
Degradation of Commercial Li-ion Cells

Beyond 80% Capacity
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2 Challenge: System Selection Fraught with Uncertainty

Problem:

Limited LiB performance and safety data available

0 Manufacturers provide range of recommended operating conditions, but limited insight
into variable performance

Without adequate info, potential for unintended abuse and rapid aging conditions

Objective:

Quantify performance of popular Li-ion chemistries in 'apples to apples' approach and
identify 'tipping points'
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4 Scope of Study: Cells and Manufacturer Specifications

Cathode Chemistry AKA Vendor Specific

Capacity (Ah)

Max

Discharge

Current

Acceptable

Temperature

(°C)

LiFePO4 LFP A123 1.1 30 -30 to 60

LiNi0.85Co0.1A10.0502 NCA Panasonic 3.2 6 0 to 45

LiNiMnCo02 NMC LG Chem 3.0 20 -5 to 50

LFP NCA NMC
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5 Evaluating Cell Chemistries Uniformly: Long-Term Cycling

Two phases: 1) Short-term cycling: establish baseline and verify safety of operational window'

2) Long-term cycling: understand how operation at different points influence degradation

Design of experiment approach with at least two cells at each condition

Variables:

• Chemistry: LFP, NCA, NMC

• Charge Rate: C/2

• Discharge Rate: C/2, 1C, 2C, 3C

• State-of-Charge Range: 40-60%, 20-80%, 0-100%

• Temperature: 15°C, 25°C, 35°C

1Barkholtz et al. J. Electrochem. Soc. 2017, 164, A2697.



6 Cycle Count to 80% Capacity

Performance highly variable even within manufacturer specs
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7 I Long-Term Cycling:Temperature Dependence
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8 I Long-Term Cycling: SOC Dependence
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9 I Long-Term Cycling: Discharge Rate Dependence
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10 Moving Beyond 80% Capacity for Grid Applications

• 80% capacity is common reference point in manufacturer spec sheets

Examples:
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• 80% capacity is a holdover from the EV world
o USABC 1996: "EV batteries should be removed from automotive use when current battery capacity is 80% of initial battery

capacity and current battery power capability is 80% of initial battery power capability"

o at this time, EVs were primarily powered by Ni-based batteries

• Unrealistic criteria for Li-ion batteries with higher energy density and power capability?



11 Theories of Capacity Fade During 'Normal' Operation

• Classical model of LiB degradation assumes a transition from linear
behavior
o Phase 1: SEI formation

o Phase 2: linear degradation

o Phase 3: rapid capacity fade (80% capacity assumed in this region)

• Transition to rapid capacity fade has many names
o Transition point, tipping point, knee, rollover

• Transition to rapid capacity fade has many nuanced explanations
o General resistance increase at anode

o Li plating at anode

o Electrode dry-out

o Cathode processes (degradation or resistance increase)

Cycle number

Spotnitz et al. J. Power Sources 2003, 113, 72.





13 Rapid Capacity Fade Due to Resistance Increase
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Ecker et al. J. Power Sources 2014, 248, 839.
Stroe et al. Microelectron. Reliab. 2018, 88-90, 1251.



1 4 Li Plating as Cause of Rapid Resistance Increase

SEI growth 
Anode porosity Li plating
reduction
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1 5 Li Plating as Cause of Rapid Resistance Increase

SEI growth 
Anode porosity Li plating
reduction

Deposits of Li observed on
anode, while cathode
unmodified
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16 Rapid Capacity Fade due to Electrode Dry-Out

• SEI formation reactions generate gas

• Gas bubbles lead to a loss of contact between

active material and electrolyte

• Model fits the data, but no explicit experimental

confirmation of phenomenon
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17 Rapid Capacity Fade due to Cathodic Processes

• Rollover due to impedance growth at positive
electrode

• Impedance growth associated with higher
charging voltage and electrolyte oxidation

• No change in anode impedance and no Li
plating observed on cells past tipping point

1000 2000 3000 4000

Cycle nurnber

Ma et al. J. Electrochem. Soc. 2019, 166, A711.



18 Expanding Data Sets of Commercial Cells Beyond 80% Capacity

Our approach: 1) Short-term cycling: establish baseline and verify safety of operational window

2) Long-term cycling to 80%: understand how operation at different points influence degradation

3) Long-term cycling beyond 80%: understand what causes and how to delay tipping point
• most studies limited to a couple of cells past the knee
• need more experimental data to enable generalizable conclusions

New study: design of experiment approach with at least two cells at each condition

Variables:

• Chemistry: NCA, NMC (LFP later)

• Charge Rate: 0.25C, 0.5C, 1C

• Discharge Rate: 1C

• State-of-Charge Range: 20-80%

• Temperature: 15°C, 25°C, 35°C



19 Cycling Past 80%: Preliminary Insights
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20 Summary

Motivation

Minimize uncertainty (and identify knowledge gaps) in LiB cell selection for energy storage installations

Approach

Quantify cell performance with uniform methodology in short and longterm cycling studies

Conclusions

• Cells' degradation can vary up to thousands of cycles, even within the manufacturer specified range
of conditions

• 80% capacity is not a reasonable lifetime end point, should be based on transition to rapid fade

• In general, still limited experimental data for rapid capacity fade; more long-term studies needed
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