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Overview of III-V HI Capabilities at Sandia

Applications of III-V HI

• Application 1: Focal Plane Arrays from IR to x-rays

• Application 2: Concentrating Solar Cells

• Application 3: High-Speed Communication

Conclusion

•
‘011`"

4.1

1



Overview of III-V HI at Sandia



1 Compound Semiconductors and Heterogeneous Integration
4

Microfabrication

MESA SiFab: 11,900 ft2 Class I
MESA MicroFab: 14,230 ft2 Class 10/100

CINT NanoFab: 9,000 ft2 Class 100

III-v semiconductor growth
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Optical Sensing, Controls GaAs

& Communications,
Radhard HBT
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1
Heterogeneous integration: rationale

- SWAP-C: size, weight, and power; cost
performance: combine technologies, improve interconnect
diverse functionality: optical, RF, MEMS, analog, chem, bio
agility & turn time: prototyping and low-volume
trust: secure microsystems

}low volume,
high value

Approaches to integration
in-package

R&D die-to-die: micro bump, flip-chip, micro-optics, etc.

Production - wafer-level: interconnect bonding (3D DBI)
wafer-level: epitaxy bonding (dielectric interfaces)
monolithic integration



I HI capabilities overview
5

• In-house back-end processing:
• In bump deposition and reflow
• Solder ball jetting
• Metal plating
• Through-substrate vias

• Integration capabilities:
• Flip-chip bonding
• Wafer bonding

Copper Filled Through Wafe
Silicon Vias

Post-bond substrate removal
Automated dense wire bonding
3D printed enclosures and supports

(a)

Si fanout
GaAs detector

630 pm 70 µm

After flip-chip bonding Mechanically thinned

—11C 
(b) Chemically thinned to 5 gm

1 mm

cl :A ill

relEdIEW

_In _,............ _.....a.._ FsJ:„;a,

fli'' 1 . .
• =.

Post-bond thinning and processing Semi-automated flip-chip bonder



I HI capabilities overview
6

• Optical HI:
• Diamond turning for microlenses
• 3D printed optics

• Device testing:
• DC and pulsed optical and x-ray sources
• Extreme environmental and mechanical testing

Custom microlens array on
GaAs transceiver

3D printed micro-optic interconnects and lenses
3D printed fiber holder and

collimating lens
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Applications of III-V HI:
I: Focal plane arrays from IR to x-rays



I MWIR/LWIR focal plane imager

• nBn detectors for IR focal plane arrays

• Ill-v detector material for IR imaging

• Performance becoming competitive to MCT

• Potential to scale to large arrays

GaSb detector
epitaxy

hybridized nBn FPA
prototype

00 100um 0000 07/JAN/09

nBn array with
indium bumps

0

MWIR still frame,
160K

4- •

1 0 1 5 2 0

Position (Lim)

nBn band diagram

2 5

• In-house development of nBn detector technology includes

growth, fabrication, integration, and device/system testing

• Requires hybridization of large I MP) GaSb detectors to

CMOS ROICs



9 I Focal plane array integration

• ROIC hybridization after back-end fabrication & detector testing
• solder dam, underbump metallization
• indium solder bumps (electroplating or evaporation)
• singulation
• flip-chip bonding with in-situ reflow
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10

Focal plane array integration

• ROIC hybridization after back-end fabrication & detector testing
• solder dam, underbump metallization
• indium solder bumps (electroplating or evaporation)
• singulation
• flip-chip bonding with in-situ reflow

view • uring Ip-C lp •on• ing
semi-automated flip-chip bonder

Capabilities:

• +/- I micron xyz accuracy, excellent planarity
• 400x imaging, alignments at >450C
• thermocompression bonding up to 100 kg
• flip-chip, die attach, UV-curing, fiber alignment, replication
• "dry flux" vapor removes oxides to improve bonds

40

35

30

25

20

15

10

5

0
0

Chip / z01:0 control

-MOM-

1Illumination >
Beamsplitter ed

.95%

1
Si fanout

Substrate / xy0 con rol

YiiY
50 100 150 200

Chain length (# bumps)

Daisy chain test vehicle showing yield >99%
Average bump-to-bump resistance: 3.35 Q



1 Focal plane array integration

• Post flip-chip processes
• epoxy underfill
• backside grinding & polishing
• precision optical coatings
• packaging and testing

Full thickness hybridized chips FPA packaged for cryogenic testing

•

FPAs after thinning and AR coat MWIR imaging with nBn sensor



1 2 I Longwave IR FPA with nanoantennas

• Resonant nanoantennas to boost quantum efficiency
• Sub-wavelength metal antennas patterned on

illumination-side after bonding and thinning
• Resonant design allow reduced detector thickness

for lower dark current while maintaining QE>50%

0.6

cS 0.5

wE▪ 0.4

6 0.3

0.1

4 FPA pixels Nanoant

60K

Prnenging post-bond integrati
. Epoxy underfill
2. Substratc,
3. E-be,aticiit ogra

oantenna met toff

Packaged nanoantenna enabled FPA
Each quadrant has a different nanoantenna design for

peak performance at different wavelengths

7 9 11 13 15

Wavelength (p.m) D. Peters, et al. IEEE RAPID (2018).



1 Ultrafast x-ray imager (UXI) program
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Z-Machine National Ignition Facility Omega

• 2D, nanosecond gated imaging diagnostic for inertial confinement fusion research
• Fast frame-rate reduces motion blur and provide temporal information
• Cameras fielded in fusion facilities around the US
• Current cameras use Si detectors; improved sensitivity possible with III-V detectors

Gated image show
nanosecond evolution
of ICF physics

Integrated image



Ultrafast x-ray imager (UXI) program
14

Readout Integrated Circuit (ROIC)

♦
Icarus

• Fabricated in SNL's 6" 350nm CMOS
• I-2ns min shutter, 2-8 frames
• 1024x5I2 array of 25pm x 25pm pixels
• Adjustable shutter timing

Integration
Direct Bond Interconnect (DBI)

• Wafer-to-
wafer bond

• Die level
processing

Photons

.L.„„witimprip,

Roi

Package

Hybrid CMOS
Sensor

.8

.6

.5

.4

.3

2

.1

WU Camera System Development
for Application-Specific Needs

Detector Array
Bias metal

Detector

25 pm pixel pitch

■ ■

GaAs offers
simultaneous

improvement in
speed and absorption

20 pm G

00 pm Si

10 20 30 40 50

X-Ray Energy (keV)
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Applications of 111-v HI:
2: Concentrating solar cells



17 I Concentrating microphotovoltaics for reduced cost solar

• HI used to maximize usage of high-cost III-V epitaxial material
• Molded lenses and microfabricated reflector focus

incoming light onto high efficiency 111-V solar cell
• 111-V active area 100x smaller than cell area

• Diffuse light absorbed in Si substrate for improved
capture efficiency

• Collaborative effort between MIT and Sandia

KOH-etched Si reflector groove

41.•

1: 777:77.
r •

Molded PDMS lens array

O 0
:

111 Incoming light

PDMS Iens

glass

glass
— P

4- bac

lll-V cell array flip-chip bonded
to Si fanout and coverglass



18 I Concentrating microphotovoltaics for reduced cost solar

• Packaging and testing
• Custom Macor frames machined to hold lll-V/Si cell

assembly and lens arrays
• As proof-of-concept, manual alignment of lens array used

to demonstrate concentration of incident light (-30x)
• Assembly tested on calibrated solar measurement

system at MIT

Top plate (lens array)

Bottom plate (cell array)

Rotation stage

Fanout PCB and
ribbon cable

1.11

Translation s

;;-%

Alignment rod

Pyramometer

meter

Tilt stdP,e

D. Li, et al. Prog. Photovoltaics (20 18).



Applications of 111-v HI:
3: High-speed communication



20 I High-density photonic interconnects: overview

• Dense integration of photonics and CMOS for advanced interconnect technologies
• lll-V vertical-cavity surface-emitting lasers (VCSEL) and photodiodes (PDs) for high-

speed optics and Si CMOS for low-power computing
• Hybrid integration for very high density and low electrical parasitics
• Targets low energy (pJ/bit) and high density (Tbps/mm2) into a multi-core fiber (MCF)

• Development of circuits, photonics, optics and integration techniques
• Transmit/receive circuits in 32-nm and 45-nm CMOS
• Combines VCSEL and photodiode arrays, micro-optics, custom fiber

vCs E Ls

CMOS and PDs

IC

microlens
arrays

fiber
connector

MCF ribbon

package

in. 
package heatsink

Multichannel interconnect concept Packaged CMOS/VCSEL assembly



21 I High-density photonic interconnects: components and HI

• Development of high-density optoelectronics arrays
• Low-power VCSELs designed for high BW at low drive current
• Photodiodes >40Gb/s with very low capacitance through flip-chip integration

• Micro-optics designed for coupling to multicore fibers

•••• ••••
Illuminated circular

VCSEL array

-20

-25

CO' -30
-cs

< ▪ -35

en 40

-45

-50
0

T=25C

10 15
Frequency (GHz)

VCSEL performance

20

I I ps falltime
(BW limited by
40GHz test
hardware)

Photodiode performance Micro-optics and multicore fibers



22 I High-density photonic interconnects: components and HI

• lll-v processes combined into photonics fabrication
• AuSn bumps, l 00ktm substrate thinning,AR coating, scribe and break

• CMOS processed at die level: plated under-bump metal and bumps
• Flip-chip integration

VCSEL and PD arrays
on GaAs and InP

CMOS IC prior to flip-chip
50µm bump pitch

s. 20 ..1̀ '

CMOS IC with III-V
optoelectronics



23 1 High-density photonic interconnects: testing
• Hybridized parts packaged for high-speed opto-

electronic testing
• DC wirebonding, RF probing
• Active fiber alignment

• Single channel links demonstrated using 45-nm CMOS:
10+ Gbps at 1.7 pJ/bit

Lab-to-lab linlc
demonstration

Packaged CMOS/III-V photonics

1E 3

System link testing

1E-4 -

1E-5 -

X 1E-6 -
LLI
03

1E-7 -

1E-8 -

1E-9 -

1E-10 -

1E-11 -

1E-12

-12

•

•
A

A

• 
%A

‘-

5000, 12.5Gbps
4.4mW, 0.35pJ/bit

5000, 10Gbps
2.6mW, 0.26pJ/bit

8Gbps
2.4mW, 0.30pJlblt

180,6Gbps
1.2mW, 0.20pJ/bit

-10 -18 -6 -4 -2

Average Received Power (dBm)

0
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Conclusion
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• Heterogeneous integration of compound semiconductors with silicon electronics
enables new devices, improved performance, and compact form factors

I Conclusion

Heterogeneous integration: rationale
- SWAP-C: size, weight, and power; cost
- performance: combine technologies, improve interconnect
- diverse functionality: optical, RF, MEMS, analog, chem, bio
- agility & turn time: prototyping and low-volume
- trust: secure microsystems

low volume,
high value

Approaches to integration
R&D ▪ - die-to-die: micro bump, flip-chip, micro-optics, etc.

Production wafer-level: interconnect bonding (3D DBI)

Focal Plane Arrays
from IR to x-rays

Concentrating Solar Cells High-Speed Communication
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Other x-ray detector materials
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1 Diamond turning and lens molding
29

PDMS optics
eighth order aspheric curves

targeting >90% optical efficiency at lll-v

cast onto 300pm thick Schott AF32 glass

Aluminum mold fabrication
optical surfaces micro-machined &
diamond milled

lenses & glass edges aligned mechanically

trapping bubbles challenges mold filling

Assembled into machined Macor frame
bottom: optic array, facing inward

top: 3mm thicic Schott BK-7 cover glass,
provides protection

•


