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Abstract
Multi-shaker vibration testing is effective at accurately replicating complicated field vibration responses in ground
tests. Extending this technique to harsher field environments will increase its usage and improve the ability to
perform high-fidelity vibration testing with sufficient margin for use in design assessment and even qualification
testing. However, achieving higher levels is difficult because of the current state of electrodynamic shakers and
multiple-input/multiple-output control algorithms. Here, an improvement is made to the standard multiple-input
control algorithm which enables higher response levels to be achieved from a given shaker force level, in some cases
in excess of 10 dB. This technique utilizes a set of shape vectors as constraints applied to the various shaker inputs.
Pre-defining the relationship, or shapes, of the shaker inputs increases how efficiently the shakers excite the
structure.
Simulation studies are utilized to examine this technique, including effects of the number of shape constraints and
the use of modes and singular vectors as constraint shapes. Simulation results show shape-constrained input
estimation significantly improves the efficiency, or response given some input force, over traditional control
techniques.
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1. Introduction
Multi-shaker vibration testing has shown promise in accurately replicating the vibration response for components or
systems subject to complicated field environments [1, 2, 3]. Using multiple shakers along with a multiple-
input/multiple-output (MIMO) controller allows for the response of the device under test (DUT) to be matched at
more locations than traditional single-axis vibration tests because there is more controllability. One challenge with
multi-shaker testing is how to efficiently coordinate the shakers to provide high-level response from shakers with
limited capabilities. The typical MIMO direct control approach simply attempts to match the target response,
without any provisions on the inputs required to do so. Here, a modification is presented to the direct control, or
input estimation, equation which coordinates the various shakers through a set of specified constraint shapes. This
technique, dubbed shape-constrained input estimation, can utilize any set of vectors for constraints though here the
focus is on mode shapes and right singular vectors of the frequency response function (FRF) matrix.

2. MIMO Input Estimation
Consider the linear system:

{Y} =[1-1]{X} , (1)

which is represented by vectors of the linear spectra of the N inputs, {X} , M outputs, {Y} , and an MxN system FRF

matrix, [H] . For stationary random vibration problems, this is typically written in power space:

[Sy)] = [1-1][Sxx ][H]H , (2)

where the inputs and outputs are written in terms of the cross-power spectral density (CPSD) matrices [Sxx ] and

[syy , respectively, and [11-1 denotes the conjugate transpose, or Hermitian, of the matrix [4].
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Typical direct input estimation of this MIMO linear system is performed as [5]

[Sxxl] = [H]
+
 [sy3,0][11±H.

This requires a pseudo-inverse of the FRF matrix, denoted by [J]+ , which means the estimated inputs, [Sxx1 ] , are

the inputs which would produce outputs, [syyd , which best match the target outputs, [S3,3,0] , in a least-squares

sense. The resulting outputs, [syyd , come from the application of the estimated inputs to Equation 2. Clearly, there

is no attempt to tailor the inputs in a specific way; the inputs are simply those which best match the response in a
least-squares sense. Indeed, often times the estimated inputs are in excess of shaker force capabilities.

(3)

3. Application of Constraints on Inputs
In an effort to reduce shaker force requirements, shape-constrained input estimation was developed. This input

estimation technique modifies the typical MIMO input estimation equation by applying a constraint matrix, [C] , to

the FRF matrix as

[A] = [H][c] , (4)

resulting in a constrained FRF matrix, [1:1] . This constrained FRF matrix is then used to estimate a set of

constrained inputs whose dimensions are smaller than the full set of unconstrained inputs. That is, for N

unconstrained inputs, there will be fewer constrained inputs, Ñ < N . The shape-constrained input estimation
equation is then

[šxxl] = [CI]+ [SYY0][fl]
-al
 '

Converting from constrained inputs to full inputs is done by applying the constraint matrix to the estimated,
constrained inputs:

(5)

[SxA] = [C][kx1][C]ll . (6)

The content in the constraint matrix is simply one or more shape vectors. With a single vector, the constraint is strict
and directly relates all the inputs together, enforcing the inputs (forces or voltages) to fit that shape. With more
vectors, there is a blending of the shapes. While these shape vectors can be anything, there are advantages to using
specific types of vectors, as will be shown in the following sections.

3.1. Mode Shape Constraints

Say a system has mode shapes {U1 } , { u2 } ,..., {Uk } that form the mode shape matrix [U] . A subset of those modes

can be used as shape constraints by populating the constraint matrix with one or more mode shape vectors. For
example a constraint matrix using mode 1 and mode 2 would be

[C] = LIU11{U2 }1 . (7)

In this case, the inputs will be constrained to resemble a combination of the two mode shapes. In this way, the inputs
can be forced to mimic the natural deflection patterns of the structure, which can have advantages where the
response is dominated by a single mode or a small number of modes.

3.2. Singular Vector Constraints
Mode shapes for constraint vectors presents a couple of practical problems. First, the mode shapes must be known,
meaning a modal test needs to be run and modes extracted. Second, the mode or modes to be used as constraint
vectors must be chosen at each frequency line. Alternatively, the singular vectors of the DUT FRF matrix can be
used in place of mode shapes. The singular value decomposition of the FRF matrix is:

[II] = [UE][SE][VE]ll , (8)

where [UE ], [VI ] are the left and right singular vector matrices, respectively, and [SE ] is a diagonal matrix of

singular values. The left singular vectors are the "shapes" at the output degrees of freedom (D0Fs) and the right
singular vectors are the "shapes" at the input DOFs. So, one or more right singular vectors can be used to constrain



the shakers (inputs) with one or more constraint shapes. As the singular values and vectors are a function of
frequency, the singular value decomposition can be performed at each frequency line, providing new singular
vectors and thus new constraint vectors at each frequency line automatically. In this way, the constraint matrix can
be a function of frequency, with the vectors in the matrix changing each frequency line. For example, for two right
singular vector constraints, the constraint matrix would be:

[C] = [{1/E J}INTE21]. (9)

Because singular vectors are orthonormal, the use of singular vectors as constraints applied to the FRF matrix results

in truncation of the non-constraint singular values and vectors. That is, the constrained FRF matrix, [1-1][C] , can be

written in terms of the product of the constrained singular values and vectors. For example, if the top two singular
vectors are used as constraints, the constrained FRF matrix can be written as:

[H][c] = DuE,111u,,21]
SE j 0

0 SE2

l[fv

E1

}{v

E2 • (10)

This indicates that shape-constrained input estimation using singular vectors is essentially a rank reduction
regularization method [6, 7]. It should be noted that typical regularization approaches aim to only change the very
smallest singular values to avoid numerical error propagation issues, however in this context the regularization is very
strong, keeping only the very largest singular values to enforce a particular pattern or shape constraint on the inputs.

4. Demonstration of Shape-Constrained Input Estimation
Shape-constrained input estimation will be compared with standard input estimation using a contrived, although
representative dynamic system. This system is first subjected to a complicated set of field loads, generating a target
response at some DOF. Next, forces (shakers) will be used to try and replicate that target field response with each
shaker input determined with either standard or shape-constrained input estimation. The effects of using modes or
singular vectors, as well as the effects of the number of constraint vectors, will be examined with this example
system.

4.1. Example System
A cantilever beam is chosen as the example system here because it has dynamics that are familiar and intuitive. This
beam is 2.54 cm square and 101 cm long with aluminum material properties and an assumed two percent modal
damping on all modes. Twenty elements are used to model the transverse bending of the beam, Figure 1. Five output
DOFs were chosen, at nodes 4, 6, 9, 10, and 19. To simulate a field environment and generate the target response at
those five output DOFs, uniform random (uncorrelated) forces were applied to each node between 0 and 800 Hz.
This bandwidth covers the first four modes and allows the main features of the response to be examined. To
simulate the laboratory, multi-shaker, test configuration, four shaker forces were applied at nodes 3, 8, 12, and 14.
While the locations of inputs and outputs do affect results of this type of problem, for simplicity these locations were
chosen arbitrarily.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

% 1 I 2 3 # 4 I 5 # 6 I 7 8 # 9 #10 I 11 12 I 13 14 I 15 I 16 I 17 I 184 19 I 20 I

Figure 1: Diagram of the beam model with 20 elements, 5 output DOFs, and 4 input DOFs

4.2. Modes vs. Singular Vectors for Constraint Shapes
Mode shapes as constraint shapes makes sense intuitively, however using singular vectors has the advantage of
being automatically frequency-variable and coming directly from the FRF matrix which is already being measured
in a test. Thus, a comparison of the performance of mode shapes and singular vectors as constraints is useful. First,
the modes and right singular vectors of this beam were examined. Figure 2 shows the first four modes of the beam
and the top right singular vectors at the mode frequency. Because the singular vectors are complex, the plot shows
the signed magnitude. Indeed, the right singular vector shapes closely resemble the mode shapes, indicating they
may be useful as constraint shapes.

Figure 3 shows results of a multi-shaker input estimation simulation using shape-constrained input estimation to
determine the inputs to the four shakers to best match the random force target environment. A single mode shape or



singular vector was used as the constraint matrix in this example. The mode constraint shape at each frequency line
was chosen as the mode with frequency nearest that frequency line. As there are five outputs and four inputs over a
broad frequency range, there is too much data to plot in full. Instead, Figure 3 shows the trace, or sum of the five
output power spectral densities (PSDs) (a), the mean dB error in the PSDs of all the outputs (b), individual gauge
PSDs (c,d), and the root mean square (RMS) response (e) and input (f).

Examining the response PSDs in (a-d) indicates that the response is well matched near the peaks of the four modes,
with some error between the peaks. The response between peaks is typically due to a combination of two or more
modes, so constraining the inputs to just a single shape reduces the accuracy in these regions. The RMS response in
(e) shows that overall the response is very closely matched with the target response at all five outputs and the RMS
input force in (f) indicates that the required forces using either mode shapes or singular vectors as constraints is
roughly equal.
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Figure 2: First four mode shapes (solid) and the right singular vectors (dotted) at the mode frequencies
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Figure 3: Response and input results for the multi-shaker simulation comparing a single mode or singular vector
constraint. (a) Sum of five output PSDs. (b) Mean dB error of the five output PSDs. (c) Output PSD at node 6. (d)

Output PSD at node 10. (e) RMS output at five nodes. (f) RMS force at four inputs.

4.3. Effects of the Number of Constraint Vectors
While the number of constraint vectors in the constraint matrix can be anything from one to the number of inputs,
the number affects the response and inputs. To demonstrate this, the constraint matrix was formed with one, two, or
three right singular vectors. As in Figure 3, Figure 4 shows the results of this simulation in terms of different
response (a-e) and input (f) metrics. There is a clear trend, with response accuracy improving with an increasing
number of constraint vectors. Using two or three vectors, in this case, results in a very close match to the target
response, even between peaks. Going from two to three vectors yields a slightly more accurate result in terms of the
PSDs, however the RIvIS values are basically unchanged. There is a marked difference in the required inputs,
however, with the three-vector case requiring much higher input force than the two-vector case. The two-vector case
does require more input force than the one vector case but does come with a significant improvement in response



accuracy across the bandwidth. Thus, there is a balance between response accuracy and input force which is
controlled by the number of constraint vectors used in shape-constrained input estimation.
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Figure 4: Response and input results for the multi-shaker simulation comparing one, two, and three singular vector

constraints. (a) Sum of five output PSDs. (b) Mean dB error of the five output PSDs. (c) Output PSD at node 6. (d)
Output PSD at node 10. (e) RMS output at five nodes. (f) RMS force at four inputs.
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4.4. Comparison with Standard Input Estimation
With some understanding of how shape-constrained input estimation works and its sensitivity to the type and
number of constraint vectors, a comparison can be made with standard input estimation (Equation 3). Here, shape-
constrained input estimation is implemented using two right singular vectors for all frequency lines. Figure 5 shows

the same response and input plots as shown for the cases above. The responses (a-e) indicate that standard input

estimation yields a response which very nearly matches the target response overall and on a gauge-by-gauge basis.

The response from shape-constrained input estimation also matches the target response well, and particularly around



the peaks. The RMS values are very close to the target levels for each gauge. The RMS input force (f) shows a
dramatic difference in the required force, particularly for shaker 3 and 4 where shape-constrained input estimation is
several times lower than standard input estimation. In this particular case, the difference is upwards of 18dB for
shaker 3 Similar input level reductions have been observed with shape-constrained input estimation applied to
various contrived and actual dynamic systems and environments.
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Figure 5: Response and input results for the multi-shaker simulation comparing standard and shape-constrained
input estimation. (a) Sum of five output PSDs. (b) Mean dB error of the five output PSDs. (c) Output PSD at node 6.

(d) Output PSD at node 10. (e) RMS output at five nodes. (f) RMS force at four inputs.



5. Conclusions
A need to improve the efficiency and response levels in multi-shaker vibration testing motivated the development of
a new input estimation method. Shape-constrained input estimation utilizes a modification of the standard MIMO
input estimation equation, where the FRF matrix is multiplied by a constraint matrix. This constraint matrix enforces
a pattern on the inputs, resulting in higher response levels. While the constraint shapes can be any vector in theory,
here mode shapes and right singular vectors of the FRF matrix were explored. It was found that right singular
vectors perform as well as mode shapes and have the benefits of not needing a modal test and automatically
changing with each frequency line. Also, it was found that the number of constraint vectors controls a balance
between response accuracy and input force, with more accuracy and higher force coming with more constraint
vectors. However, even with a single constraint shape the response is very accurate around the peaks in the response
and thus captures the majority of the response energy accurately. Finally, shape-constrained input estimation was
found to be nearly as accurate as standard input estimation while greatly reducing the required forces, with the
reduction for some shakers greater than 10 dB.
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