifting to above-threshold properties
« Laser linewidth, chirp under high-speed modulation, optical feedback sensitivity

« Applications: datacom & telecom, chemical sensing, laser radar (LIDAR)



Laser theory

(e.g. Sargent, Scully and Lamb)
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Laser theory Refractive index
(e.g. Sargent, Scully and Lamb)
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Laser theory

(e.g. Sargent, Scully and Lamb)
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Typical gain and oy for quantum dot laser

® \ p+GaAs contact layer (300 nm) 200
% \ p-Al,Ga,,As grading layers (50 nm) - M/\ (a)
17.5 nm uid-GaAs \ p-Al,Ga, As grading layers (50 nm) ‘_-E
10 nm pGaAs e uid-GaAs waveguide (12.5 nm) o
10 nm uid-GaAs GaAs (37.5 nm) - =
200
nm |nGa InAs QDsin Ing 1,Gag gsAs QW (~7 nm) _%
2 INGaAs n-Aui:-aGaAs wa\;elgui:e (50 t;r;‘!) (D
- / l,Ga,As grading layers ( : nm) -400 |
7 AL Gay As grading layers (50 nm)
= ~ -600 - - :
/ n-GaAs bufter (500 nm) 0 8 0 9 1 0 1 1 1 2 1 3
Bufferon Silicon (~3000 nm) ) ) ) ) ) .
Energy (eV)
T 25
(001) Sil (b)
20
P-metal
SiO2 isolation Active region 8nm In°-15Ga°-85As QW
5 x 10'%cm-2 InAs QDs BT
3
AlGaAs GaAs barriers 10 t
NE0e Ainn = 20 meV — A, = 48 meV 5
GaAs buffer
Undoped, N.=3x, 5x, 7 x 10" cm2 "
On-axis (001)Si A
BRI  APL 107, 1171106 (2015) 08 09 10 11 12 13

Energy (eV)



Inhomogeneously  Homogeneously
broadened broadened

}
Pip(v) = Z nqlf’(% Tq)

q
J Electronic structure

2
Inhomogeneous 1 exp (“)q — a)0>
distribution  \/27A;. V2 Ajp,

Inhomogeneous width

800 0.10
_/\—> Inhomogeneous distribution _ 0.05 nd
400 + 1 0
E 0t
=2
: =
‘s -400 - 5 xInhomogeneous gain «—
o
-800
-1200 ' . . ,
0.90 0.95 1.00 1.05 1.10

Energy (eV)



Gain (cm-)
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Gain (cm™)

Gain and o spectra of quantum dot laser
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Linewidth enhancement factor at gain peak for ground-state lasing
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Designing QD lasers with minimum ay,(v)

Combinations of (A;,,, N, , Gy,)
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QD laser theory

Semiclassical laser theory
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Features of QD laser theory

o QD/QW combination 4= Exchange
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Features of QD laser theory

M
o QD/QW combination 4= Exchange 9 cHory
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Summary
Calculations on devices a step from being ready for use in optoelectronics

Modeling devices versus modeling experimental results
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The real laser Quantum-dot gain Mode locking Nanolasers
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