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2 I Hypothesis

Grating-based XPCI systems can be tuned to, and
operated at high-sensitivity to achieve high-contrast
images. To do this requires quality system components
and control of the acquisition environment.



3 1 Outline

1. Overview of XPCI
a. Talbot-Lau Cone-Beam XPCI System Design

b.  Operating XPCI System at High Sensitivity
c. Signal Model

2. Thermal Expansion of Gratings SNL large-area Talbot-Lau interferometer gratings
a. Sources of Heat
b. Effect of Thermal Expansion on Signal Parameters

c. Mitigation of Thermal Expansion

3. Questions

SNL Talbot-Lau XPCI System




Overview of XPCI




5 | Talbot-Lau Cone-Beam XPCI System Design

1. A Talbot-Lau XPCI system!? has three gratings: G,, G, and G,

2. A High-sensitivity XPCI system has:
*  Matched set of gratings
* Ideal L. and 4 distances
* Low fringe count

*  High Fringe Contrast/Visibility

3. Signal model for reference and sample data:>-

fM(x) = Ay Sin(wa(n) + qu) ~+ bM, where w = an

D2

Subscript M represents reference (R) and sample (S)

Video: Detector, no heat shield.

Time (hours): 0.000 «10*
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Thermal Expansion of Gratings




7 I Temperature

1.  Room temperature and heat from system
electronics, such as the X-ray source and
detector, can cause thermal expansion of
the gratings

2. Thermal expansion changes the period
and duty cycle of the gratings

I D e



8 | Thermal Expansion of Gratings Effects the Moiré Frequency

1. The Moiré spatial frequency from a cone-beam
XPCI system is related to the grating periods by,

f _ DoP1—2DoP2+D1D2 Moiré Frequency Shift vs. Grating Period
MDie p1p2(Po+p2) Expansion
. . . h h . . d —— GO0 Period Expansion —— G1 Period Expansion = - G2 Period Expansion
2. Derivatives with respect to the grating periods are, .
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3. Thus, expansion of py decreases the Moiré i,
frequency while expansion of p; increases it. D005
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4. Expansion of p, is more complicated:

Grating Period Expansion (microns)

anoire

“on, <0 if py(po +p2)* > 2pop3




9 | Thermal Measurements Without Heat Shield

The source, G, room, and table are at thermal equilibrium before the detector is powered on. Powering the
detector causes G, and G, to increase in temperature and also causes a slight temperature increase of G,
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Thermal Measurements With Heat Shield

The source, G, room, and table are at thermal equilibrium before the detector is powered on. Powering the
detector with the heat shield in place only causes a slight increase in the temperature of G, and G,.
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1 | Moiré Frequency: Without Heat Shield

The interplay between grating expansions is complicated, but does affect the Moiré spatial frequency.
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2 I Moiré Frequency: With Heat Shield

With the heat shields, the Moiré frequency settles close to one, which is where it should be.
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13 | Moiré Phase: Without Heat Shield

The phase (normalized to start at zero) of the Moiré pattern shifts with the thermal expansion of the gratings.
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14 | Moiré Phase: With Heat Shield

The phase stabilizes with the heat shield in place.
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15 I Moiré Amplitude: Without Heat Shield

The amplitude of the Moiré pattern stabilizes, but has variability about the operating point.
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16

Moiré Amplitude: With Heat Shield

With the heat shield, the amplitude stabilizes and has less variability about the operating point.
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Moiré Bias: Without Heat Shield

17

The bias without the heat shields...

x 104
Gaa | | | |

354 —
3.45
=)
3.4

3.35

3.3

255
25

24.5 hm

Degrees °C

| | | | |
0 1 2 3 4 5 6

Time (hours)




18 1 Moiré Bias: With Heat Shield

The bias 1s relatively unaffected by thermal expansion of the gratings.
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19 I Summary
* The signal model parameters most effected by thermal expansion of the gratings are the
frequency and phase.

* The bias signal model parameter, which does not directly depend on the gratings, is the
effected the least by thermal expansion

* Ideally the system should be thermally stable.

* Thermal changes will introduce changes in the system performance (i.e. change the
fringe patterns).

* The XPCI system should be designed to minimize the influence of thermal sources.
* Component temperature monitoring may facilitate software corrections.

* Future work will explore the effect of variations in the x-ray source.




(Questions?
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