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Max pit size predictive analyses have modeled limiting pit
depth in long-time exposures
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Nanoscale salt aerosols deposit on sheltered storage sites,
form corrosive brine — pitting risk

Electrolyte film/droplets
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40% 10.45 0.18 5.33

76% 5.65 4.85 0.54

High chloride concentration in electrolyte leads to pitting risk
RH variation — electrolyte chemistry changes, impacts pitting kinetics



How does atmospheric environment affect pitting and SCC?

Key questions:
 How does RH affect:
« pit density? corrosion damage? pit morphology?

« What implications do these results have on limiting pit
size?

« What features are likely to cause crack initiation?

Approach:

* Print sea salt on coupons, expose for different times
to 40% and 76% RH

« Characterize using EBSD, optical profilometry, FIB-
SEM

« Rationalize RH effect on pitting kinetics and
morphology




Near-surface local deformation from grinding results in cross-
hatched pattern of slip bands
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Weirich et al. JECS (2019).



Pit distribution uniform, localized to droplet at low RH
Droplet spreading, pit clustering at high RH

76%RH
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Pit density approaches limiting values at long times
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Corrosion damage approaches limiting values at long times

Pit volume loss (um°)
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Cumulative Probability

Low RH damage plateaus 52 weeks onwards, high RH 26

weeks onwards
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RH distinctly affects pit morphology across all exposure times

1 week 4 weeks 52 weeks 78 weeks

racks
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Low RH — cross-hatched morpholog
emanating from pits
High RH — faceted ellipsoids
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RH affects physicochemical properties that influence pitting
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Discrete droplets at low RH, 2° spreading at high RH
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Pitting Potential Enp , VSCE T

Higher [CI7] at low RH facilitates pit initiation
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Selective attack at low RH resembles deformation slip band pattern

Deformation from grinding may be responsible for morphology
at low RH, suscepitibility to cracking

Weirich et al. JECS (2019).



Growth near E,, at low RH — cross-hatched morphology
Higher surface concentrations at high RH — faceted ellipsoidal growth

Low RH: Growth close to repassivation limits area for dissolution — fixed
active area
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High RH: Growth at potentials between critical stability and
saturation with increasing active area
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Key takeaway points from current work

Low RH leads to more corrosion damage, higher pit density
« No 20 spreading, discrete droplets
Pit density and corrosion damage appear to plateau at long
times
Pit morphology at low RH may be influenced by surface
preparation
Cracks observed near pits at 40% RH exposure
Pits at high RH smooth, ellipsoidal - high-rate dissolution, low

RH growth near E - selective attack



Currently open questions and future work

* FIB and/or microCT analysis of larger pits to determine:
 Are pit shape characteristics well-described by optical
profilometry when highly fissured?
 How deep does micro-pitting penetrate into the surface?
« Hemisphericity assessment of pits and comparison to
maximum pit size model
« SCC testing to observe crack initiation from pits based on

RH-dependent morphology
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User 1 User 2

Margin
17 18 19 20 21 22 23 24
E;ampled area 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8
3 equally-spaced areas 12 mm x 12 mm 24 equally-spaced area of 5 mm
sampled, margin of at least 5 mm away 5 mm sampled, labeled 1-24,

from the edge margin of 5 mm from the edge




Fissures/cracks observed only in 40% RH exposures

Images from 52 week exposures
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Weirich et al. JECS (2019).



Deformation substructure may contribute to susceptible morphology

Deformation from grinding may
create susceptible microstructure

bm FIB-SEM of small pits show long
cracks

101

SCC initiator?

Weirich et al. JECS (2019).



Susceptible morphology does not match ferrite distribution

Grain structure map  Phase distribution map -
red indicates
ferrite/martensite
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Surface coverage affects cathode availability

Cathodic resource competition at high RH
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Possibility of SCC via HEAC at low RH?
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Strain-induced martensite at near-surface layers?



Determining SCC risk of susceptible morphology

« Atmospheric exposure of salt applied on specimen gage length
with induced artificial pit

« Loading sequence - constant (6h), intermediate cyclic (20 min, R
=0,7,f=0.01,0.1, 1 Hz)

* No Failure or visible crack after 44 days — sample pulled to
failure

Original Pit

Smooth artificial pits
Insufficiently high load?

No wicking of electrolyte
into initiator?



A change in pit density and pit distribution observed between the two

Pit Density (Pit/cm?)

humidity values

Higher pit densities observed at
40%RH.

Uniformity of pitting across the
surface also observed on the
40%RH surface.
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Source: www.nrc.gov



