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2 Empirical Fitting of Critical Electric Field on
Semiconductor Bandgap

Empirical fi e LiNeu Lk) c.k., ILL Lapabilities of emerging power electronics
materials: Ecru—EY4

➢ Fits by Hudgins et al. in 2003 remain the standard
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• Empirical fits to data from the literature (not existing theory)
• Not normalized to doping, device structure, temperature
• Subject to device quality

• Hudgins et al., IEEE Trans. on Pow. Elec., Vol. 18, No. 3 (2003) NffSPIL



3 Figures of Merit

Figures of merit often rely on parameters predicted from empirical fits
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• UFOM only valid for non-punch-through device structures
• UFOM only valid for vertical devices

• Hudgins et al., IEEE Trans. on Pow. Elec. 18, 3 (2003)
• Tsao et al., Advanced Elec. Mat. 4, 1600501 (2018) WOK& AMS4



4 Impact Ionization

Impact ionization drives avalanche breakdown in a device

Charge carriers accelerated under
high electric fields lose energy and
ionizing more electron-hole pairs,
resulting in multiplication of
charge, leading to rapid increase in
current a avalanche breakdown

Carrier ionization rates are given by:

an = an ,p • exp
(EnO,p0)

isri. 131

Electric Field

•

Multiplication factor describes increase in current under impact ionization:

Avalanche occurs when denominator approaches zero

WWI



1 Critical Electric Field and Device Performance
The critical field is defined as the IEI
maximum electric field that leads
to avalanche breakdown in a 1D
analytical model
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• E crit is obtained from VBD
• R—on,sp is extracted from forward-

current slope
• Carrier mobility is often taken from

literature 0 ENEEdir AMS41



1 6 Procedure for Renormalization of Ecrit values
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• UFOM assumes a given doping and field profile

• Valid comparison of critical electric field between devices requires two
major kinds of corrections:

• Doping:
➢ Critical electric field is doping-dependent

➢ Devices of different doping levels must be compared to an equivalent doping level

• Structure
➢ Electric fields in non-punch-through (NPT) and punch-through (PT) style devices are not directly comparable

➢ To equate, PT devices are transformed into an "equivalent" NPT device (integrated E-field curve is
constant)

Si
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• B.J. Baliga, Fundamentals of Power Semiconductor Devices, 2nd Ed. (2018) OMER& Amsa



7 
1 Correction for Doping

Analytical solution for renormalization requires two critical assumptions
so the impact ionization integrals in the multiplication factor equation
can be evaluated
1. Electron a hole ionization rates are equal: a, = ap
2. Ionization rate follows a power-law form: a = cr0E6

o with most-widely accepted : 6 = 7

Thus correction for different doping profiles follows:

fxD1 X.D2

cr(x)dx = cr(x)dx = 1

1
1 

°
a(E)dE

ND1fEcriti 

1 °

ND 2 Ecrit2

cr(E)dE

Ecrit1 (ND1

E crit2 ND2

• B.J. Baliga, Fundamentals of Power Semiconductor Devices, 2nd Ed. (2018) 0 ENERGY WWI



1 Correction for NPT & PT Device Structure I

IEI
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9 
I Combined Corrections

Doping and device structure corrections for Ecrit combine into:

1/8 8 11/8
Ecrit,NPT (ND,NPT 

1 
qND,PT WPT

Ecrit,PT ND,PT E Ecrit,PT

• Using this equation gives us the ability to equate Ecrit for devices with
different doping and field profileF

Reference:

Armstrong et al.
Alterman et al.
Ohta et al.
Hu et al.

Nishikawa et al.
Nishikawa et al.
Nishikawa et al.
Nishikawa et al.
Nishikawa et al.
Nishikawa et al.
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WPT
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GaN 3x1015 30 3930
1627
4700

GaN 2.5x1015 8 1406
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A10.3Ga0.7N 5x1016 4.3
GaN 9x1015 22

fidild5a0.71 N
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Alo. 57G ao_ 43N

2x1016
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2x1016
2x1016
2x1016

0.225
0.225
0.225
0.225
0.225

• A. M. Armstrong et al., Elec. Lett. 52, 1170 (2016)
• A. A. Alterman et al., Elec. Lett. 52, 1319 (2016)
• H. Ohta et al., IEEE Elec. Dev. Lett. 36, 1180 (2015)
• Z. Hu et al., App. Phys. Lett. 107 (2015)
• A. Nishikawa et al., Jap. Jour. of App. Phys. 46, 4B (2007)

83.75
91.125
112.5
138.75
181.5

2.09
5.76
3.86
1.93
2.37
3.76
4.14
5.04
6.21
8.11

Ecrit,NPT WNPT -
corrected extrapolated
(MV/cm) (Pm)

Ecrit,NPT -
normalized to
ND=loi6 cm-3
(MV/cm)

2.09
5.76
3.86
1.88
1.98
3.00
3.23
3.90
4.69
5.94

40.10
6.26
24.64
25.46
5.68
8.16
8.72
10.26
12.20
15.30

2.43
4.71
3.91
2.23
1.81
2.75
3.00
3.58
4.30
5.45

0ENERGY WWI



1° I Updated Ecrit VS. Eg Values

[Well-established

Widebandgap
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a tunneling cannot be decisively excluded as a contributing factor in
b no reliable data in the literature was found
C insufficient device data to perform normalization
d no experimental data confirming temperature-dependent behavior
avalanche breakdown

carrier multiplication

indicative of true

• S. M. Sze and G. Gibbons, App. Phys. Lett. 8, 111 (1966)
• Hudgins et al., IEEE Trans. on Pow. Elec. 18, No. 3 (2003)
• L.-M. Wang, 25th IEEE Int. Conf. on Microelec. (2006) 0 ENERGY WWI



" I Well-Established Semiconductors

• Impact ionization coefficients and E„it vs. doping is known for many of the well-
established semiconductors

• Compiled in Semiconductor Parameters Volumes 1 a, 2 edited by Levinshtein,
Rumyantsev Et Shur
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• M. Levinshtein, S. Rumyantsev, M. Shur, Semiconductor Paramaters Vol. 1 (1996)
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12 I WBG Semiconductor: SiC

ap Impact Ionization Data
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13 I WBG Semiconductor: GaN

c.)

Breakdown vs. Temperature Data
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• O. Slobodyan et al., MRS. Comm. 8, 4 (2018)
• I. Kizilyalli et al., IEEE Trans. On Elec. Dev. 60, 10, (2013)
• Ohta et al., IEEE Elec. Dev. Lett. 36, 11, (2015) 0 ENERGY WWI



14 I UWBG Semiconductors: 13-Ga203 & Al„Ga,,N

f3-Ga203 has predicted Ecrit 7 MV /Cm
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No current temperature dependence of breakdown voltage or ionization
coefficients support avalanche breakdown in f3-Ga203 or AlxGa1,N

• J. Yang et al., ECS Jour. of Sol. State Sci. and Tech. 8, 7 (2019)
• A. Nishikawa et al., Jap. Jour. of App. Phys. 46, 4B (2007) OINERdif NffSli



15 I UWBG Semiconductor: C (diamond)

Breakdown vs. Temperature Data
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16 1 Fitting of Updated Critical Electric Field vs.Semiconductor Bandgap Values
• Updated power-law fit Lo !levy criticaL electric field values

• Best-fit power-law slope E„it—E3; : y =1.86

• Direct Bandgap

• Indirect Bandgap

— 1.86 Power Fit
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U 105—

u
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--- Direct Bandgap Fit

• Indirect Bandgap

  Indirect Bandgap Fit

0 2 L 0
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6 0 0 2 10
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0.661

Our research
Ge 2.0x105

1110.53Ga0AAS

Si
Direct
Indirect
Direct
Direct
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Direct
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0.74 2.84x105 Criticial Field Values
1.12 3.7x105 All

InP 1.344 5.0x105 Direct Bandgap

Indirect Bandgap
G aAs 1.424 5.4x105
6H-SiC 3.0 2.9x106
4H-SiC 3.23 3.2x106
GaN 3.45 3.9x106

C (diamond) 5.5 1.01x107

6 0

Slope R2

1.86 0.980
1.76 0.947

1.89 0.992

0ENERGY NffSogi

1
1
1
1



17 I Comparison of Updated Empirical Fit with
Historical Fits

0.75 1

• normalized data

 0.75 Power Fit

R2 = 0.631

1.86 Power Fit

R2 = 0.980
2.0 Power Fit

R2 = 0.974

2.5 Power Fit

R2 = 0.864

3.0 Power Fit

R2 = 0.612

2 3

Bandgap (eV)

• For normalized data, the proposed 1.86 fit is much better than most
historical fits to date

4 5 6

• This fit should more accurately predict material performance
capabilities

Nadir Nowt



18 I Simulation: Ridley's Lucky-electron
• To provide fundamental basis for E„it, developed a phenomenological model
for breakdown

• Ionization integral transformed from integral over space 4 integral over E-field

• Ionization rate as a function of field is inserted into integral

• Based on the fundamental avalanche model developed by B.K. Ridley
("lucky-drift" model)

• Higher fidelity in high/low field regimes (compared to Shockley's "lucky electron" or
Chenowyth models)

• More tractable for calculation than Monte Carlo full band approximations

Ridley's Lucky-Drift Model:

1 (e-2rx2 (e, -2rx2 (1-0 0— e-x(1-)11
—l-x [-x(1-0crA.=
x 

e +  
1 — 2rx 

+ po

) T
e +  

1 — 2rx

x = 
Eth PT 

P = 1
eEA. = 2rx2 

T — e-2rx(x-3) 1
x>3

Lucky-drift can be described by three variables:
o Eth, threshold energy required to initiate avalanche
. r, ratio of energy between electron-phonon interaction and electron-electron momentum transfer
. X, mean free path of electron

Approach is to transform Eth, r, and A. into functions dependent on Eg

1

• B.K. Ridley., Jour. of Phys. C - Sol. State. Phys. 16, 3373 (1983) eINERdif NffSli



19 I Determining Eg dependence of Threshold
Energy and Phonon Collision loss for Ridley's
Lucky Electron Model

Eth
• Energy hot carrier must possess to create an electron-hole pair
• Many assume ionization can be initiated by any electron with energy > Es
• Actual E> 1.5Eg as derived by Maes et al.

• Average energy loss per phonon collision to the threshold energy

hco
r = 

[2n(w) + I]Eth

h is the reduced Planck constant
w is phonon angular frequency,
n(w) is the quantization number.

• Only Eth is function of Eg, so r reduces to

r oc E -1

•

• W. Maes, K. de Meyer, R. van Overstraeten, Sol.-State. Elec. 33, 705 (1990) OMER& Amsa



1 Determining Eg dependence of Mean-free-pathfor Ridley's Lucky Electron Model

• Mean free path length of a carrier before thermal relaxation
• Assume nonpolar optical phonon scattering 4 -I- is energy independent and

depends inversely on the effective mass (m*)

For a carrier at Eth

A = vg • T with vfl (E)
2E 1

and y OC
M.*

m*2

1 1

/1 a
1 ,\12Eth 

so: 
1 Eth 2 1 EEZ

m* 'acm* 2
rn,*2 m*2 m*2 m*2

A linear relationship between m* and Eg can also be derived via Bloch Theory for a periodic potential

1
1 Eg 2 1

oc OC
3 1 3

E92 E92 E

Use Si values for r, X to calculate proportionality constants:

Asi = 7.1 nm to 11.94 nm

rsi = 0.049 to 0.063

1

OMER& AMS4



21 I Parameters for Ridley's Lucky Electron Model

Parameter
Threshold Energy, Eth

Ratio of average energy loss per
collision to the Eth energy, r

Mean relaxation length, X

Value
1.5 • Eg
0.0 6 3

Ey

12 x 10-7

Ea 3/2

• B.K. Ridley., Jour. of Phys. C - Sol. State. Phys. 16, 3373 (1983)
• W. Maes, K. de Meyer, R. van Overstraeten, Sol.-State. Elec. 33, 705 (1990)
• W. Maes, K. de Meyer, R. van Overstraeten, Sol.-State. Elec. 33, 705 (1990)
• T. H. Ning, C. M. Osburn, and H. N. Yu, Jour. of App. Phys. 48, 286 (1977)
• T. Simon, K. Ping-Keung, and H. Chenming, IEEE Trans. on Elec. Dev. 31, 1116 (1984)
• J. W. Slotboom et al., 1987 Inter. Elec. Dev. Meeting (1987)
• Y. Z. Chen and T. W. Tang, Jour. of App. Phys. 65, 4279 (1989)
• F. M. Abou El-Ela and I. M. Hamada, Fizika A 13, 89 (2004)

Reference
Maes et al.

Ridley

Several

Oblaidir AMS4 I



22 I Flow Diagram for Simulation of Ridley's Lucky
Electron Model

Materials constants 
Dielectric constant: E 
Bandgap: Eg 

l Device Parameters
Doping: ND 1

Calculate
Threshold energy: Eth

Mean free path: Ä.
[Energy loss ratio: r

1
Calculate Maximum Electric Field: Šmax

1

Applied Voltage: V

2E,E0V

sqND

Calculate "Lucky Drift" Ionization rates: a, Et CCP

Calculate Electron
Er E0

0
Mn = f ap (E) •

q ND c
L max

0

M~
ErE0

=
(IND t max

YES

<=M

1
Et hole multiplication coefficients Mn Et Mp:

exp r[
r E

-TO (an(E') — ap(E')) dEldE —4 1
q ND Emax

0
an(E) • exp[-±

r
;:q fE (ap(E — an(E')) dEldE 1

NO I Iterate voltage:
[Are either >1? = VL + AV

Avalanche Breakdown OENEEdir



1 Comparison of Empirical Fit and SimulationResults

• Empirical and simulated values are in reasonable agreement

• I ndirect Bandgap
■ Direct Bandgap
 1.86 Power Fit
-Simulated Fit

104
0.5 0.75 1 2

Bandgap (eV)
3 4 5 6

Semiconductor Bandgap Our
(eV) research

Simulated

InSb 0.17 3.41x104
InAs 0.354 8.70x104
Ge 0.661 2.0x105 1.88x105
GaSb 0.726 2.20x105

I n0.53Ga0.47As 0.74 2.84x105 2.35x105
Si 1.12 3 . 7 x 1 05 4.83x105
InP 1.344 5 . 0 x 1 05 6.65x105
G aAs 1.424 5 . 4 x 1 05 7.36x105
GaP 2.26 1.73x106

3C-SiC 2.36 1.89x106
6H-SiC 3.0 2.9x106 2.94x106
4H-SiC 3.23 3.2x106 3.36x106
GaN 3.45 3.9x106 3.80x106

f3-Ga203 4.7 6.71x106
C (diamond) 5.5 1.01x107 9.27x106

Criticial Field Values
Empirical

Simulation

Slope R2

1.86 0.980

1.67 0.990

1
1
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24 I Conclusions & Precations

• Updated critical electric field vs semiconductor bandgap values
• Performed re-normalization to properly compare devices with different

dopings and structures

• Power-law slope of: 1.86 is best fit
• No difference between direct against indirect bandgap semiconductors

• Performed first-principles physics simulation to determine Ecrit for
various semiconductors
• Reasonable agreement with empirical data

• Future development of WBG Et UWBG materials is expected to change
some critical field values

• Not valid for high-electron mobility transistors (HEMTs) or lateral
devices!
• Electric field profiles are very different
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