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Goals

Electron-neutral interactions are part of many low temperature plasma studies. Most of the simulation
techniques used employ energy-dependent cross sections to describe the binary electron-neutral
interactions. However, either for computational efficiency purposes, or at a minimum due to lack of
data, some inelastic interactions are omitted. To mitigate for the missing interactions an effective

elastic collision cross section can be computed that includes the missing inelastic cross sections. While

this does not account for the loss of electron energy due to the excitation energy, it does account for
some energy loss (to the background gas) that reduces the cumulative energy gain from an applied
field. This work aims to demonstrate the impact of not properly accounting for missing cross sections
in a system involving the ionization of a low-pressure background argon gas from an injected electron
beam.

This work:

O Investigates the importance of more vs. less detailed plasma chemistry models.

O Uses existing electrostatic capability (Aleph) to answer some questions, setting the stage for an
electromagnetic capability (EMPIRE) in the future.

O Develops high fidelity model for comparison to future benchtop experiments (from B. Yee).
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Aleph Simulation Tool

O 1, 2, or 3D Cartesian

O Unstructured FEM (compatible with CAD)

O Massively parallel

O Hybrid PIC + DSMC (PIC-MCC)

O Electrostatics

O Fixed B field

O Solid conduction

O Advanced surface (electrode) models

O e- approximations (quasi-neutral ambipolar, Boltzmann)

O Collisions, charge exchange, chemistry, excited states, ionization

O Photon transport, photoemission, photoionization

O Advanced particle weighting methods

O Dual mesh (Particle and Electrostatics/Output)

O Dynamic load balancing (tricky)

O Restart (with all particles)

O Agile software infrastructure for extending BCs, post-processed quantities, etc.

O Currently utilizing up to 64K processors (>1B elements, >1B particles)
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Aleph Simulation Tool

Basic algorithm for one time step of length At:
1. Given known electrostatic field move each particle for 

2 
via:
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2. Compute intersections (non-trivial in parallel).
3. Transfer charges from particle mesh to static mesh.
4. Solve for E"±I,

v („v-vn+1) _p(x7,-1)

En+1

5. Transfer fields from static mesh to dynamic mesh.
6. Update each particle for another via:

+1 n+1/2 At ( q,
V 1 — '0• — —E

2 m i

7. Perform DSMC collisions: sample pairs in element, determine cross section and probability of collision. Roll
a digital die, and if they collide, re-distribute energy.

8. Perform chemistry: for each reaction, determine expected number of reactions. Sample particles of those
types, perform reaction (particle creation/deletion).

9. Reweight particles.
10. Compute post-processing and other quantities and write output.
11. Rebalance particle mesh if appropriate (variety of determination methods).
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I 1D Model Setup
Gap repopulated with 100 mTorr 300 K argon gas
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Fullest Argon Chemistry Model (1/3)

IST-Lisbon argon cross sections retrieved from LXCat (includes contributions from multiple sources):

O e- + Ar elastic scattering

O e- + Ar 4 e- + Ar+ + e- ionization
O 43 e- + Ar 4 e- + Ar(x eV) excitations for:

Ar(3P2) Ar(4p[5/2]3) Ar(4p'[3/2]1) Ar(3d[7/2]4) Ar(5p[5/2]3) Ar(5p'[3/2]1) Ar(6s)

Ar(3P1) Ar(4p[5/2]2) Ar(4p'[3/2]2) Ar(3d[7/2]3) Ar(5p[5/2]2) Ar(5p'[1/2]1) Ar(4d')

Ar(3P0) Ar(4p[3/2]1) Ar(4p'[1/2]1) Ar(3d[3/2]1) Ar(5p[3/2]1) Ar(5p'[3/2]2)

Ar(1P1) Ar(4p[3/2]2) Ar(4p'[1/2]0) Ar(3C5/42) Ar(5p[3/2]2) Ar(5p'[1/2]0)

Ar(4p[1/2]1) Ar(4p[1/2]0) Ar(3d[3/2]2) Ar(5p[1/2]1) Ar(5p[1/2]0) Ar(4d)

Grouped states: Ar(3d[1/2]0+3d[1/41, Ar(3d[5/42+5s[3/42), Ar(3d[5/43+5s[3/41), and

Ar(3c1 1[5/2or3/43or2+5s1[1/2]Oorl)

O These are represented in Aleph according to their excitation energy (from IST-Lisbon), e.g.,

O species Ar(3P2) maps to Aleph species Ar(11.5480)

O species Ar(3P1) maps to Aleph species Ar(11.6230)

O species Ar(3c1 1[5/2or3/43or2+5s1[1/2]Oorl) maps to Aleph species Ar(14.2300)

O species Ar(4d') maps to Aleph species Ar(14.9670)
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Fullest Argon Chemistry Model (2/3)

In addition to this we track all the transitions amongst all excited states and the ground state with their

Einstein A coefficients,

O Ar(11.5480) -/-> (metastable)

O Ar(11.6230) -> Ar(0), 1.320e+08

O Ar(11.7230) -/-> (metastable)

O Ar(11.8280) -> Ar(0), 5.32e+08

O Ar(12.9070) -> Ar(11.5480), 1.89e+07

O Ar(12.9070) -> Ar(11.6230), 5.4e+06

Some grouped states have their rates split and averaged (better ideas?):

O Ar(14.0900) -> Ar(13.0760), 0.5 * 3.1e+06

O Ar(14.0900) -> Ar(13.0950), 0.5 * (2.0e+06 + 8.9e+06)

O Ar(14.2300) -> Ar(13.1530), 0.25 * (3.69e+05 + 2.22e+06 + 2.8e+05)

A total of 149 transitions.
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Fullest Argon Chemistry Model (3/3)

To account for multistep ionization we construct an ionization cross section for every excited state.
Most of these do not exist so these are artificially derived.
O Shift cross section excitation threshold to ionization energy for excited state.
O Multiply entire cross section by factor derived from Ralchenko helium work.

Ionization from niS

J==

102
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Graph 41. Recommended electron-impact ionization cross sections from
atomic terms of He I with n 4.
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Argon Chemistry Models
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• 0 excited states
Simplified:
• Use raw elastic cross section
Summed:
• Add excitation cross sections to elastic cross
section for a summed elastic cross section

• All chemistries include enhanced recombination, e- + Ar+ + e- 4 e- + Ar, rate = 8 x 10-32 m6/s
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I Simulation Constraints

Constrai nt Require ment

Debye length Ax < AD =.1%77

Collision mfp Ax Av< = ntsal max

Particle CFL. At < yr,

At 2/cop nieEo
nePlasma frequency < = q?,

Collision frequency At l l,c-- to, = rib gainaxv.

At Te = 2 eV, n e = 1019 m-3, and n bg = 3.2 x 1021 m-3, vmax = 4.6 x 107 m/s (6 keV), and (av)max = 3.2 x 10-13 m3/s

AD = = 1600 p.m 4 Ax = 3 p.m

Ax/vmax = 65 fs, 2a/cop = 35 ps, 1/wc. = 990 ps 4 At = 60 fs
64 e-/cell, 10 Ar/cell, 32 other heavy species/cell

512 cores, direct solver, 26h for full chemistry to 500 ns

(results compared to Ax = 1 p.m and At = 6 fs simulations, and with different random number seeds)
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Simulation Evolution (full chemistry)
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Results
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Observations

O The simplest chemistry and the summed excited state chemistry produced nearly identical results.
This was moderately surprising.

O The full chemistry produced slightly less plasma (e.g., lower ne), likely due to loss of energy to tracked
inelastic processes.

O Plasma generation is primarily caused by the slowing down of the e- population due to large negative
space charge, not due to high energy e- "cascades". The e- energies get reduced to much lower
energies (and in fact some e- are reflected) where the cross sections are higher.

O Pulse length and cavity gap are critical for creating populations of slower e-.

Thank You!
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