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Abstract
The well-posedness of systems with unweighted nonlocal vector calculus operators is
leveraged to show well-posedness of analogous systems with weighted nonlocal op-
erators. In particular, a choice in nonlocal kernel is derived which shows equivalence
of the weighted and unweighted nonlocal Laplacian operators. This kernel satisfies
most desired properties and also is consistent with the fractional Laplacian.

Background

 ,

There has been a rise in the use of nonlocal integral operators in place of their classical
differential counterparts due to their potential to allow for more singular solutions.
Where classical differential systems require differentiability across the domain, with
nonlocal integral operators we can get away with integrability of the defined nonlocal
operator. Nonlocal operators come from the idea that information about a point can
be gathered by assessing the point's close-by neighbors.

As an example, consider the nonlocal Laplacian operator equipped with the symmet-
ric nonlocal kernel a : 1' x --"ei -R and acting on a scalar function u : -In

In

(u (y) u (x)) a (x, y)dy .

The choice in a has a major effect on the behavior of the operator. Several results ex-
ist based on choices for a which will allow for desired properties such as convergence
to the classical differential Laplacian operator.

It's not uncommon to have a depend heavily on the distance between x and y, as we
usually want points closer to x to have a larger impact. Also note, for 0 < s < 1 with
the choice a= Illy x 12n+s we have consistency with the fractional Laplacian
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Let Q c --V7" be the domain of a function on which we'd like to apply a nonlocal
operator. Since the operator depends on the interaction of each point in the domain
with any points such that the interaction kernel is nonzero, we have an additional
interaction domain

(—A)su(x) c

,

Qi {y E ---'n \ Q : a(x, y) / 0, x c Q}.

If we consider Q C -R2 with the kernel a (x, y) having support on an e ball about the
first input, the domain and interaction domain may look similar to the diagram on the
left below

However, the domain and collar need not be so nice. In fact, they may not even be
adjacent such as the diagram to the right above.

These systems are then volume-constrained problems instead of boundary value prob-
lems; the conditions analogous to boundary conditions are imposed on the interaction
domain, which is in the same dimensions as the initial domain.

Preliminaries
We utilize the definitions of the weighted and unweighted nonlocal operators in-
troduced in [1]. In particular, we set a : -"In X -In _:kk to be an antisymmet-
ric vector two-point function which then gives rise to the following operators. For
v : -RP' X -Rn Rk we have the unweighted nonlocal divergence Dv : -RT1
defined

Dv(x) :— f (v(x, y) + v(y, x)) • a(x, y)dy x E
-Zr1

,,n

Then for u : --"V?) -R we have the unweighted nonlocal gradient in the form of the
adjoint to the unweighted nonlocal divergence D*u : 'V X -V/ --e defined

D*u(x, y) (u(y) — u(x))a(x, y) x, y E --V1

These structures give rise to the weighted nonlocal operators. The major shift be-
tween the unweighted and weighted operators is that the weighted operators always
act on a function with a single input which is then augmented by a two-point weight
function. Throughout, let w : -Rin X Tr) -"  be a non-negative, symmetric scalar func-
tion. For u : --Zr1 --k , we have the weighted nonlocal divergence Dwu : -Rn -R 

defined

Dwu(x) := D(w(x, y)u(x)) = Li 1,(U ) (3 ( 1 y)u(x) + w(y, x)u(y)) . a(x, y)dy x E In

For u : In 1, we have the weighted nonlocal gradient in the form of the adjoint
to the weighted divergence D,* u : --e/ --e defined

D',,u(x) := D*u(x, y)w(x, y)dy x E _in.
fn

There are a myriad of results which show well-posedness of volume-constrained
problems which utilize the unweighted versions of the nonlocal operators. Systems
with the weighted nonlocal operators are less well studied. However, we can lever-
age the well posedness of the unweighted case by arguing that both operators have
equivalent energy norms. Doing so involves two major facets:

First, the equivalence of the unweighted Laplacian operator

D g u (x) = Lu (x) (u(x) u(y))7(x, y)dy.
LUSh-

with the weighted Laplacian operator

Dwg,u(x) = D ,TY,,u(x) = D GA) (x , y)TY,,u(x))

[w (x , y)DLu (x) + w (y , x)D,1,u(y)] • a (x , y) dy .
fu Q1

Second, the existence of a weighted nonlocal Green's identity

Dwg,u(x)v(y)dx IQUQIg,u(x) • gwv(x)dx.
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Results
There is a specific choice of kernel 7 for which the unweighted Laplacian operator
pg is equivalent to it's weighted counterpart vwcw. In particular, the equivalence
occurs for the choice of kernel

,Luc2/
+ a(z, y)w(z, y) • a(x, y)w(x, y) + a(z, y)w(z, y) • a(x, z)w(x, z)]dz

for the unweighted operator.

This kernel satisfies some of the properties we desire in a nonlocal kernel. For in-
stance, it is symmetric. Also, with certain choices of a and w the kernel 7 has been
numerically verified as positive. Additionally, for the specific choices

w(x, y)

a(x, y)

[a(x, y)w(x, y) • a(x, z)w(x, z)

ly x0(37 x) for 0(37 x)

y x
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we have that the operator pg is consistent with the fractional Laplacian operator.

1
ly 
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Letting Fwu refer to the energy of u with respect to the weighted nonlocal operators,
we have

Fwu = (1),u(x))2 dx
lQuQ1

Utilizing the equivalence kernel above alongside nonlocal Green's identities for both
the weighted and unweighted operators, we find that

V, u = (u(x) u(y))272(x, y)dydx.
luQ, fusb-

Which garners equivalence to the unweighted nonlocal energy norm

leUQ/ 11USb-

(u(x) u(y))20(x, y)dydx.

This equivalence of norms allows us to declare well-posedness of systems with
weighted nonlocal operators which are analogous to systems with unweighted nonlo-
cal operators that have already been deemed well-posed.
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