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2 ‘ Empirical Fitting of Critical Electric Field on
Semiconductor Bandgap

» Empirical fits are used to predict capabilities of emerging power electronics
materials: Egie~E,
» Fits by Hudgins et al. in 2003 remain the standard

Direct Bandgap Materlal

10°

direct—gap . | indirect— —gap _
- =173 x 10°E;~ - B = 2.38 X 105E20
10"+ P . C(Diamond) .-
- . 10} “
- GaN SO
A105 L = SiC (3C) *
- . SiC (6H)
3 T Geas N oA
i ic i -
-% 10 = B % - ....’7"'
o InAs  » <% GaSb @ i S
E s 107 %
ol 5 | ce
-« Indirect Gap (Hudgins)
L Direct Gap (Hmns) 10‘ i ——— Oﬂglml (Sze & Gibbons)
10’ . InSb -~ Original (Sze & Gibbons) i
oty 5 105 N " PRSI ST VN SO 1 -
10:0" 10° 10' 10" 10° 10'
Bandgap Energy (eV) Bandgap Energy (eV)

Indirect Bandgap Matenal

10°

« Empirical fits to data from the literature (not existing theory)
* Not normalized to doping, device structure, temperature

« Subject to device quality

= Hudgins et al., IEEE Trans. on Pow. Elec., Vol. 18, No. 3 (2003)
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3 | Figures of Merit
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= Hudgins et al., IEEE Trans. on Pow. Elec. 18, 3 (2003)
= Tsao et al., Advanced Elec. Mat. 4, 1600501 (2018)
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* | Impact lonization

Impact ionization drives avalanche breakdown in a device

P
<

&o&— Electric Field

Charge carriers accelerated under
high electric fields lose energy and
ionizing more electron-hole pairs,
resulting in multiplication of
charge, leading to rapid increase in
current & avalanche breakdown

Carrier ionization rates are given by:

<Cf‘nO,pO P o3
Unp = Anopo " €XP | — <

Multiplication factor describes increase in current under impact ionization:
exp [f;CD (an(x) — a, (x)) dx]

T e[l () - e ]

Avalanche occurs when denominator approaches zero

@ENERGY NISA



5 | Critical Electric Field and Device Performance

The critical field is defined as the
maximum electric field that leads
to avalanche breakdown in a 1D

analytical model
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Gauss’ Law: Voltage:
€€crit = NpWp || Vgp = WpEerit/2

!
\ Voltage:

- v — Eggrit
. BD = 5 gN,

€]

| x=0

Specific on-resistance: R =
i OTSP| T qunNp

\ UFOM: VBZD =Eﬂnggrit

R on,sp 4

Unipolar Figure of Merit (UFOM)
Eqrit 15 obtained from Vg,
R,n sp 1s extracted from forward-
current slope

« Carrier mobility is often taken from
literature @ENERGY Ausa




* | Procedure for Renormalization of &€,,;; values

« UFOM assumes a given doping and field profile

 Valid comparison of critical electric field between devices requires two
major kinds of corrections:

* Doping:
» Critical electric field is doping-dependent
» Devices of different doping levels must be compared to an equivalent doping level

» Structure
» Electric fields in non-punch-through (NPT) and punch-through (PT) style devices are not directly comparable
» To equate, PT devices are transformed into an “equivalent” NPT device (integrated E-field curve is

constant)
Ew
= Non-punch-through Punch-through
g 4H-SiC | li—— -
% _._——"/’ "
) mE=
a |t 8
= i crit,NPT
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= B.J. Baliga, Fundamentals of Power Semiconductor Devices, 2™ Ed. (2018) e“ENERG“Y NYSE



’ | Correction for Doping

Analytical solution for renormalization requires two critical assumptions

so the impact ionization integrals in the multiplication factor equation
can be evaluated

1. Electron & hole ionization rates are equal: a, = a,

2. lonization rate follows a power-law form: a = ayE°
o with most-widely accepted : 6 =7

Thus correction for different doping profiles follows:

XD2

fxm a(x)dx = f a(x)dx =1
0

0

1/(6+1
gcritl _ (@) : )
NDZ

E crit2

= B.J. Baliga, Fundamentals of Power Semiconductor Devices, 2™ Ed. (2018) e“ENERGﬁY NYSE



" | Correction for NPT & PT Device Structure

Non-punch-through Punch-through

> X
Wier
Vep NPT = 20N~ qN, gczrit,NPT
qN qN qNp
E(x) = Ecrit NPT — TDx = TD(WNPT - x) E(x) = Ecrit,pT — ?xlx < Wpr

Equating the impact ionization integrals for different electric field profiles:

XNPT XpT 0 ECTit,PT_@WPT
j a(x)dx = f a(x)dx @ f
0 0 5

a(€)dE = j a(€)de
5+1
Ecrit NPT _ [ . (1 . qNppr Wpr ) ' ]

crit, NPT

1/(6+1)

gcrit,PT
E crit,PT € gcrit,PT
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° | Combined Corrections

Doping and device structure corrections for £_.,.;; combine into:

1/8
1_(1_

Reference:

Armstrong et al.

Allerman et al.
Ohta et al.
Hu et al.

Nishikawa et al.
Nishikawa et al.
Nishikawa et al.
Nishikawa et al.
Nishikawa et al.
Nishikawa et al.

gcrit,NPT . ND,NPT
gcrit,PT ND,PT
LAYER  (cm3) (um) (V)
MATERIAL

GaN 3x101° 30 3930

Al, 5Ga, /N 5x1016 4.3 1627
GaN 9x101> 22 4700
GaN 2.5x101° 8 1406
GaN 2x1016 0.225 52.375

Al ,0Ga, N 2x1016 0.225 83.75
Al 3,Gag (N 2x1016 0.225 91.125
Al 4Gag 54N 2x1016 0.225 112.5
Al 5,Gag 4N 2x1016 0.225 138.75
Al 5,Gag 43N 2x1016 0.225 181.5

A. M. Armstrong et al., Elec. Lett. 52, 1170 (2016)
A. A. Allerman et al., Elec. Lett. 52, 1319 (2016)

H. Ohta et al., IEEE Elec. Dev. Lett. 36, 1180 (2015)
Z. Hu et al., App. Phys. Lett. 107 (2015)
A. Nishikawa et al., Jap. Jour. of App. Phys. 46, 4B (2007)

gcrit,PT‘

2309
5.76
3.86
193
2.37
3.76
4.14
5.04
6.21
8.11

qNppr Wpr

8

€

& crit,PT

gcrit,NPT - WNPT
measured corrected extrapolated normalized to
(MV/cm) (MV/cm) (um)

2.09
5.76
3.86
1.88
1.98
3.00
3.23
3.90
4.69
5.94

40.10
6.26
24.64
25.46
5.68
8.16
8.72
10.26
1220
15.30

1/8

gcrit,N PT ~

Np=10° cm3
(MV/cm)
2.43
4.71
3.91
2.23
1.81
2.75
3.00
3.58
4.30
5.45
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L | Updated &€.i; vs. E, Values

Semiconductor Bandgapat Type  Sze Hudgins Wang Our

300 K (eV) research
B InSb 0.17 Direct - 1x103 1x103 a
InAs 0.354 Direct - 4x104 4x104 a
Ge 0.661 Indirect  2.5x10° 1x10° 1x10° 2.0x10°
GaSb 0.726 Direct - 5x104 5x104 b
; Ing.53Gag 47AS 0.74 Direct - : : 2.84x105
Well-established i 1.12 Indirect 4.37x105  3x10° 3x105 3.7x10°
InP 1.344 Direct - 5x10° 5x10° 5.0x10°
GaAs 1.424 Direct 4.98x10° 4x10° 6x10° 5.4x10°
_ GaP 2.26 Indirect  7.59x10° 1x100 1x10° b
B 3C-SiC 2.36 Indirect - 1.3x1096 1x106 c
: 6H-SiC 3.0 Indirect - 2.4x106 5x10¢6 2.9x106
W]debandgap 4H-SiC 3.23 Indirect - 3.18x10¢ - 3.2x106
L GaN 3.45 Direct - 3x10¢ 5x1086 3.9x106
Ultra- ALGa, N 3.45-6 Direct : : : d
Widebandgap B-Ga,0; 4.7 Direct - - 15x108 d
C (diamond) 5.5 Indirect - 5.7x106 21.5x106 10.1x106

2 tunneling cannot be decisively excluded as a contributing factor in carrier multiplication

b no reliable data in the literature was found

¢ insufficient device data to perform normalization

dno experimental data confirming temperature-dependent behavior indicative of true
avalanche breakdown

= S. M. Sze and G. Gibbons, App. Phys. Lett. 8, 111 (1966)
= Hudgins et al., IEEE Trans. on Pow. Elec. 18, No. 3 (2003) s .
= L.-M. Wang, 25t IEEE Int. Conf. on Microelec. (2006) @ENERGY NYSE



1 ‘Well—Established Semiconductors

* Impact ionization coefficients and &_,;; vs. doping is known for many of the well-

established semiconductors

« Compiled in Semiconductor Parameters Volumes 1 & 2 edited by Levinshtein,

Rumyantsev & Shur
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= M. Levinshtein, S. Rumyantsev, M. Shur, Semiconductor Paramaters Vol. 1 (1996)
= M. Levinshtein, S. Rumyantsev, M. Shur, Semiconductor Paramaters Vol. 2 (1999)
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12 |WBG Semiconductor: SiC

a, Impact lonization Data
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Critical electric field vs. doping

Critical Electric Field (V/cm)

5x 108

2x10° -

5x10°

2x10°

sovasl o b ow ovusssl )

® 8H-SIC data from simulation
O 4H-SiC data from simulation
using a, and b, values from Table |
B 6H-SiC data from literature 4]
8H-SiC data from literature [4]
1 4H-SIC data from literature [8]

™ Analytical solution .
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| WBG Semiconductor: GaN B

Breakdown vs. Temperature Data Best Device Reported in Literature
10-3 - Ti (30 nm)/Al (250 nm) p-_GaNfMg I o M
R | . . Pd (200 nm)/Ni (100 nm) ’ai =
Increasing Vg5 with : o
—
< 105 temperature z 107}
- M — avatanche breakdown 40( ] < om0
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= Q. Slobodyan et al., MRS. Comm. 8, 4 (2018)
= |, Kizilyalli et al., IEEE Trans. On Elec. Dev. 60, 10, (2013) - .
« Ohta et al., IEEE Elec. Dev. Lett. 36, 11, (2015) ©ENERGY AISE



i ‘ UWBG Semiconductors: $-Ga,O, & Al,Ga, \N

B-Ga,0, has predicted E.,;;~7 MV /cm

o & A N o
——

10+
12
-14
-16

_ ./HH
g
|

Current Density (mA/cm?)

-2000 -1500 -1000 -500
Voltage (V)

Eerit = 2.8 MV /cm

AIN has predicted &_,.;;~10 MV /cm and

GaN &.,+~3.9 MV /cm with AL, Ga,,N
alloys values falling in-between

i-Al Ga, N
X 1-x

[ ]
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46% 34%
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-GaN o
p g ol
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7 : < :
n-Al,Ga, N >
= -0.01} t
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, © $
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| Ti/Au o $
- [ J
)
Nrift [ayuar O -003¢} ;
VIt Llayer= -
225 nm 200

150  -100 -50 0
Reverse voltage (V)

%% = 1.81MV/cm

crit

E29N =275 MV /em

crit

E34% = 296 MV /cm

crit

EX6% = 358 MV /cm

crit

E32% = 430 MV /cm

crit

E3TH = 545 MV /em

crit

No current temperature dependence of breakdown voltage or ionization

coefficients support avalanche breakdown in 3-Ga,0; or Al ,Ga, N

= J. Yang et al., ECS Jour. of Sol. State Sci. and Tech. 8, 7 (2019)
= A. Nishikawa et al., Jap. Jour. of App. Phys. 46, 4B (2007)
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s |UWBG Semiconductor: C (diamond)

Breakdown vs. Temperature Data
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= M. Suzuki et al., Phys. Stat. Sol. A 210, 10 (2013)
= P.-N. Volpe et al., App. Phyl. Lett. 97, (2010)
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© | Fitting of Updated Critical Electric Field vs. |
Semiconductor Bandgap Values

@® Direct Bandgap
10’1 A Indirect Bandgap
—— 1.86 Power Fit
g
>
< 1064
i
[WN]
g 105
£
104 T
0.2 1.0 6.0
Bandgap (eV)
Semiconductor  Type  Bandgap (eV) Our research
Ge Indirect 0.661 2.0x10°
Ing 53Gag 47AS Direct 0.74 2.84x10°
Si Indirect 1.12 3.7x10°
InP Direct 1.344 5.0x10°%
GaAs Direct 1.424 5.4x10°
6H-SiC Indirect 3.0 2.9x106
4H-SiC Indirect 3.23 3.2x10°
GaN Direct 3.45 3.9x10°
C (diamond) Indirect 5.5 1.01x107

Critical Electric Field (V/cm)

® Direct Bandgap
1073 ——- Direct Bandgap Fit ‘/‘/
A Indirect Bandgap i
------- Indirect Bandgap Fit " el
Ak
106 ‘;~9.‘)';‘/
".)‘y’
S
A
[ pead
AT
1051 ,‘(“/‘"/,.f-._
104 .
0.2 1.0 6.0
Bandgap (eV)
Criticial Field Values Slope R2
All 1.86 0.980
Direct Bandgap 1.76 0.947
Indirect Bandgap 1.89 0.992
@ENERGY NS



17 ‘ Comparison of Updated Empirical Fit with

Historical Fits

® normalized data
-------- 0.75 Power Fit

R? = 0.631
— 1.86 Power Fit
R? = 0.980
- = 2.0 Power Fit
R% =0.974
—-—2.5 Power Fit
R? = 0.864
—=—3.0 Power Fit
R%=0.612
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» For normalized data, the proposed 1.86 fit is much better than most

historical fits to date

» This fit should more accurately predict material performance

capabilities
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© | Simulation: Ridley’s Lucky-electron

 To provide fundamental basis for &_,;;, developed a phenomenological model

for breakdown
lonization integral transformed from integral over space - integral over E-field

lonization rate as a function of field is inserted into integral

» Based on the fundamental avalanche model developed by B.K. Ridley
(“lucky-drift” model)

 Higher fidelity in high/low field regimes (compared to Shockley’s ”lucky electron” or

Chenowyth models)
* More tractable for calculation than Monte Carlo full band approximations

Ridley’s Lucky-Drift Model:
e—erz(l—C) _ g=2(1=5)

e (=) erleeco o )
— % —x(1-
al e "+ + Pr |e + T 2rx

X 1—2rx
Eth PT -2 —
— — P.=1—¢e rx(x—3)
x eEA ¢ 2rx?2 r x>3

Lucky-drift can be described by three variables:

o E, threshold energy required to initiate avalanche
r, ratio of energy between electron-phonon interaction and electron-electron momentum transfer

> A, mean free path of electron
Approach is to transform E,, r, and 4 into functions dependent on E,
©ENERGY ASa

= B.K. Ridley., Jour. of Phys. C - Sol. State. Phys. 16, 3373 (1983)



Determining E, dependence of Threshold
Energy and Phonon Collision loss for Ridley’s
Lucky Electron Model

Etn
« Energy hot carrier must possess to create an electron-hole pair

* Many assume ionization can be initiated by any electron with energy > E,
 Actual £ > 1.5E, as derived by Maes et al.

r
« Average energy loss per phonon collision to the threshold energy

feo h 1s the reduced Planck constant
r = ® 1s phonon angular frequency,
[2n(w) + 1]E, n() is the quantization number.

 Only Ey, is function of E,, so r reduces to

—1
rocEg

= W. Maes, K. de Meyer, R. van Overstraeten, Sol.-State. Elec. 33, 705 (1990) @ENERGY NYSE



» | Determining E, dependence of Mean-free-path
for Ridley’s Lucky Electron Model

A
* Mean free path length of a carrier before thermal relaxation

« Assume nonpolar optical phonon scattering - t is energy independent and
depends inversely on the effective mass (m*)

For a carrier at E¢y,
A=v, -1 with vg(E) = |2 and 7 &

1 1
1 2Ep, 1  Ep2 1 E,2
A —. |[—25s0: : .9
ez N AN X5 g
m*2 m*2 m*2 m®*2
A linear relationship between m” and E, can also be derived via Bloch Theory for a periodic potential

1
1 EzZ 1
AX— =g x—3
Ej2 Ej2 E,2

Use Si values for r, A to calculate proportionality constants:

Asi = 7.1 nmto 11.94 nm
rs; = 0.049 to 0.063

@ENERGY MNISH



2 | Parameters for Ridley’s Lucky Electron Model

Parameter
Threshold Energy, E,,

Ratio of average energy loss per
collision to the E,;, energy, r

Mean relaxation length, A

B.K. Ridley., Jour. of Phys. C - Sol. State. Phys. 16, 3373 (1983)

W. Maes, K. de Meyer, R. van Overstraeten, Sol.-State. Elec. 33, 705 (1990)
W. Maes, K. de Meyer, R. van Overstraeten, Sol.-State. Elec. 33, 705 (1990)
T. H. Ning, C. M. Osburn, and H. N. Yu, Jour. of App. Phys. 48, 286 (1977)

Value
1.5 E,
0.063
Eg

12x 1077

3/2
E;/

T. Simon, K. Ping-Keung, and H. Chenming, IEEE Trans. on Elec. Dev. 31, 1116 (1984)

J. W. Slotboom et al., 1987 Inter. Elec. Dev. Meeting (1987)
Y. Z. Chen and T. W. Tang, Jour. of App. Phys. 65, 4279 (1989)
F. M. Abou El-Ela and I. M. Hamada, Fizika A 13, 89 (2004)

Reference
Maes et al.

Ridley

Several

©@ENERGY MNISE



2 | Flow Diagram for Simulation of Ridley’s Lucky
Electron Model

Materials constants Calculate

Dielectric constant: e Threshold energy: E,, ) )

Bandgap: E, Mean free path: 2 Applied Voltage: V
Energy loss ratio: r

Device Parameters
Doping: N, 1
Calculate Maximum Electric Field: &,,,, =

!

Calculate “Lucky Drift” lonization rates: a,, & «,

!

Calculate Electron & hole multiplication coefficients M, & M,:

M €r€p fo (8) -Ereo fg ( (8’) (8’)) dgl] de 1
=— a - exp a —a —
b qNp Emax g -qND Emax "’ g

2€5€9V
qNp

Ereojo © _ETEOJO( (€ — a,(€M) d£’]d£ 1
= a *exp a - -
P qNp Emax " [qNp Jg NP "

YES 1 NO Iterate voltage:
Eerit = Emax Are either >1? | EEERp |V, =V, + AV
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» | Comparison of Empirical Fit and Simulation
Results

-
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® Indirect Bandgap
B Direct Bandgap
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3 4 56

Semiconductor Bandgap
] (eV)
InSb 0.17
InAs 0.354
Ge 0.661
GaSb 0.726
INg.53Gag 47AS 0.74
Si 1.12
InP 1.344
GaAs 1.424
E GaP 2.26
] 3C-SiC 2.36
6H-SiC 3.0
4H-SiC 3:23
GaN 3.45
B-Ga,0, 4.7
C (diamond) 5.5

Criticial Field Values
Empirical

Simulation

Our
research

2.0x10°

2.84x10°
3.7x10°
5.0x10°%
5.4x10°

2.9x109
3.2x106
3.9x106

1.01x107

Slope
1.86

1.67

Simulated

3.41x104
8.70x104
1.88x10°
2.20x10°
2.35x10°
4.83x10°
6.65x10°
7.36x10°
1.73x106
1.89x106
2.94x106
3.36x10°6
3.80x10°6
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4 | Conclusions & Precations

Updated critical electric field vs semiconductor bandgap values

« Performed re-normalization to properly compare devices with different
dopings and structures

» Power-law slope of: 1.86 is best fit
No difference between direct against indirect bandgap semiconductors

» Performed first-principles physics simulation to determine &_,;; for
various semiconductors

« Reasonable agreement with empirical data

» Future development of WBG & UWBG materials is expected to change
some critical field values

» Not valid for high-electron mobility transistors (HEMTs) or lateral
devices!

» Electric field profiles are very different
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