This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019- 12405C

Implementing a Common HPC Environment in a Multi-User
Spack Instance

Carson Woods Matthew L. Curry Anthony Skjellum
vzI837@mocs.utc.edu mlcurry@sandia.gov Tony-Skjellum@utc.edu
SimCenter Sandia National Laboratories SimCenter
University of Tennessee at Albuquerque, New Mexico University of Tennessee at
Chattanooga Chattanooga

Chattanooga, Tennessee

ABSTRACT

High performance computing is highly dependent on vali-
dated, tested environments that are tuned for specific hard-
ware to yield good performance. Spack enables users to con-
struct their own software stacks, but does not provide the
benefits of a centrally curated environment. We implemented
new features in Spack to support co-existing, system-wide
deployments and user Spack environments, as well as a Spack-
enabled global environment with these. This improved the
global environment’s portability and the efficiency of Spack
use on a production system.

CCS CONCEPTS

« Software and its engineering — Runtime environments;
Software configuration management and version control systems;
Software creation and management.

KEYWORDS

Spack, high performance computing, environments, package man-
agement, programming

ACM Reference Format:

Carson Woods, Matthew L. Curry, and Anthony Skjellum. 2019. Imple-
menting a Common HPC Environment in a Multi-User Spack Instance. In
Proceedings of HPCSYSPROS19. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Computing environments are critically important to high perfor-
mance computing (HPC). Often, individual packages are tuned for
performance for specific architectures. Centrally curated software
environments have both advantages and disadvantages. They are
useful because they provide a common set of validated software
that users can leverage. But, they are also cumbersome because of
their static, minimal coverage of potential software dependencies. A

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HPCSYSPROS19, November 22, 2019, Denver, CO

© 2019 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Chattanooga, Tennessee

more flexible approach that allows users to build their own software
stacks according to their individual needs is desired.

Spack is a package manager for HPC software [1]. Unlike other
package managers, Spack installs each package from source by
default and offers users complete control over how packages are
installed with optional configuration flags and package variants.
It also has the ability to create highly portable software stack def-
initions that can be easily modified or distributed. Spack easily
solves the problem of customizable, per-user software environ-
ments; however, it does not provide any of the benefits of a central,
curated environment (i.e., verification, security reviews, compat-
ibility checks, etc.). Spack also has the challenge that CPU time,
disk space, and user effort is duplicated among many users for
commonly needed software.

In this work, we demonstrate a multi-level Spack extension that
allows a system to provide multiple Spack instances working in
concert across multiple privilege levels. In effect, this allows an
administrator to create a system-wide Spack installation with cu-
rated packages for users, while allowing users to create dependent
Spack installations that can leverage the system-level packages.
This feature allows for the best of both worlds—A centrally cu-
rated software stack that works seamlessly with a user’s own Spack
instance, allowing the user access to high quality software configu-
rations without the inefficiency of duplicating an environment.

In the following, first we describe the Advanced Tri-Lab Software
environment including what it contains and the background for its
development. Then, we describe Spack’s feature set and its short-
comings as well as common alternatives to Spack. Third, we cover
how we implemented multi-user functionality in Spack, as well
as detailing how to use it in example scenarios. We describe how
we implemented the ATSE environment in Spack and measured its
impact on time and disk space saved by comparing installations
of Trilinos with and without ATSE installed. Then we discuss the
challenges faced when building these features and running this test.
Finally, we draw conclusions about our work and discuss possible
future contributions to the Spack project to improve on what we
have achieved thus far.

2 BACKGROUND

We consider background areas that motivate and enable this work:
Advanced Tri-Lab Software Environment, Spack itself, Spack envi-
ronments, and, finally, related work.

Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

HPCSYSPROS19, November 22, 2019, Denver, CO

2.1 Advanced Tri-Lab Software Environment

The Advanced Tri-Lab Software Environment (ATSE) is a scientific
computing environment being developed as a part of the Vanguard
program at Sandia National Laboratories. The Vanguard program is
intended to “[expand] the high-performance computing ecosystem
by evaluating and accelerating the development of emerging tech-
nologies in order to increase their viability for future large-scale
production platforms” [3]. As a part of this program, ATSE was
developed to provide a portable computing environment. Astra, a
large Arm-based system at Sandia, was used as a proving ground
for the environment.

ATSE was designed to be a complete software and runtime envi-
ronment that could be used irrespective of the underlying operating
system. One of its deployment targets is the Tri-Lab Operating Sys-
tem Stack (TOSS), a Red Hat Enterprise Linux derivative [4]. While
TOSS offers some of the packages that are included in ATSE, dif-
ferent versions were installed so that users would be able to rely
completely on the ATSE environment [6]. Figure 1 shows how ATSE
and the underlying operating system interact. Currently ATSE con-
sists of a variety of compilers, parallel processing libraries, virtual
machines, containers, etc. [5]. ATSE contains no system-specific
programs or packages and is subsequently not dependent on TOSS
or any other specific operating system. Because ATSE is completely
separate from the underlying operating system—which may have
restrictive licensing or distribution limits—it becomes possible to
share ATSE with researchers in external organizations.

Figure 1: ATSE provides a common environment over a vari-
ety of operating systems.

NNSA/ASC Application Portfolio

ATSE Programming Environment “Product” for Vanguard

User-facing

Programming Env | Platform-optimized builds, common-look-and-feel across platforms

Native Virtual
Installs Machines
2 !

ATSE Packaging

Cluster
Middleware
e.g. Lustre,

SLURM

Vendor OS

Base OS

Layer " ard Hardware

| Limited Distribution | Closed Source Integrator Provided ATSE Activity

On Astra, the ATSE environment has been implemented with an
infrastructure based on the Open Build Service [8], which generates
RPMs from SPEC files defining the configurations for each package.
These RPMs are installed via Yum, a package manager distributed
with Red Hat Enterprise, CentOS, and SUSE distributions of Linux.
These customized SPEC files contain the specific tuning necessary
for each package to achieve good performance. While the RPM-
based strategy has been effective, Spack promises to improve cross-
OS portability and external distribution of configurations.

Carson Woods, Matthew L. Curry, and Anthony Skjellum

2.2 Spack

An alternative to an RPM-based environment is Spack, an open
source package manager for high performance computing main-
tained by Lawrence Livermore National Laboratory [1]. Spack is a
source-based package manager, which gives it some key advantages
for HPC users. For instance, users have fine-grain control over the
configuration (or spec) for each package before it is installed, al-
lowing for deep optimization of each package. Spack also allows
for installing multiple versions and/or configurations of a package
concurrently on a Spack instance, which can be problematic for
software distributed as RPMs.

Note that, when discussing Spack in this paper, an “installation”
refers to the Spack program files (e.g., the Spack script that a user
invokes). In contrast, a Spack “instance” refers to a set of installed
packages and configuration. For typical Spack use, a Spack instance
exists in a user’s . spack directory and can be referenced by any
Spack installation.

2.3 Spack Environments

Spack includes support for a feature called environments. Spack
environments are highly portable configuration files that can be
used to define a set of packages that adhere to certain specifications
on any machine. It only takes a single YAML or JSON file to define
a complete environment and can be shared and installed on any
instance of Spack. This feature allows users to create software stacks
that are highly portable while still maintaining a high amount of
specificity. This is a departure from traditional HPC environment
implementations.

Using Spack environments, a user can define an environment to
contain certain packages with various compilers and configuration
options in a lock file. This file can be shared with anyone and is
used by another instance of Spack to recreate the environment.
An environment created from a lock file will be guaranteed to
be identical to the original environment used to create it. Spack’s
lock files are extremely brittle so slight manual changes are prone
to break the environment. Additionally, this configuration file is
generated by Spack and it is subsequently not easily readable.

Because of this, Spack supports a human readable and easily
modifiable format, spack. yaml files. These files are relatively more
loose definitions of a software stack and are more likely to work
across different systems and system architectures. The spack.yaml
files also allow a user to define extra parameters such as upstreams,
mirrors, repos, compilers, etc. in addition to the specifications of
the packages that need to be installed.

Together, these configuration files form a complete Spack envi-
ronment; and, the full environment can be generated from either
file. The spack. lock file has a purpose beyond simply defining an
environment. It defines the concretized! specification for how every
package will install and how the dependencies for each package
will be related to other packages. In addition to having a high level
of portability, multiple Spack environments can exist simultane-
ously. This allows a user to activate the given environment that they

!Spack’s concretizer determines how packages depend on each other and determines
compatibility. When an environment or package specification is determined to be valid
it is considered “concretized.”

Implementing a Common HPC Environment in a Multi-User Spack Instance

want to use, rather than locking them into a single environment’s
configuration.

While there are some limitations to this process, this process
makes it much easier to share and collaborate when environments
can be easily shared and modified. The primary limitation on the
portability of Spack environments arises because there might need
to be changes made to the environment when shared based on
hardware limitations. Generally speaking, it is a straightforward
solution to the problem of environment portability. Making mod-
ifications to an environment is expected when moving between
systems. Modifying SPEC files is time consuming and requires users
learning how packages in the shared environment interact together.
By using Spack environments instead, this barrier can be circum-
vented. Providing a single file that is easily readable makes it much
easier to understand the layout of the environment. Additionally, if
changes need to be made to individual packages, then a user only
has to append the desired configuration to the end of a package and
the Spack concretizer will ensure that the dependencies support
that configuration automatically.

2.4 Related Work

EasyBuild [2] offers similar functionality to Spack inasmuch as
it allows for automatic dependency resolution and the potential
for single command package installs. However, it differs in a few
key ways. EasyBuild allows for more flexibility when configuring
packages, because any configuration flag can be passed directly to
the installation via the command line. Spack, by comparison, only
supports configuration options that are in the package. py file for
a given package. Because it was designed to be highly readable,
Spack’s configuration flags and environment files are often more
user friendly and quicker to understand than EasyBuild’s coun-
terparts. However, for certain packages, some options may not be
available without modifying the package file.

ATSE’s RPM-based infrastructure is derived from that of Open-
HPC. OpenHPC is a collection of packages that site system ad-
ministrators can install on Red Hat Enterprise Linux, CentOS, or
OpenSUSE to create HPC systems [7]. OpenHPC integrates with
existing package managers such as Yum to add repositories with
the packages a user might want to use. OpenHPC’s RPM-based
distribution limits the configuration options for each package, since
optimizations cannot be included after the RPMs are built. This can
prevent machine-specific optimizations from being used, limiting
available performance.

3 IMPLEMENTATION

When starting this project, Spack did not have significant multi-
user support. Without multi-user support, each user would have
to be provided the same spack. yaml file that contains the specifi-
cations for the environment and for each change or revision, new
spack.yaml files would have to be issued to users. Additionally
with every revision, a user would have to rebuild their environment,
wasting both time, CPU cycles, and disk space. This requires more
user involvement than traditional implementations and could lead
to misconfigured environments if an install failed. Because of this
it was important for us to implement a shared mode for Spack so
that multiple users can have access to the same environment.

HPCSYSPROS19, November 22, 2019, Denver, CO

Spack initially was designed with a single user in mind and so
had limited support for multiple users. The closest pre-existing
feature to a multi-user mode was the ability to chain instances of
Spack together. This allowed packages and environments in one
instance of Spack to be made visible in a second instance of Spack
that was pointed at the $spack/opt/spack directory? of the first
instance. Unfortunately, this feature had some drawbacks that made
it an incomplete solution for what we needed for our work. If the
upstream instance of Spack was in a location with restricted write
permissions, there was no way to deal with permission disparities
between users when installing, uninstalling, and accessing packages.
Additionally, because of how Spack handled its internal database
of installed packages, it could not differentiate between upstream
packages and those in the user’s instance of Spack. Because of this,
if a package was located upstream in a user-writable directory,
Spack would be able to uninstall it as though it were installed
locally. Because of these limitations, we expanded Spack’s upstream
capabilities so that multiple users could use the same instance of
Spack without deviating from the fundamental way that Spack
operated.

With the advent of shared mode, there are now two locations
that can be used to install software: The default location, and the
upstream location. The default install location is $HOME/ . spack,
which is unique for each user. The upstream location is within
$spack/, which is determined by the location of the Spack instance.
For example, if a shared instance of Spack is installed at /opt/spack,
the upstream location is located within that directory as well, and
can be made read-only to all non-upstream owners.

Spack’s shared mode is an extension of the upstream feature.
By including a globally accessible upstream, every user of a Spack
instance has access to globally installed packages. Spack previously
lacked a straightforward way to install or uninstall packages from
upstream Spack instances. We added support for installing and
uninstalling from the global upstream by running Spack’s install
command with either -g or ——global. This tells Spack to target the
global upstream rather than the user specific install location. The
same process is used from uninstalling from the global upstream.
Running spack <install/uninstall> <-g/——global> <spec>
will allow system administrators to install packages that should be
available to all users. If the Spack instance is located in a restricted
write-access location, a user would need to run the install/uninstall
command with appropriate privileges. In settings where adminis-
trators are changing frequently, by setting ownership of the Spack
installation to a specific group of users, administrators could be
added or removed from this user group readily.

While adding support for installing and uninstalling from the
global upstream, we also added support for targeting any upstream
that a user might have specified. Because upstreams can be unique
to a specific user we wanted users to be able to target any upstream
that they might want to interact with, in addition to the included
global upstream. In order to interact with a desired upstream, a user
can specify -u/——upstream <upstream_name> in the install and
uninstall command. This command can also be used to target the
global upstream via ——upstream global. However, it is simpler
to use ——global for that process.

2gspack is defined as the top level directory of a user’s Spack installation.

HPCSYSPROS19, November 22, 2019, Denver, CO

Additionally, because Spack supports storing multiple environ-
ments, different versions of ATSE could exist simultaneously. This
would allow for administrators to develop a new version of ATSE
without removing access to the original version. Users could also
choose which version of ATSE that they prefer to use, and ad-
ministrators could offer a range of versions of the environment to
maximize compatibility with user’s workload.

3.1 Usage

Using Spack to administer an environment is not dramatically dif-
ferent from a traditional RPM-based environment. It is much easier
to install new packages and configurations; however, the methods
users and system administrators use to interact are nearly identical.
An ideal use case for the global upstream would be as follows:

(1) System administrators installs Spack to a system wide loca-
tion.

(2) System administrator installs packages and environments
that they want to be accessible to all users using spack
install/uninstall ——global <spec>

(3) Users are provided a module file for loading this system wide
instance of Spack or they are pointed to
$spack/shared/spack/setup-env.sh.

(4) A user uses the module file to set up their Spack environment.

(5) Users can install packages and load Spack environments.
When they install packages they are installed to
$HOME/ . spack/ rather than the system wide Spack install
directory.

(6) Users can use Spack as normal and can install packages as
needed. System Administrators can easily manage the pack-
ages and available environments. Multiple environments
and multiple versions of the same environment can coexist
without conflict.

Similarly, a use case for the ——upstream toggle would be as
follows:

(1) Users load their instance of Spack.

(2) Users define their own upstream configurations for var-
ious Spack instances that they want to interact with an
use as upstreams. These definitions should be created in
$HOME/ . spack/upstreams.yaml. See Listing 2 for an exam-
ple of the default upstreams.yaml.

(3) Users can install packages and load environments. When
they install packages they are installed to
$HOME/ . spack/opt/spack rather than the system wide Spack
install directory.

(4) Users can install and uninstall packages at their targeted
upstreams through spack <install/uninstall> <-u/
——upstream upstream_name> <package_spec>.If the user
needs elevated permissions in order to install or uninstall
from a specific upstream they would need to run the com-
mand with appropriate permissions.

4 EVALUATION

The process for converting ATSE from a Yum-based solution to
a Spack-based environment was done in stages and faced several
challenges during this process.

Carson Woods, Matthew L. Curry, and Anthony Skjellum

Inside a spack.yaml package spec section, we defined all of the
packages included in ATSE along with the configuration flags. Cer-
tain packages, such as slurm, compilers, etc., are provided by ATSE
RPMs; however we excluded them from the Spack implementation
of ATSE because a user would not normally build these components
themselves. We consider these packages to be system infrastructure.
See Listing 1 for the ATSE environment’s spack.yaml file that can
be used to generate the ATSE environment.

We also provide a spack. lock file for the ATSE environment,
however the expected use case is different. We would expect a user
to use spack.lock on a system where the spack.yaml would not
have to be changed in order to have a working environment. This
would reduce the install time, while achieving the same results
as though spack. yaml were used. If a user anticipates needing to
make changes to ensure compatibility, then the spack.yaml is the
configuration file to use.

4.1 Adding Packages

The first step of converting ATSE into a Spack-based environment
was to add the packages into a spack. yaml file. Spack allows for
adding packages to an environment easily through the spack add
<spec> command.

One of the challenges that we encountered when adding pack-
ages is that not all packages that we required were available through
Spack by default. We used two different approaches to circumvent
this issue. The first solution involved creating packages in our own
repository and configuring Spack to use them. Spack supports users
adding custom packages that use any of a few predefined build tools
such as autotools, cmake, etc. This allowed us to define our own
packages when Spack did not already include them. These cus-
tom repositories can be used to add packages or override default
installation options used by Spack. Custom repositories take prece-
dence over the built-in repository. We include an ATSE repository
in our distribution that contains all of the packages that the ATSE
environment needs to install with non-default configurations and
patches.

The second solution is an extension of the solution just described.
To improve portability, we wanted to reduce reliance on custom
repositories such as the one we provided. To do this, we submitted
pull requests to the Spack repository to have non-included packages
added as standard Spack packages. In addition to adding packages
we have also fixed bugs in a variety of package installation in-
structions to improve how packages and their multiple variants are
handled. Using these strategies, we were able to add all packages
in ATSE to the environment.

4.2 Refining Package Specs

For many different packages, the ATSE environment uses custom
configurations to optimize performance. Spack supports these con-
figurations through flags that can be specified at an environment
level or at install time. In order to match configurations in the exist-
ing implementation of ATSE, when possible, we enabled variants
on certain packages in the spack.yaml environment file. One chal-
lenge with this process is that not every package installation profile
in Spack had all of the configuration flags that ATSE needed. To
overcome this issue, we again used the same two-tiered approach

Implementing a Common HPC Environment in a Multi-User Spack Instance

that we used to overcome missing packages. We made changes
to our local repository to temporarily override this shortcoming
for certain packages. We also opened pull requests to have these
variations in packages added to the default Spack repository.

4.3 Resource Comparison

To quantify the resource savings enabled by our Spack extension,
we installed Trilinos and measured the difference in install times
and in space savings when installed on Astra. In both upstream
and downstream installs Spack’s default, install behavior was un-
changed. Spack installed one package at a time, but used parallel
threads within each build process. The experiment was split into
two steps.

Figure 2: Trilinos Disk Space Usage Comparison

Stand Alone with Mirror

With ATSE with Mirror

Stand Alone without Mirror

With ATSE without Mirror

0.0 0.5 1.0 1.5 2.0 2.5
Storage Used (in Gigabytes)

Figure 3: Trilinos Install Time Comparison

Stand Alone with Mirror

With ATSE with Mirror

Stand Alone without Mirror

With ATSE without Mirror

0 20 40 60 80 100
Trilinos Install Time(in minutes)

For the first stage we started with an empty Spack instance and
installed Trilinos by running time spack install trilinos. We
ran the install step five times. Each iteration we measured the size
of the . spack directory before and after. Additionally, after each
install we uninstalled every package that had been installed and
cleared the staging area to emulate a completely clean installation.
As shown in Figure 2 and Figure 3 respectively, we found that by
installing Trilinos and its dependencies from scratch we used 2.464
gigabytes of disk space and it took 95m 22.859s to install on average.

For the second stage, we prepared a similar process, but this time
we allowed Spack to leverage an upstream installation of ATSE

HPCSYSPROS19, November 22, 2019, Denver, CO

packages. We repeated the same process as before five times. How-
ever, we only uninstalled Trilinos and dependencies that were not
included in ATSE. Specifically, we uninstalled GLM, Hypre, Matio,
Netlib-Scalapack, Mumps, and Trilinos each time. The Trilinos de-
pendency graph is listed in Listing 3. This yielded a disk usage of
1.834 gigabytes and only took 45m 45.343s on average to install.

In the test, that involved installing all packages from scratch, we
were using a mirror to store the packages that are found in ATSE.
We later reran both tests without the mirror. With the mirror dis-
abled and with ATSE pre-installed, we found that installing Trilinos
used 1.837 gigabytes of storage and took an average of 44m 48.357s
to install. Without a mirror and without ATSE pre-installed, the
Trilinos install used 2.514 gigabytes of disk space and took an aver-
age of 94m 46.8216s to install. The nearly identical installation time
resulted because of Spack’s ability to stage archives of previously
downloaded files which makes those packages available to future
installs by a single user. Because Spack stages each package within
auser’s . spack directory, users would not benefit from other user’s
previously staged packages.

These space and time savings are for a single instance of Trilinos.
Because the upstream packages are still consuming disk space, the
space savings are only leveraged once there is more than a single
user relying on the same upstream package. Every time a user
attempts to install Trilinos with ATSE installed they would save
an additional average of 629 megabytes of disk space as well as
approximately 50 minutes of build time; this performance is driven
by not having to reinstall all of the dependencies.

5 DISCUSSION

The primary challenge with building ATSE in Spack was the lack
of previous testing on Arm-based systems. Because of their current
rarity in production environments, many of the packages used in
ATSE did not install correctly without modification. To overcome
this, pull requests were made to the Spack repository to improve
Arm compatibility.

Additionally, limitations with Spack’s detection of compilers
made installing certain packages fail without manually informing
Spack about compiler modules. Spack environments do allow for
modules to be specified in advance of the environment being in-
stalled. However, this would cause problems if used on any other
machine than the original machine that the environment was devel-
oped on. Different module naming schemes are common, requiring
manual updating of this setting for each site. This puts the onus
for specifying the correct module for the compiler on the user or
system administrator.

Package availability is another limitation of this system. Because
packages are often managed by Spack’s community of open source
contributors rather than package developers, the number of pack-
ages is rapidly outpacing the number of contributors. This means
that future versions and package configurations are potentially not
added immediately or at all. In some instances, package installation
recipes would be non-functional and would require manual bug
fixes, or else a newer version of a package would install differently
than its predecessor.

HPCSYSPROS19, November 22, 2019, Denver, CO

In the event that a version of a package does not exist in Spack’s
internal database, Spack tries to extrapolate a download link us-
ing the known download link and the version number. However,
this strategy is not guaranteed, and the checksum safety features
will no longer function. Additionally, if a package were to change
dramatically, it is possible that newer versions would not install
without dramatic changes. This is not necessarily an immediate
drawback; however obscure packages could suffer from a lack of
maintenance, which could leave system administrators responsible
for maintaining the packages they need. This does not differ too
much from how traditional RPM environments are managed, but
it removes some of the convenience of using Spack to manage the
environment.

6 CONCLUSION

Traditionally, computing environments are built using tools that
make portability and modification challenging and time consuming.
The Spack package manager makes managing environments much
easier. In addition to improving how environments are managed,
Spack provides straightforward mechanisms for sharing environ-
ments with other users and sites. Additionally, once shared, users
are able to easily modify any part of the environment to suit their
needs and better match the system on which they are working.

For Spack to efficiently manage software environments for a
large HPC system, multiple users need to be able to share a com-
mon base environment. For this reason, we implemented multi-user
support in Spack; this makes Spack suitable for systems with many
users sharing a single environment. Using these new features, multi-
ple users can use a single instance of Spack as they normally would,
while also being able to access a shared set of packages representing
a system-wide computing environment. Under this system, disk
space usage and install time for other packages can be significantly
reduced.

6.1 Future Work

Despite ATSE being fully implemented in Spack, there are still
many improvements that could be made. The extra steps required
in getting certain compiler configurations to work mentioned in
Section 5 could be streamlined. If Spack automatically detected
the required module file and loaded it, rather than forcing the
user to manually specify it, the ATSE environment would have a
much greater chance of compiling without requiring tweaking or
modifications by the user.

Currently, no usage metrics are collected by Spack. However,
since central environments can now be managed by Spack, it could
be be useful to locally collect installation data from users within
an environment. In a shared environment setting, administrators
would be able to determine if multiple users were installing a pack-
age or using a configuration that was not inlcuded in the shared
environment. Making this change would allow for a better informed
shared environment with packages that better represent their user’s
needs.

Finally, protections need to be implemented for when user’s
rely on a package as a dependency that is located upstream. It is
reasonable to assume that a package could be removed or changed
upstream which is being used as a dependency of a downstream

Carson Woods, Matthew L. Curry, and Anthony Skjellum

package. In a traditional Spack installation, there are protections to
avoid uninstalling a package that is relied upon as a dependency. By
extending these safeguards to packages installed between various
upstreams, it could greatly reduce potential confusion experienced
by some users. Currently, the best way to avoid these isues while
also updating packages and configurations is to simply make con-
current versions of the shared environment available to users.

7 ACKNOWLEDGEMENTS

Sandia National Laboratories is a multimission laboratory managed
and operated by National Technology & Engineering Solutions of
Sandia, LLC, a wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

This work was also supported in part by the National Science
Foundation under Grants Nos. CCF-1822191, CCF-1821431. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

A REPRODUCIBILITY

A.1 spack.yaml

The following is the spack. yaml file required to get the full ATSE
environment in Spack. It lists all included packages and their con-
figurations.

Listing 1: ATSE spack.yaml file

This is a Spack Environment file.
#
It describes a set of packages to be installed, along with
configuration settings.
spack:

add package specs to the ‘specs® list

specs:

- binutils@2.31.1+libiberty

- charliecloud@e.9.6

- autoconf@2.69

- automake@1.16.1

- cmake@3.12.2

- git@2.19.2

- libtool@2.4.6

- ninja@1.8.2

- valgrind@3.15.0~ubsan

- lua-luaposix@33.2.1

- hdf5@1.10.5+cxx+fortran

- bzip2@1.0.6

- hwloc@1.11.11

- netcdf-cxx4@4.3.0

- netcdf-fortran@4.4.5

- metis@5.1.0

- openblas@@.3.4 threads=openmp

- boost@1.68.0

- papi@5.7.0

- pmix@2.1.4

- numactl@2.0.12

- xz@5.2.4

- z1ib@1.2.11

- openmpi@3.1.4+legacylaunchers+pmi schedulers=slurm

Implementing a Common HPC Environment in a Multi-User Spack Instance

- fftw@3.3.8~double simd=neon
- superlu@5.2.1
- gthreads@1.14
- scotch@6.0.6
- netcdf@4.6.3+parallel-netcdf
- tau@2.28.1+openmp+papi+pdt cflags="-fPIC"
cppflags="-fPIC"
- pdte3.25
- cgns@3.4.0+fortran+int64
- yaml-cpp@@.6.2
- osu-micro-benchmarks@5.6.1
- ucx@1.5.1
- singularity@3.2.1
- mpip@3.4.1
- powerapi@l.1.1
- parmetis@4.0.3
mirrors: {}
modules:
enable: []
repos: []
packages:
slurm:
paths:
slurm: /usr
buildable: false
version: [17.11.12]
providers: {}
modules: {3}
compiler: []
go:
paths:
go: /usr
buildable: true
version: []
providers: {}

modules: {}
compiler: []
config: {3}

upstreams: {3}

A.2 upstreams.yaml

The following is an example of the upstreams.yaml file. This is the
default file that defines the global upstream.

Listing 2: Default upstreams.yaml

upstreams:
global:
install_tree: $spack/opt/spack
modules:
tcl: $spack/share/spack/modules
Imod: $spack/share/spack/lmod
dotkit: $spack/share/spack/dotkit

A.3 Trilinos

The following is the concretized dependency graph for the Trilinos
package.

Listing 3: Trilinos spec

HPCSYSPROS19, November 22, 2019, Denver, CO

trilinos@12.14.1

*boost@1.70.0
*bzip2@1.0.6
*z1lib@1.2.11
*glm@e.9.7.1
*hdf5@1.10.5
“openmpi@3.1.4
*hwloc@1.11.11
*libpciaccess@@.13.5
*1ibxml2@2.9.9
*libiconv@1.15
*xz@5.2.4
*numactl@2.0.12
*hypre@2.16.0
“openblas@0.3.6
*matio@1.5.13
*metis@5.1.0
*mumps@5.2.0
*netlib-scalapack@2.9.2
*netcdf@4.7.0
*parmetis@4.0.3
*suite-sparse@5.3.0

A.4 Where to Find Our Work

By cloning our fork of the Spack repository all software needed to
reproduce the experiment can be obtained through Spack.

The fork of Spack can be found at: https://github.com/carsonwoods/

spack and the pull request to merge our feature into Spack can be
found at: https://github.com/spack/spack/pull/11871.

REFERENCES

(1]

(2]

(3

[4

(5]

Todd Gamblin, Matthew P. LeGendre, Michael R. Collette, Gregory L. Lee, Adam
Moody, Bronis R. de Supinski, and W. Scott Futral. 2015. The Spack Package
Manager: Bringing Order to HPC Software Chaos. Supercomputing 2015 (SC °15)
(November 2015). LLNL-CONF-669890.

Markus Geimer, Kenneth Hoste, and Robert McLay. 2014. Modern Scientific
Software Management Using EasyBuild and Lmod. HUST 2014 (2014).

Sandia National Laboratories. [n. d.]. Vanguard Program. https://vanguard.sandia.
gov. Accessed: 2019-08-20.

Lawrence Livermore National Laboratory. [n. d.]. TOSS: Speeding Up Com-
modity Cluster Computing. https://computing.llnl.gov/projects/toss-speeding-
commodity-cluster-computing. Accessed: 2019-07-31.

James H. Laros III, Kevin T. Pedretti, Simon Hammond, Michael Aguilar, Matthew L.
Curry, Ryan E. Grant, Robert Hoekstra, Ruth Klundt, Stephen Monk, Jeffry Ogden,
Stephen L. Olivier, Randall Scott, Lee Ward, and Andrew J. Younge. 2018. FY18 L2
Milestone #8759 Report: Vanguard, Astra, and ATSE — an ARM-based Advanced
Architecture Prototype System and Software Environments. Sandia National
Laboratories (September 2018). https://doi.org/10.2172/1470822

Kevin Pedretti, Jim H. Laros III, and Si Hammond. 2018. Vanguard Astra: Maturing
the ARM Software Ecosystem for U.S. DOE/ASC Supercomputing. ExaComm
2018. (June 2018). SAND2018-7066 C.

Karl W. Schulz, C. Reese. Baird, David Brayford, Yiannis Georgioum, Gre-
gory M. Kurtzer, Derek Simmel, Thomas Sterling, Nirmala Sundararajan, and
Eric Van Hensbergen. 2016. Cluster Computing with OpenHPC. HPCSYSPROS
2016 (November 2016).

Open Build Service. [n. d.]. Open Build Service Homepage. https://
openbuildservice.org/. Accessed: 2019-08-20.

