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Why quantum dots 

• Quantum wells have replaced bulk active regions for virtually all commercial applications

• Quantum-well laser technology (> 20 years old) is reaching fundamental performance limits

• Search for improvement at underlying physics level

• Quantum-dot laser is a strong candidate

Some history

• Improvement via 1-d to 3-d quantum confinement (2-d to 0-d electron density of state) -- proposed 1982

• Demonstrated atomic-like laser emission — mid 1990

• Low threshold, high temperature, defect & optical-feedback tolerances, silicon integration — shown

Why linewidth enhancement factor

• Attention shifting to above-threshold properties

• Laser linewidth, chirp under high-speed modulation, optical feedback sensitivity

• Applications: datacom & telecom, chemical sensing, laser radar (LIDAR)
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Gain and ()LH spectra of quantum dot laser
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Linewidth enhancement factor at gain peak for ground-state lasing
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QD laser theory
Semiclassical laser theory
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Features of QD laser theory

O QD/QW combination
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O QD/QW combination

Renorminizations:

H.C. Schneider, et al.
PRB 64, 115315 (2001)

PRB 66, 41310(R) (2002)

I= Exchange
QD shift

0 Scattering (beyond 2nd Born approx.)
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The real laser
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