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Compound Semiconductors and Heterogeneous Integration
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Heterogeneous integration: rationale
- SWAP-C: size, weight, and power; cost
- performance: combine technologies, improve interconnect
- diverse functionality: optical, RF, MEMS, analog, chem, bio low volume,
- agility & turn time: prototyping and low-volume high value
- trust: secure microsystems

Approaches to integration
- in-package
R&D ——p - die-to-die: micro bump, flip-chip, micro-optics, etc.
Production==» - wafer-level: interconnect bonding (3D DBI)
- wafer-level: epitaxy bonding (dielectric interfaces)
- monolithic integration



HI capabilities overview

* In-house back-end processing:
* In bump deposition and reflow
* Solder ball jetting
* Metal plating
* Through-substrate vias

* Integration capabilities:
* Flip-chip bonding
*  Wafer bonding
¢ Post-bond substrate removal
* Automated dense wire bonding
* 3D printed enclosures and supports
(@)
Si fanout 630 um

GaAs detector

70 um

After flip-chip bonding Mechanically thinned

~ Chemically thinned to 5 pm |5




HI capabilities overview

Optical HI:
* Diamond turning for microlenses
* 3D printed optics

Device testing:

* DC and pulsed optical and x-ray sources
* Extreme environmental and mechanical testing

3D printed micro-optic interconnects and lenses

Custom microlens array on
GaAs transceiver

3D printed fiber holder and
collimating lens
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Applications of llI-V HI:

|: Focal plane arrays from IR to x-rays




MWIR/LWIR focal plane imager

* nBn detectors for IR focal plane arrays
* [llI-V detector material for IR imaging
* Performance becoming competitive to MCT
* Potential to scale to large arrays
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In-house development of nBn detector technology includes
growth, fabrication, integration, and device/system testing

* Requires hybridization of large (<1MP) GaSb detectors to

CMOS ROICs



Focal plane array integration

ROIC hybridization after back-end fabrication & detector testing
e solder dam, underbump metallization
* indium solder bumps (electroplating or evaporation)
singulation
flip-chip bonding with in-situ reflow




Focal plane array integration

* ROIC hybridization after back-end fabrication & detector testing
e solder dam, underbump metallization
* indium solder bumps (electroplating or evaporation)
* singulation

* flip-chip bonding with in-situ reflow ~
Chip / z® control
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Beamsplitter 95%)
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view during flip-chip bondin _m_
semi-automagteapflip-cphip bonger 13
. 10+ Substrate / xy0 control
Capabilities:
¢ +/- | micron xyz accuracy, excellent planarity

* 400x imaging, alignments at >450C

0 50 100 150 200
* thermocompression bonding up to 100 kg Chain length (# bumps)
* flip-chip, die attach, UV-curing, fiber alignment, replication Daisy chain test vehicle showing yield >99%
¢ “dry flux” vapor removes oxides to improve bonds Average bump-to-bump resistance: 3.35 Q



Focal plane array integration

* Post flip-chip processes

A

epoxy underfill
backside grinding & polishing
precision optical coatings
packaging and testing

MWIR imaging with nBn sensor




Longwave IR FPA with nanoantennas |

* Resonant nanoantennas to boost quantum efficiency I
* Sub-wavelength metal antennas patterned on
illumination-side after bonding and thinning
* Resonant design allow reduced detector thickness
for lower dark current while maintaining QE>50%
Y
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Ultrafast x-ray imager (UXI) program |

1 1

-Machi

Omega

* 2D, nanosecond gated imaging diagnostic for inertial confinement fusion research
* Fast frame-rate reduces motion blur and provide temporal information
* Cameras fielded in fusion facilities around the US
* Current cameras use Si detectors; improved sensitivity possible with IlI-V detectors

Frame 1

Gated image show
nanosecond evolution
of ICF physics

Frame 2

Integrated image




Ultrafast x-ray imager (UXI) program

Detector Array

Bias metal
N\

| Hippogriff Icarus Daedalus

* Fabricated in SNLs 6” 350nm CMOS

* |-2ns min shutter, 2-8 frames

* 1024x512 array of 25um x 25um pixels
¢ Adjustable shutter timing

25 pum thickness

Hybrid CMOS
Sensor

-

Integration ot GaA:s offers
Direct Bond Interconnect (DBI) 8 simultaneous
| \[ \ improvement in
~ + Wafer-to- \ \ ;
i '\ speed and absorption
wafer bond © \ P P
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UXI Camera System Development
for Application-Specific Needs
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Applications of llI-V HI:

2: Concentrating solar cells




Concentrating microphotovoltaics for reduced cost solar |

lll Incoming light I

* HI used to maximize usage of high-cost lll-V epitaxial material
* Molded lenses and microfabricated reflector focus
incoming light onto high efficiency IlI-V solar cell
* |ll-V active area 100x smaller than cell area
 Diffuse light absorbed in Si substrate for improved
capture efficiency o
* Collaborative effort between MIT and Sandia glass — i Gap

PDMS lens

glass

A - PDMS
multijunction |ISTCIIITY
LV cell -

«— backing

,,,,,,,

o S irsgw g

e ks < rie
KOH-etched Si reflector groove Molded PDMS lens array [11-V cell array flip-chip bonded
to Si fanout and coverglass




Concentrating microphotovoltaics for reduced cost solar

* Packaging and testing
* Custom Macor frames machined to hold IlI-V/Si cell
assembly and lens arrays
* As proof-of-concept, manual alignment of lens array used
to demonstrate concentration of incident light (~30x)
* Assembly tested on calibrated solar measurement
system at MIT

Top plate (lens array)

A

Bottom plate (cell array) l
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D. L, et al. Prog. Photovoltaics (2018).
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Applications of llI-V HI:

3: High-speed communication
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High-density photonic interconnects: overview | [

Dense integration of photonics and CMOS for advanced interconnect technologies
* |ll-V vertical-cavity surface-emitting lasers (VCSEL) and photodiodes (PDs) for high-
speed optics and Si CMOS for low-power computing
* Hybrid integration for very high density and low electrical parasitics
« Targets low energy (p)/bit) and high density (Tbps/mm?) into a multi-core fiber (MCF)

Development of circuits, photonics, optics and integration techniques
* Transmit/receive circuits in 32-nm and 45-nm CMOS
* Combines VCSEL and photodiode arrays, micro-optics, custom fiber

VCSEL microlens U
S arrays y ’ MCF ribbon
CMOS and PDs

IC

package heatsink

Multichannel interconnect concept




High-density photonic interconnects: components and HI
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Development of high-density optoelectronics arrays

* Low-power VCSELs designed for high BW at low drive current
* Photodiodes >40Gb/s with very low capacitance through flip-chip integration

Micro-optics designed for coupling to multicore fibers

llluminated circular
VCSEL array

Frequency (GHz)

VCSEL performance

| I ps falltime
(BWV limited by
40GHz test

hardware)

Photodiode performance
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Micro-optics and multicore fibers




High-density photonic interconnects: components and HI
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* |ll-V processes combined into photonics fabrication

* AuSn bumps, 100pm substrate thinning, AR coating, scribe and break
* CMOS processed at die level: plated under-bump metal and bumps
* Flip-chip integration

VCSEL and PD arrays CMOS IC prior to flip-chip CMOS IC with llI-V
on GaAs and InP S0um bump pitch optoelectronics




High-density photonic interconnects: testing
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* Hybridized parts packaged for high-speed opto-
electronic testing
* DC wirebonding, RF probing
* Active fiber alignment
* Single channel links demonstrated using 45-nm CMOS:
|0+ Gbps at |.7 p)/bit

1E-3

Packaged CMOS/III-V photonics

System link testing
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Conclusion
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Conclusion

Heterogeneous integration of compound semiconductors with silicon electronics
enables new devices, improved performance,and compact form factors

Heterogeneous integration: rationale

SWAP-C: size, weight, and power; cost

performance: combine technologies, improve interconnect

diverse functionality: optical, RF, MEMS, analog, chem, bio low volume,
agility & turn time: prototyping and low-volume high value
trust: secure microsystems

Approaches to integration
R&D ——p - die-to-die: micro bump, flip-chip, micro-optics, etc.
Production—p — wafer-level: interconnect bonding (3D DBI)

Focal Plane Arrays Concentrating Solar Cells High-Speed Communication
from IR to x-rays
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Other x-ray detector materials
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Material Notes
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Diamond turning and lens molding
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W/ 7 \ optic mold

*“PDMS optics ‘ ey s
= eighth order aspheric curves i ' ILL |
= targeting >90% optical efficiency at Ill-V ]
= cast onto 300um thick Schott AF32 glass | e —

turning
Al mold

= Aluminum mold fabrication
molded 9x1 |

= optical surfaces micro-machined & ’ W obtics array
diamond milled Z '

" lenses & glass edges aligned mechanically
= trapping bubbles challenges mold filling

=Assembled into machined Macor frame
* bottom: optic array, facing inward // />

" top: 3mm thick Schott BK-7 cover glass, //
provides protection

,z
\ n&olded ‘
mn{dle Iéns
. JAsurface, v 7.t/ optics
\ [#4amSy ™ £ ; mounted in a
N ) Macor frame



