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Max pit size predictive analyses have modeled limiting pit
depth in long-time exposures
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Nanoscale salt aerosols deposit on sheltered storage sites,
form corrosive brine pitting risk

,,Sea salt particles

SS 304

Electrolyte film/droplets

/

RH [Cr]
(mol•kg-1)

[Nal
(mol•kg-1)

[Ml
(morkg-1)

40%

76%

10.45

5.65

0.18

4.85

5.33

0.54

High chloride concentration in electrolyte leads to pitting risk
RH variation —> electrolyte chemistry changes, impacts pitting kinetics



How does atmospheric environment affect pitting and SCC?

Key questions: 

• How does RH affect:

• pit density? corrosion damage? pit morphology?

• What implications do these results have on limiting pit
size2

• What features are likely to cause crack initiation?

Approach: 

• Print sea salt on coupons, expose for different times
to 40% and 76% RH

• Characterize using EBSD, optical profilometry, FIB-
SEM

• Rationalize RH effect on pitting kinetics and
morphology



Near-surface local deformation from grinding results in cross-
hatched pattern of slip bands

Grinding D irection

4460:

100 

101 , 

2.5°

Deformation slip bands form

cross-hatch pattern 

Non-indexable near-surface
nanocrystalline layer

Weirich et al. JECS (2019).



Pit distribution uniform, localized to droplet at low RH
Droplet spreading, pit clustering at high RH

40%RH

Minimal
spreading

Salt loading density = 300 µg/cm2
T = 35 °C
Ground surface
t = 1 year

76%RH

Translucent
films, salt
redistribution

40%RH 76%RH

-11 c n-1 

Uniform pit
distribution

*
Z:

Pit clustering
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Pit density approaches limiting values at long times
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Corrosion damage approaches limiting values at long times
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Low RH damage plateaus 52 weeks onwards, high RH 26
weeks onwards
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RH distinctly affects pit morphology across all exposure times

40%
RH

76%
RH

1 week 4 weeks 52 weeks 78 weeks
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30 pm

Low RH —> cross-hatched morphology, cracks 
emanating from pits 
High RH —> faceted ellipsoids 



RH affects physicochemical properties that influence pitting

RH
[Cl-]

(mol-kg-1)

[Nal

(mol-kg-1)

[1\421

(mol-kg-1)

[02]
(mol-kg-1) (cP)

K

(111S'Cr11-1) (kg-m-3)
D02

(m2.s-1) VRH / V76

40% 10.45 0.18 5.33 2.7 x 10-5 8.31 125 1330 9.7 x 10-11 .052

76% 5.65 4.85 0.54 5.1 x 10-5 1.65 273 1200 4.9 x 10-1° 1

NaCI solid

76%RH 40%RH

DRY

(

Mg-CI brine

RH - [Cllt,
V 1, K 1 D 1, [02]1

NaCI precipitates as RH decreases



Discrete droplets at low RH, 2° spreading at high RH

NaCI solid

h..1g-C1 brine

CO,
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Fe2+ OH
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Schindelholz et al. JECS (2014).

RH
[C11

(mol•kg-1)

[Nal

(mol•kg-1)

[1\421

(mol•kg-1) VRH / V76

40% 10.45 0.18 5.33 .052

76% 5.65 4.85 0.54 1

Mg(OH)2 ppt

Low RH —> low
V, high [Mg21,
no spreading

Higher V at high
RH —> drop
coalescence,
supported by 2°
spreading



Higher [01-] at low RH facilitates pit initiation
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Selective attack at low RH resembles deformation slip band pattern
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Deformation from grinding may be responsible for morphology
at low RH, susceptibility to cracking

Weirich et al. JECS (2019).



Growth near Erp at low RH —> cross-hatched morphology
Higher surface concentrations at high RH —> faceted ellipsoidal growth

Low RH: Growth close to repassivation limits area for dissolution —> fixed
active area

Dissolution at critical
conditions

Increase in active area
leads to lower i

Repassivation from edges
reduces area, increases i,
return to critical conditions

High RH: Growth at potentials between critical stability and
saturation with increasing active area

High-rate anodic
dissolution

Increase in active area
leads to lower i

Lower i still sufficient to
maintain high-rate

dissolution



Key takeaway points from current work

• Low RH leads to more corrosion damage, higher pit density

• No 2° spreading, discrete droplets

• Pit density and corrosion damage appear to plateau at long

times

• Pit morphology at low RH may be influenced by surface

preparation

• Cracks observed near pits at 40% RH exposure

• Pits at high RH smooth, ellipsoidal - high-rate dissolution, low

RH growth near Erp - selective attack



Currently open questions and future work

• FIB and/or microCT analysis of larger pits to determine:

• Are pit shape characteristics well-described by optical

profilometry when highly fissured?

• How deep does micro-pitting penetrate into the surface?

• Hemisphericity assessment of pits and comparison to

maximum pit size model

• SCC testing to observe crack initiation from pits based on

RH-dependent morphology
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User 1

Margin

Sampled area

3 equally-spaced areas 12 mm x 12 mm
sampled, margin of at least 5 mm away
from the edge

User 2

17 18 19 20 21 22 23 24

9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

24 equally-spaced area of 5 mm x
5 mm sampled, labeled 1-24,
margin of 5 mm from the edge



Fissures/cracks observed only in 40% RH exposures

Images from 52 week exposures

Weirich et al. JECS (2019).



Deformation substructure may contribute to susceptible morphology
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Deformation from grinding may
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FIB-SEM of small pits show long
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SCC initiator?

Weirich et al. JECS (2019).



Susceptible morphology does not match ferrite distribution

Grain structure map Phase distribution map -
red indicates
ferrite/martensite
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Surface coverage affects cathode availability
Cathodic resource competition at high RH
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Possibility of SCC via HEAC at low RH?

Stress
concentration

Weirich et al. JECS (2019).
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Strain-induced martensite at near-surface layers?



Determining SCC risk of susceptible morphology

• Atmospheric exposure of salt applied on specimen gage length
with induced artificial pit

• Loading sequence - constant (6h), intermediate cyclic (20 min, R
= 0,7, f = 0.01, 0.1, 1 Hz)

• No Failure or visible crack after 44 days — sample pulled to
failure

..
Fracture Surface

'01:747 '

if.

- •
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Smooth artificial pits
Insufficiently high load?
No wicking of electrolyte
into initiator?



A change in pit density and pit distribution observed between the two
humidity values
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• Higher pit densities observed at
40%RH.

• Uniformity of pitting across the
surface also observed on the
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Source: www.nrc.gov


