Nonlocal Physics Informed Neural Networks

[Nicole BuczkowskiSA1S, Marta D'EliaS”2S, and Michael ParksSA2S

1[University of Nebraska-Lincoln], 2[Sandia National Laboratory]

BACKGROUND

Neural Networks are a powerful tool that are forwarding machine learning. Working
together in networks, neurons take inputs either from data in the case of input layers or the
outputs of previous neurons in the case of hidden layers. Neurons make a decision using
their activation function and their inputs and output that decision. Known data is used to
train the network. Through one of the many possible gradient descent algorithms, the
network will tune parameters (weights and biases) in the activation function to lower a
prescribed cost function.

Nonlocal models have grown in popularity over recent years due to their applicability to
things like image processing and fracture mechanics. Instead of using partial differential
equations to model physical laws in materials, one can use integral differential equations.
Instead of taking information at a point, one can take information around a point in that
point's horizon. So that points on the boundary also have this horizon, we additionally take
points around the domain in a collar. In this paper, we will be consider equations of the
form

Lu=f, x € ()

u="f, x €T

where Lu denotes a nonlocal operator acting on u, () is a given domain, and I' is the
associated collar.

Incorporated into L is the function 1(x,y), a symmetric kernel that records the interaction
between x and a point in its horizon, 0. Given a specific choice in kernel, the nonlocal
equation converges to the local equation as 0 goes to 0.

In recent studies (1),(2) it was discovered that when inputting information about u from an
associated partial differential equation (utilizing physical information), an optimizer can
predict the original function u with a certain degree of accuracy. This was expanded to
fractional partial differential equations where there is no chain rule to utilize in fractional
calculus. This was further expanded to consider data-driven discovery of partial differential
equations (1). Data was used in this case to train u and certain parameters in the original
equations (e.g. what order of partial derivative for fPINNs).

METHODOLOGY

For the forward problem, we consider equations of the form above. Similar to (1), we will be
inputting a training set of N training points in the domain () for the nonlocal equation, Lu =
f . However, differently from (2), we will be matching boundary conditions by providing
points in the collar N, for u.

The model will take those training points and from them, tune weights and biases to predict
a function uy that models the training points. Additionally the values from training points
and values nearby are used to calculate an estimate for the nonlocal equation applied to the
function u. We use Gaussian Quadrature with M points in the quadrature to estimate the
integral for uyy . The goal is to minimize

loss = loss, + lossy,,

= > () —uG)? +) L () — Lu(xg))?

XcEN, X4dEN g4

We then test the model with a set of testing points, different from those used to train the
model. This tests the model's ability to predict other values.

For the inverse problem, we also consider equations of the form (1.1). The main difference in
the inverse problems is that we will now be consider parameter prediction for a parameter in
the kernel. So when we approximate Luy, we utilize 1y (x,y) instead of the exact kernel.
This uyn(x,y) will have a parameter in it that we would like for the code to predict. For

example, if we consider the kernel iy (x,y) =%(x-y)2. For the nonlLocal Laplacian to converge

- . . 5
to the traditional Laplacian, our goal is for the code to output d= >

While the code is mostly the same as in the forward problem, we have a few key differences.
We input a training set of N; training points in the domain () for the nonlocal equation. We
use the same training points for u in addition to those in the collar: N+ N, = N¢.

The code optimizes
loss = loss, + loss;,,

B Z (uwn (7)) — u(xr))? + Z (L (ra) = Lu(xa))”

XfFEN f X4dEN g4

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

The code guesses a u and sets d to some given initialized value, then computing Luy, based off of

that guess for uyy and the current uy (%, y) (which starts with the initialized d). Next it will over
many iterations attempt to minimize the loss by changing d and u.

RESULTS: FORWARD PROBLEM

We test the model parameters to check the convergence rates and find optimal parameters.
Unless otherwise noted, we use 50 training points in the domain, 50 points in each side of the
collar, 150 test points, a width of 4, a depth of 4, a learning rate of 5>, and 20 points for the
Gaussian Quadrature. We considered a few different possible sources of error: the discretization
error, sampling size error, and neural network error. Later in this section, we also look at the
affects of Gaussian White Noise.

We use the following problem set up to check the convergence of uyy. The exact solution and
equation are

u=x?-—x*
3
H(XJY)—ng

Lu=§52—12x2+2

over the domain Q = (0,1) with § =0.01, so that I" =(- §,0)U(1, 1+ §)S.
In the plots below we show how u converges as well as how Lu converges.

Since we are using Gaussian Quadrature to estimate the integral of our predicted uy,, we also
know that the error is O(u?™). So in our example the if uyy is well approximated by polynomials
of degree 19 or higher, this error will be approximately O. For the error generated by the training
points, we consider varying the number of points in the domain N;, the points in the collar N,
and both simultaneously. We found that before 40 in each we have a little bit of instability.

We also considered a few causes for the neural network error. The first two, width and depth,
refer to the architecture of the neural network (depth being the number of layers and width the
neurons per layer). We also consider the impact of the learning rate. We found that after a width
of 4 the error saturates. After a depth of 4, the error is of the same magnitude for this iteration.
So we hold our depth at 4. For the impact of learning rate, we consider several constant learning
rates. Outside e =3 and e~ the loss and errors don't converge well. We take a closer look at the
learning rates 5¢ 73, 5e %, and 5e~°. The error and losses initially decrease and then increase and
are unstable in 5¢ 73, 5e~%. We use 5e > as it is much more stable.

Now we consider Gaussian white noise added to the forcing term. We consider the case where u
is not given points in the domain. As noise increased, the error of u increased, but the neural
network did not suffer from over-fitting. However surprisingly, the optimizer did significantly
worse when points were added in the domain for noise, even though it did better when there
was no nhoise.

21 — 0.25 -

0.20
015 A
0.10
0.05 A
-8 - :
0.00
-10 -
I I ! I I I T T T T T T
04

0.3

0.2 1

01 -

0.0

L)))) ! L)
00 02 04 06 08 10 0.0 02 04 06 08 10

025 +

0.20 1

015

0.10 1

0.05

0.00 +

I I I I I !
i [I I I I ! I
0.0 0.2 04 0.6 0.8 10 o0 05 o Py e 1%

SAND2019-12497C

RESULTS: INVERSE PROBLEM

We next consider results for the inverse problem. Still predicting a uyy, we also have the optimizer
find a parameter d in the kernel. We first consider the case with a polynomial u and a constant
kernel. We consider again the setup

u=x%—x*

3
ulx,y) = 255

Lu=§52—12x2+2

d

but now when computing the nonlocal Laplacian for the predicted uy,, we utilized ppyy(x,y) = 55

.3
where the actual value of d is =

There are two troubling cases in this parameter prediction due to bad initializations: distance from
actual value and difference in sign from the initial value. The former can be seen when initialized at
10. Convergence here is significantly slower. To speed up this process, one solution is to multiply
loss,, by a scalar larger than 1, so that the optimizer predicts a better u, then forces the parameter to
converge more quickly in order to match the nonlocal equation.

The second issue is initializing at a value of opposite sign to the desired value (or at 0 sometimes),
such as -1 in this case. Not only does the value of the kernel parameter seem to be diverging to
negative infinity for incorrect signed initializations, but the error for u is again significantly worse
than that of the case with a good parameter prediction. However we can actually utilize this poor
error in our favor. One option is to re-initialize to a new value at a certain iteration given a certain
error. We can do this without disrupting the current weights and biases in the neural network.
Another option is to restrict values to be in a certain range as in (2) for fractional PDEs.

We can also consider the case where the kernel is not simply a constant:

u=x%—x*

3
,Ll(X,y) — Ts5(x _y)Z

4d 4903d 24dx3
5 7 5

but now when computing the nonlocal Laplacian for the predicted uy,y, we utilized uyyn(x,y) =
5 .5 .
285 (x — y)* where the actual value of d is > Notice that the structure of the kernel was changed so

that we are still only predicting the parameter d. We consider several different initializations of the
parameter d and consider the 100,000th iteration in the equation above. We see that we when
started close enough, the parameter converges well. Even if we are further away the convergence
appears to be slower.

Different Initializations for d

Initialization | Loss Loss of u Loss of Lu Error of u Error of Lu Predicted d
-1 9.88717e-03 |9.88570e-03|1.47844e-06 |9.9.60048e-01 | 2.90485e-04 |-11.45071
0 5.05779e-08 |9.82847e-12|5.05681e-08 |3.03250e-05 |5.37230e-05 |2.50008

1 5.17000e-07 |4.73172e-10|5.16527e-07 |1.22691e-04 |1.71699e-04 |2.50043

15 4.41259e-03 |4.41162e-03|9.72492e-07 | 6.41333e-01 | 2.35594e-04 |13.43008

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions
of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA0O003525.

CONCLUSIONS

So far, physics-informed neural networks have been used in partial differential equations and
fractional partial differential equations. We use nonlocal physics-informed neural networks to
investigate their effectiveness on nonlocal equations. Nonlocal physics-informed neural networks
have great accuracy in predicting a function u given information about u on the collar of its
domain and information about Lu within the domain. We can consider the error coming from a
few different sources: discretization error (when u is not integrable), the sampling size error, and
the neural network error. Furthermore, nPINNs can accurately predict single parameters in the
collar u(x,y), though the results for more than one parameter are not quite as accurate.

As we continue this work, we look to find a way to more accurately predict more than one
parameter in the kernel. We also aim to look at multidimensional equations.

Sources:

(1) Raissi, Maziar, Paris Perdikaris, and George E. Karniadakis. "Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations."” Journal of Computational Physics 378 (2019): 686-707.

(2) Pang, Guofei, Lu Lu, and George Em Karniadakis. "fpinns: Fractional physics-informed neural
networks." SIAM Journal on Scientific Computing 41.4 (2019): A2603-A2626.

