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Degradation of Commercial Li-ion Cells

Beyond 80% Capacity
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2 I Challenge: System Selection Fraught with Uncertainty

Problem:

Limited LiB performance and safety data available

o Manufacturers provide range of recommended operating conditions, but limited insight
into variable performance

Without adequate info, potential for unintended abuse and rapid aging conditions

Objective:

Quantify performance of popular Li-ion chemistries in ‘apples to apples’ approach and
identify ‘tipping points’
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+ I Scope of Study: Cells and Manufacturer Specifications

Cathode Chemistry AKA Vendor Specific Max Acceptable
Capacity (Ah) Discharge Temperature
Current (°C)
LiFePO, LFP A123 1.1 30 -30to 60
LiNij gsC0og 1Al 5505 NCA | Panasonic 3.2 6 Oto 45
LiNiMnCoO, NMC LG Chem 3.0 20 -5to 50
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s | Evaluating Cell Chemistries Uniformly: Long-Term Cycling

Two phases: 1) Short-term cycling: establish baseline and verify safety of operational window!
2) Long-term cycling: understand how operation at different points influence degradation

Design of experiment approach with at least two cells at each condition

Variables:

e Chemistry: LFP, NCA, NMC

* Charge Rate: C/2

* Discharge Rate: C/2, 1C, 2C, 3C

e State-of-Charge Range: 40-60%, 20-80%, 0-100%
* Temperature: 15°C, 25°C, 35°C

1Barkholtz et al. J. Electrochem. Soc. 2017, 164, A2697.



‘ Cycle Count to 80% Capacity

Performance highly variable even within manufacturer specs
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7 ‘ Long-Term C
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Long-Term Cycling: SOC Dependence
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‘ Long-Term Cycllng Discharge Rate Dependence
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10 ‘ Moving Beyond 80% Capacity for Grid Applications

e 80% capacity is common reference point in manufacturer spec sheets
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* 80% capacity is a holdover from the EV world

o USABC 1996: “EV batteries should be removed from automotive use when current battery capacity is 80% of initial battery
capacity and current battery power capability is 80% of initial battery power capability”

o at this time, EVs were primarily powered by Ni-based batteries

e Unrealistic criteria for Li-ion batteries with higher energy density and power capability?



11 ‘ Theories of Capacity Fade During ‘Normal’ Operation

e Classical model of LiB degradation assumes a transition from linear
behavior
o Phase 1: SEl formation
o Phase 2: linear degradation
o Phase 3: rapid capacity fade (80% capacity assumed in this region)

e Transition to rapid capacity fade has many names

o Transition point, tipping point, knee, rollover

* Transition to rapid capacity fade has many nuanced explanations
o General resistance increase at anode
o Liplating at anode
o Electrode dry-out
o Cathode processes (degradation or resistance increase)

capacity

N

\3

Spotnitz et al. J. Power Sources 2003, 113, 72.

cycle number



12 | Position of Knee Highly Dependent on Cycling Conditions

No knee down to 65% capacity Knee at ~80% capacity, but also
earlier or later
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13

Rapid Capacity Fade Due to Resistance Increase

normalized capacity

normalized resistance

Tipping point coincides with resistance increase of ~150%
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14 ‘ Li Plating as Cause of Rapid Resistance Increase

Cycle number
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6 | Rapid Capacity Fade due to Electrode Dry-Out

a) SEl growth

e SEl formation reactions generate gas O O

e @Gas bubbles lead to a loss of contact between
active material and electrolyte

b) Mechanical SEI cracking and accelerated formation

* Model fits the data, but no explicit experimental
confirmation of phenomenon

c) Electrode dry-out
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Kupper et al. J. Electrochem. Soc. 2018, 165, A3468.




17 I Rapid Capacity Fade due to Cathodic Processes

 Rollover due to impedance growth at positive
electrode

e Impedance growth associated with higher
charging voltage and electrolyte oxidation

* No change in anode impedance and no Li
plating observed on cells past tipping point
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18

Expanding Data Sets of Commercial Cells Beyond 80% Capacity

Our approach: 1) Short-term cycling: establish baseline and verify safety of operational window

2) Long-term cycling to 80%: understand how operation at different points influence degradation

3) Long-term cycling beyond 80%: understand what causes and how to delay tipping point
* most studies limited to a couple of cells past the knee
* need more experimental data to enable generalizable conclusions

New study: design of experiment approach with at least two cells at each condition

Variables:

Chemistry: NCA, NMC (LFP later)
Charge Rate: 0.25C, 0.5C, 1C
Discharge Rate: 1C
State-of-Charge Range: 20-80%
Temperature: 15°C, 25°C, 35°C



19 ‘ Cycling Past 80%: Preliminary Insights
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20 I Summary

Motivation

Minimize uncertainty (and identify knowledge gaps) in LiB cell selection for energy storage installations

Approach

Quantify cell performance with uniform methodology in short and longterm cycling studies

Conclusions

 Cells’ degradation can vary up to thousands of cycles, even within the manufacturer specified range
of conditions

 80% capacity is not a reasonable lifetime end point, should be based on transition to rapid fade

* Ingeneral, still imited experimental data for rapid capacity fade; more long-term studies needed
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