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SANDIA NATIONAL LABORATORIES
ORIGIN

Exceptional service in the national interest

'July 1945: Los Alamos

creates Z Division

▪ Nonnuclear component
engineering

' November 1, 1949:

Sandia Laboratory
established
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SANDIA NATIONAL LABORATORIES
MAIN ROLE AND AREAS OF INTEREST

SANDIA HAS FIVE MAJOR
PROGRAM PORTFOLIOS

Advanced
Science &
Technology

National
Security
Programs

Nuclear
Deterrence

Global
Security
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SANDIA NATIONAL LABORATORIES
ADVANCED SCIENCE & TECHNOLOGY

ting &
tion Sciences

Engineering Sciences

High Energy

Bioscience

Nanodevices &
'A.N Microsystems

Geoscience
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SANDIA NATIONAL LABORATORIES
ALGORITHMS R&D: FROM CORE SOLVERS TO MODELING AND SIMULATION APPLICATIONS

dal
CUBIT

DAKOTA

syston, Design

Discretization

Partitioning and Mapping

n
pclmlzatlon

and UQ
Adapt Time Integration

•

Noniinear soive

Linear solve

I m proved design and understanding

FIGURE: Courtesy of Brian Adams
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SANDIA NATIONAL LABORATORIES
DAKOTA - EXPLORE AND DESIGN WITH CONFIDENCE

Algorithms for design exploration and simulation credibility

0- Suite of iterative mathematical and statistical methods that interface to
computational models

0- Makes sophisticated parametric exploration of simulations practical for a
computational design-analyze-test cycle

Features

0- Sensitivity: Which are the crucial factors/parameters?

0- Uncertainty: How safe, reliable, or robust is my system?

0- Optimization: What is the best performing design or control?

0- Calibration/Parameter Estimation: What models and parameters best match
data?

Credible Prediction
► Verification: Is the model implemented correctly, converging as expected?
1. Validation: How does the model compare to experimental data, including

uncertainties?

DAKOIA
Explore and predict with confidence.

https://dakota.sandia.gov/
Recent Advancements on Multifidelity UQ 5/135
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UNCERTAINTY QUANTIFICATION
DOE AND DOD DEPLOYMENT ACTIVITIES

Stewardship (NNSAASC) Energy (ASCR, EERE, NE)
Safety in abnormal environments Wind turbines, nuclear reactors

Climate (SciDAC CSSEF ACME)
ice sheets, CISM, CESM, ISSM, CSDMS

00111604i

Addtnl. Office of Science:
WastePD:

i  Posterior 08

CHWM: push fwd

uniform(SciDAC EFRC) 
.14 

Comp. Matls: waste forms /

Pareto-hazardous matls (WastePD, CHWM)
MHD: Tokamak disruption (TDS) .innnemi informed

0.00 1.50 100 0.50 .00 1.50 9.00

ac901100660615(091

FIGURE: Courtesy of Mike Eldred

High-fidelity state-of-the-art modeling and simulations with HPC

I• Severe simulations budget constraints
0. Significant dimensionality driven by model complexity

Recent Advancements on Multifidelity UQ

Statistical Inference for TDS
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UNCERTAINTY QUANTIFICATION

RICH SET OF MODELING CHOICES — DISCRETIZATION VS FIDELITY

Multi-fidelity: several accuracy levels available

► Physical models (Laminar/Turbulent, Reacting/non-reacting, viscous/inviscid...)
10- Numerical methods (high/low order, Euler/RANS/LES, etc...)
0- Numerical discretization (fine/coarse mesh...)
0- Quality of statistics (long/short time history for turbulent flow...)

Potential Flo

Potential Flow Ell

Reynolds
Averaged Navler-
Stokes (RANS)

One

l'nd equaHun

Hybrid
RA-NS/LES

Large Eddy
Simulation (LES) MAI

N~bHd SANS/LES

Relationships amongst models can be difficult to anticipate

0- A simple hierarchical sequence can correspond to strict modeling choices (e.g.
discretization levels)

0- More often, for some Qol, we can have peer models

Recent Advancements on Multifidelity UQ 7/135
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UNCERTAINTY QUANTIFICATION
FORWARD PROPAGATION - WHY SAMPLING METHODS?

UQ context at a glance:

0- High-dimensionality, non-linearity and possibly non-smooth responses

0- Rich physics and several discretization levels/models available

Natural candidate:

0- Sampling-based (MC-like) approaches because they are non-intrusive, robust and
flexible...

► Drawback: Slow convergence 0(N-112) —> many realizations to build reliable
statistics

Goal of the talk: Reducing the computational cost of obtaining MC reliable statistics

Pivotal idea:

0- Simplified (low-fidelity) models are inaccurate but cheap
10.- low-variance estimates

0- High-fidelity models are costly, but accurate
► low-bias estimates

Recent Advancements on Multifidelity UQ 8/135
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MONTE CARLO
A BRIEF OF ITS HISTORY (1/2)

Halton (1970): representing the solution of a problem as a parameter of a hypothetical
population, and using a random sequence of numbers to construct a sample of the
population, from which statistical estimates of the parameter can be obtained.

0- One of the first documented MC experiments is Buffon's needle experiment which
Laplace (1812) suggested can be used to approximate 7F (Johansen and Evers,
2007)

FIGURE: Buffon's needle experiment based on 17
throws. (Source: Wikipedia)

2N1

Pt

where

► N: number of throws
► l: length of the needles
► P: number of needle crossing the lines
► t: distance between the lines

Recent Advancements on Multifidelity UQ 9/135
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MONTE CARLO
A BRIEF OF ITS HISTORY (2/2) - Los Alamos Science Special Issue 1987, by N. Metropolis

Around 1940:

► ENIAC: first electronic computer at the University of Pennsylvania

[...] Stan's (Stanislaw Ulam) extensive mathematical background made him aware
that statistical sampling techniques had fallen into desuetude because of the
length and tediousness of the calculations. But with this miraculous development of
the ENIAC, [...] it occurred to him that statistical techniques should be resuscitated,
and he discussed this idea with von Neumann. Thus was triggered the spark that led
to the Monte Carlo method.

► The name: Ulam had a uncle who would borrow money from relatives because he
"just had to go to Monte Carlo"

Recent Advancements on Multifidelity UQ 10/135
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SAMPLING METHODS
ROLE IN UQ

0- There are several applications for the MC method

0- In Uncertainty Quantification (UQ) we are often concerned with the computation
of a the expected value of a function (or higher moments)

E V ()1 = f f (Op (e)de

0- Therefore one of the tasks to be performed in UQ is the quadrature in (very
often) high-dimension (E c Rd)

UQ is a much richer area than 'just' numerical quadrature, but nevertheless this
is an important task

Recent Advancements on Multifidelity UQ 11,135
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MAIN INGREDIENTS
FROM THE RANDOM GENERATOR TO THE STATISTICAL ESTIMATOR

Each Monte Carlo method is based upon three main steps:

► Pre-processing: generation of random numbers
r• Evaluation step: Computation of the Quantity of Interest from the

computational code

0- Post-processing: Estimator and confidence interval evaluation

Recent Advancements on Multifidelity UQ 12 135
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PRE-PROCESSING
RANDOM NUMBER GENERATOR

► A random number generator is required for each Monte Carlo simulation

► Random number generation requires two main stages

► Generation of independent random variables U(0,1)
► Conversion of the RVs to desired distribution

Recent Advancements on Multifidelity UQ t,



Multifidelity UQ Multifidelity sarnpling AS for MF UQ Surrogate MF Inverse MF UQ MF OUU Conclusions

PRE-PROCESSING
RANDOM NUMBER GENERATOR

► A random number generator is required for each Monte Carlo simulation

► Random number generation requires two main stages

► Generation of independent random variables U(0,1)
► Conversion of the RVs to desired distribution

(Pseudo-)random generators use DETERMINISTIC algorithms to generate only APPARENTLY RANDOM
numbers

Recent Advancernents on Multifidelity UQ 13/135
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PRE-PROCESSING
RANDOM NUMBER GENERATOR

► A random number generator is required for each Monte Carlo simulation

► Random number generation requires two main stages

► Generation of independent random variables U(0,1)
► Conversion of the RVs to desired distribution

(Pseudo-)random generators use DETERMINISTIC algorithms to generate only APPARENTLY RANDOM
numbers

Properties for a good random generator

► Several statistical tests exist to measure randomness, therefore reliable software has been verified against
them

► A long period is needed before the sequence repeats (at least 240 is required)

► A control-based seed is provided to skip to an arbitrary point of the sequence (useful in parallel applications)

Recent Advancernents on Multifidelity UQ 13/135
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PRE-PROCESSING
RANDOM NUMBER GENERATOR

► A random number generator is required for each Monte Carlo simulation

► Random number generation requires two main stages

► Generation of independent random variables U(0,1)
► Conversion of the RVs to desired distribution

(Pseudo-)random generators use DETERMINISTIC algorithms to generate only APPARENTLY RANDOM
numbers

Properties for a good random generator

► Several statistical tests exist to measure randomness, therefore reliable software has been verified against
them

► A long period is needed before the sequence repeats (at least 240 is required)

► A control-based seed is provided to skip to an arbitrary point of the sequence (useful in parallel applications)

Bottom line...

► do not use your own generator, but use reputable sources

► For instance, Intel Math Kernel Library (MKL) are free

Recent Advancernents on Multifidelity UQ 13/135
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PRE-PROCESSING
VARIABLE TRANSFORMATION

I. Random generators produce uniform RV Z4(0,1), but usually we need other distributions

► Let's assume that the cumulative distribution function F., for a variable is available

FE(e) = P(E' < e)

► The random generator produces U U(0, 1), i.e. Fu(u) = u

► We want to determine the function g(U) which gives E = g(U) with cdf FEW

I. We write the cdf for F.,. (0
F.,(0 = P(E < = P(g(U)

O. We also assume:

► The function g is invertible on its range

I. The function g is strictly increasing (only for simplicity)

FE(0 = P(g(U) = P(U g-1(0) = Fu(g-1(0) = g-1(0

► Finally we can choose g-1(0 = FEW, i.e. E = F.-7;1(U) in order to get the desired distribution

Recent Advancernents on Multifidelity UQ 14/135
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STATISTICAL ESTIMATOR
EVALUATIONS STEP

Let consider a random variable Q:

1 N •QPN.1C = N Qco

Recent Advancements on Multifidelity UQ
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STATISTICAL ESTIMATOR
EVALUATIONS STEP

Let consider a random variable Q:

1 N •OTC = N Qco

Two main properties

1 N „
► Unbiased (for each choice of N!): E = — E E [QH = E

N

► Convergent (Strong law of large numbers): lim eitiC = E [Q] a.s.
N oo

Recent Advancements on Multifidelity UQ
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STATISTICAL ESTIMATOR
EVALUATIONS STEP

Let consider a random variable Q:

1 N •Qr = N cp,

Two main properties

1 N „
► Unbiased (for each choice of N!): E xjC] = — E E [QH = E [Q]

N i=1

► Convergent (Strong law of large numbers): lim eitiC = E [Q] a.s.
N—).00

Main mathematical tool used for the analysis is the Central Limit Theorem (CLT)

I. Let's define the error eN = E [Q] — QNC

I. Let's assume Var [Q] is finite, then for N —) oo

eN
  — N1/2  N] (0 , 1) ,

\IVar [017] 
Var eN(Q)

Var [ MC] 
Va Nr [Q]

QN   

Recent Advancernents on Multifidelity UQ 15/135
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CENTRAL LIMIT THEOREM
CONFIDENCE INTERVAL

CLT is the fundamental result that enable us to obtain a confidence interval for MC

► p (N1/2  eN  < z) = Fz(z), for Z Af (0 , 1)
Var1/2 (Q)

► Fz(z) = 2 (1+ erf

PP We want to control the probability of

P

0.95

0.9

0.85

0.8

0.75

0.7

0.65

N112 eN
Var1/2 (Q)

N112 eN
Var1/2 (Q)

1.5 2 2.5

Recent Advancements on Multifidelity UQ

3 3.5

, therefore

= 1 — 2F z (z) = erf „i)

z 1 — 2F z (z)
1 0.683
2 0.954
3 0.997

16/135
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MONTE CARLO
TARGET ACCURACY

We can use the distribution of eN to estimate the number of simulations required.

► Let's assume we want an estimator accurate at the 99.7% with error eN = e

I. We need to select z = 3 (from the previous table)

Var [Q]► N — 9

Few additional comments:

lb. The number of samples scales as 62, i.e. one order of increased accuracy is obtained with 100 times more
samples

IP. Error is not a function of the dimension (eN a N-112)

10. Error is not a function of the regularity of the quantity Q

10. On the contrary the error for a composite (Cavalieri,Kepler-)Simpson's rule ([0, 1]) is bounded by

A (x)

P(x)

a

FIGURE:
https://en.wikipedia.org/wiki/Simpsonl27s_rule

114
— max f (4) (x), therefore eN a N4 = N —4/d

180 xe [0,1] ID

(MC integration is competitive for d > 8 w.r.t.
Simpson's rule)

Recent Advancernents on Multifidelity UQ 17/135
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MONTE CARLO
ESTIMATOR VARIANCE (1/3)

In summary we have seen so far:

► eN \IVar [01 .1V-(0, 1)
► 

eN N-112 and (numerical cost) is Cmc a N, therefore Cmc a qr2

Recent Advancements on Multifidelity UQ 18/135



Multifidelity UQ Multifidelity sarnpling AS for MF UQ Surrogate MF Inverse MF UQ MF OUU Conclusions

MONTE CARLO
ESTIMATOR VARIANCE (1/3)

In summary we have seen so far:

► eN \IVar[01.1V-(0, 1)
► 

eiv a N-1/2 and (numerical cost) is Cmc cx N, therefore Cmc oc eKT2

Variance of a MC estimator is

N

Var [Or] = Var E Q(i)]
N j=1

= —
1 
Var [17 QM]

N2 j=1
N

Var [Q]
i=i

= —
1 
Var [Q]

Recent Advancements on Multifidelity UQ 18/135
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MONTE CARLO
ESTIMATOR VARIANCE

Let consider a randorn variable Q, we want to cornpute its expected value E [Q] (or sorne high-order moment):

N
QPNIIC = v ( )

N

Recent Advancements on Multifidelity UQ 19/135
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MONTE CARLO
ESTIMATOR VARIANCE

Let consider a randorn variable Q, we want to cornpute its expected value E [Q] (or sorne high-order rnornent):

N

QNC 
= vs Q(1)

N

#Hit
Let's use MC to compute the value 7r oc  

N

• • • • •
• • • • • •

• ••
• • • • *7.

• • ••

•
•_ •• • • • % • •

0.5 >, 
• •. •

•• • • • • 

•• • • 
•

0
0

• .
• ••

••• 1. '•
• • •

• • • 

0.5

x

•
•

Hit •
Miss •

Recent Advancements on Multifidelity UQ 19/135
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MONTE CARLO
ESTIMATOR VARIANCE

Let consider a randorn variable Q, we want to cornpute its expected value E [Q] (or sorne high-order moment):

1 N •QPNIIC = r's Q(1)

N

#Hit
Let's use MC to compute the value ir oc  

N

Es
ti
ma
te
d 
Pi

 

3.8

3.6

3.4

3.2

3

2.8

2.6

2.4
0 100 200 300 400 500 600 700 800 900 1000

Repetition
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MONTE CARLO
ESTIMATOR VARIANCE

Let consider a randorn variable Q, we want to cornpute its expected value E [Q] (or sorne high-order moment):

1 NQPNIIC = vs Q(1)

N

#Hit
Let's use MC to compute the value ir oc  

N

Es
ti
ma
te
d 
Pi
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3.6

3.4
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VARIANCE REDUCTION
AN (INCOMPLETE LIST)

In the statistical literature several variance reduction techniques exist:

► Importance sampling
► Very useful when the main contribution to E [Q] comes from rare events

► Stratified sampling
► Very effective in 1D, not clear how to extend to multiple dimensions

► Latin hypercube
► Effective if the function can be decomposed into a sum of 1D functions

► (Randomized) quasi-MC
► Possibly provides better error than MC, but need to be randomized to get the

confidence interval

► Control variate (more about it later...)

Recent Advancements on Multifidelity UQ 20/135
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>• 0.5 -
do
•

MONTE CARLO
INTRODUCING THE NOTION OF FIDELITY: BIAS OF THE ESTIMATOR

Numerical problems cannot be resolved with infinite accuracy: a discretization/numerical error is often introduced

447N def N 
N E
i=i

• •• •
• # • 02 ••

•• ••• • •
•dp 

•
• os OP.

. •
• •

•••
••

• • •

•• •• db
• • •

• •.• •

•

•

•

de

•

0 0.5

x

Hit •
Miss •
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MONTE CARLO
INTRODUCING THE NOTION OF FIDELITY: BIAS OF THE ESTIMATOR

Numerical problems cannot be resolved with infinite accuracy: a discretization/numerical error is often introduced
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MONTE CARLO
INTRODUCING THE NOTION OF FIDELITY: BIAS OF THE ESTIMATOR

Numerical problems cannot be resolved with infinite accuracy: a discretization/numerical error is often introduced

Es
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d 
Pi
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MONTE CARLO SIMULATION
INTRODUCING THE SPATIAL DISCRETIZATION

Problem statement: We are interested in the statistics of a functional (linear or non-linear) QM of the solution uM

Qm = g(uM) E [QMI

► M is (related to) the number of spatial degrees of freedom

► ]E [Qm] ]E [Q] for some RV Q : R

OCN def 1 N Q0)

' N M
,

Looking at the Mean Square Error (MSE):

E [(QAIN E [QD2] = IE [ CON IE [QM] E [Qm] E [Q]>2]

= IE [ (01A1C,N — E [Qm1)2] + 21E ReemIC,N — E [Qm]) (E [QM[ — E [Q])]

E [(E [Qm] — IE [Q])2]

= var [411111C,N] [QM — (41)2

Recent Advancernents on Multifidelity UQ 23/135
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MONTE CARLO
OVERALL ESTIMATOR ERROR

Two sources of error in the Mean Square Error:

E [(dC,N E [Q])2] = Var [4/3N] (E [QM (41)2

lir Sampling error: replacing the expected value by a (finite) sample average, i.e.

From the CLT, for N Do

Var [e&C,N] — 
VaNr [Q]

(kITN E 
Var [Q]

(0,1)

► Model fidelity (e.g. discretization): finite accuracy

Recent Advancements on Multifidelity UQ 24/135
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MONTE CARLO
OVERALL ESTIMATOR ERROR

Two sources of error in the Mean Square Error:

E begiC,N — E [Q])2] = Var [0,/N] (E IQM — QD2

► Sampling error: replacing the expected value by a (finite) sample average, i.e.

From the CLT, for N Do

V ar [OC:N] — 
VaNr [Q]

(klirN E [Q]) 
Var [Q]

(0,1)

► Model fidelity (e.g. discretization): finite accuracy

Accurate estimation =- Large number of samples evaluated for the high fidelity rnodel

- - - - - -

0.5

Hit •
Mrss •

Recent Advancernents on Multifidelity UQ 24/135
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ACCELERATING MONTE CARLO
BRINGING MULTIPLE FIDELITY MODELS INTO THE PICTURE

>, 0.5

Pivotal idea:

• High-fidelity models are costly, but accurate
• low-bias estimates

• Simplified (low-fidelity) models are inaccurate but cheap
► low-variance estimates

Single Fidelity

Hit •
Miss •

0.5

x

05

•
1••c• m-•

05

•„ • •

Multi Fidelity

Recent Advancements on Multifidelity UQ 25/135
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C ONTROL VARIATE

SEVERAL WAYS OF ACCELERATING MC CONVERGENCE

Variance of the estimator:

Vat' [0] F7ar
[Q]

What can we do to drive down the variance of the estimator?

#0 Increasing the number of samples i this is going to cost us too much for HF applications

#1 Replace the HF model with a computational cheapest one, e.g. Reduced Order Models (ROMs)

#2 Changing the Qol with another one under the assumption that its mean is the same, but the new
variance is smaller

Variance reduction techniques

11. Act on the sampling (Stratification, Important Sampling etc.)

► Act on the function (control variate)
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CONTROL VARIATE
A PROTOTYPE ESTIMATOR: A DIFFERENCE ESTIMATOR

In this talk we focus on reducing the variance of the estimator

Var [Q]
Var [0] 

Let's assume that we have another function P that is easier (i.e. less expensive to compute) and for which we know
E [P]

NP (, 
NQ

E [Q] = E [P (Q — P)] = E [P] E [Q — P] 
1 E Pv-, 1 E (Qci) P(i))
Np • =1. NQ j_i

Properties of the difference estimator

► Unbiased

P. Variance

Var [P] Var [Q — P] Var [P]
1 (Var [Q] Var [P] — 2Cov (Q, P))

Np NQ Np NQ

NOTE: The negative terrn can help you if the cost of cornputing P is low and the variance of Q — P is small
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CONTROL VARIATE
CAN WE DO SLIGHTLY BETTER?

A Control Variate MC estimator (function Q1 with µ1 known)

QN = Q — Ij (03. /11.) E R

NOTE: Q is the MC estimator of the HF and 01 is the MC estimator of the LF

Properties:

► Unbiased, i.e. IE [QN] = E [0] = E [Q] (for any /3)

► Vari/2 (Q)
argminVar KV] -> - p 

Var112 (Q1.)

► Pearson's p =  
CoN{Q, 

where lpl < 1
Var1/2 (Q) Vari/2 (01)

Var [eel = Var [e;2] (1 — p2)

Let's consider:

► Var [Q].] Var [Q]

► p 1

I. It follows that 0 —1

NOTE: In reality 0 is estimated by a finite number of samples, therefore the variance is slightly higher and there is
a small bias (that can be quantified)...
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MULTIFIDELITY
PRACTICAL IMPLICATIONS OF UNKNOWN LOW-FIDELITY STATISTICS

Let's modify the high-fidelity 4, to decrease its variance

QN = 0 + /3 -
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MULTIFIDELITY

PRACTICAL IMPLICATIONS OF UNKNOWN LOW-FIDELITY STATISTICS

Let's modify the high-fidelity 4, to decrease its variance

QN = 0 + /3 -

In practical situations

► the terrn Ai is unknown (low fidelity ~ analytic function)

P. we use an additional and independent set ALF = (r — 1)NHF

Finally the variance is

,NHF
1

rNHF Q•

Var [eg] = Var [0] (1 — r 1r  pl)

[1] Pasupathy, R., Taaffe, M., Schmeiser, B. W. & Wang, W., Control-variate estimation using estimated
control means. IIE Transactions, 44(5), 381-385, 2012

[2] Ng, L.W.T. & Willcox, K. Multifidelity Approaches for Optimization Under Uncertainty. Int. J. Numer.
Meth. Engng 100, no. 10, pp. 746772, 2014.

[3] Peherstorfer, B., Willcox, K. & Gunzburger, M., Optimal Model Management for Multifidelity Monte Carlo
Estimation. SIAM J. Sci. Comput. 38(5), A3163A3194, 2016.
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MULTIFIDELITY
ESTIMATED CONTROL MEANS IMPACT (ESTIMATOR)

Low-fidelity expected value approximation:

1 NHF 1 
NHF

1 (v-1)NHF
Q(i) =  

rNHF 1 rNliF E (e) rNHF E Qi(!).i=1 i=i j=1

The reason why we separated the i,j sets is evident when we write the variance of the estimator...

(Let's do this together)
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MULTIFIDELITY
MINIMIZATION OF THE VARIANCE (13)

d0'ar [QV] Var112 (Q)
  = 0 —> = Pl

d Varl/2 (Qi)

NOTE:

► the optimal coefficient 13 is independent from r (same coefficient of the known expected value case)

Multifidelity estimator variance

r — 1 2
Var [QV] = Var [ON] (1 r P1)

NOTES:

► The result is similar to the standard CV

► The effect of the correlation is reduced by a factor (r — 1)/r —r 1 for r oo

r — 1
Q: If   i 1, why don't we use a very large r for the estimator? (Remember, NLF = rNHF)
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MULTIFIDELITY
MINIMIZATION OF THE VARIANCE (13)

d0'ar [QV] Var112 (Q)
  = 0 —> = Pl

d Varl/2 (Qi)

NOTE:

► the optimal coefficient 13 is independent from r (same coefficient of the known expected value case)

Multifidelity estimator variance

r — 1 2
Var [QV] = Var [ON] (1 r P1)

NOTES:

► The result is similar to the standard CV

Pr The effect of the correlation is reduced by a factor (r — 1)/r —r 1 for r oo

r — 1
Q: If   i 1, why don't we use a very large r for the estimator? (Remember, NLF = rNHF )

A: An optimall  solution for r exists if we try to minimize the overall estimator cost for a certain target variance
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MULTIFIDELITY

MINIMIZATION OF THE TOTAL COST (r)

1. Very often LF models are very efficient in term of computational cost (this is why we use them), but they
are not entirely free

I. In order to build efficient estimators we need to include their computational cost

Let's introduce the following notation

I. Cost of one low-fidelity realization: CLF

I. Cost of one high-fidelity realization: CHF

11. The total cost of the estimator is

► C"I Off, r) = NHFCHF rNHFCLF

I. Two free parameters, i.e. number of HF simulations (used also for the first LF term)

and number of additional LF realizations

Remember...

E bee'CV E [Q[)2] = Var [417,m] (E [QM — QD2

Additional considerations:

► Let's assume someone is giving us the weak error E [Qm — Q] committed on the resolution level M

► Let's call E [QM — = e/2 for simplicity
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MULTIFIDELITY
MINIMIZATION OF THE COMPUTATIONAL COST (PROBLEM DEFINITION)

We want to solve the following problem

I. Minimization of the total computational cost: Ctot (N}IF, = NHFCHF riNEFCLF

I. We want to reach a target MSE of e, therefore Var [41Vm] = e/2
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MULTIFIDELITY
MINIMIZATION OF THE COMPUTATIONAL COST (PROBLEM DEFINITION)

We want to solve the following problem

► Minimization of the total computational cost: Ctot (NI F , 
= NHFCHF riNEFCLF

► We want to reach a target MSE of e, therefore Var [4117m] = e/2

More formally, let's define our optimization problem (Lagrange constrain optimization)

/
1 

2

argmin (C) = Ctot — — Var [QV] A(r)
NB7 2 )VFW ,r,

eta (NHF,E) = NHF—HF
C reIFCLF

r — 1 2
A(r) — 1

r 191'•
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MULTIFIDELITY
MINIMIZATION OF THE COMPUTATIONAL COST (MANIPULATIONS)

The three stationary conditions for the Lagrange function with respect to the variables NIIF , r , are

aG a et?t, Var [QC A(r)
  —    = 0
a NIEF — a NI-IF (NHF) 2

a Ctot Var [QC A

r r
= +  

NHF a r 
— o

a 1 e2

o = NHF var [(17] A(r) — —2 = O,

where

a n
r

a eta
MF = CHF + ,CLF = ceq(r)

a NHF
a cot

MF NHFCLF.

a r

NOTE: An equivalent computational cost CN(r) = [1 + r / w] 
= CHFr (r) is introduced to measure the

unit cost per HF simulation (given r)
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MULTIFIDELITY
MINIMIZATION OF THE COMPUTATIONAL COST (OPTIMAL SOLUTION)

The solution of the optimization problem is obtained as

r* wp2

1 — p2

NHF,* [QDF]

E2/2 
A(r*),
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MULTIFIDELITY
MINIMIZATION OF THE COMPUTATIONAL COST (OPTIMAL SOLUTION)

The solution of the optimization problem is obtained as

r* wp2

1 — p2

NHF,* [QDF]
—  

y2/2 
A(r*),

How this compare to MC?

Var [C]
10. Total cost of MC: CP,4, = NHFCHF  CHF

e2/2

V 
CEIFe(W, I.

[]
Total cost MF: = NaF,*Ce4(r*) —

Var Q 
p2), where the function e(w, p2)

yc /2

e(w, p2) df 
A(r

*),-,(r*)

measures the efficiency of the method (w.r.t. MC, i.e. we want e(w, p2) < 1)
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MULTIFIDELITY
MINIMIZATION OF THE COMPUTATIONAL COST (OPTIMAL SOLUTION)

The solution of the optimization problem is obtained as (w = CHFICLF)

...p2

r* =  
1 — p2

NHF,* Var [QC 
1 

r* 
r* 
— 1 

p
2)

y2 

r* r* r* — 1 11F 2)
Ctot = 
, 

' ,HF — = NmcCHF (1 —) (1 r* p

Co
rr

el
at

io
n 
sq
ua
re
d 

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

10 100
w

1000

= NIKCCHF9(w, P2)

Theta
1 —

0.9 
0.8
0.7
0.6
0.5
0.4  
0.3
0.2
0.1

10000
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GEOMETRICAL MLMC
ACCELERATING THE MONTE CARLO METHOD WITH MULTILEVEL STRATEGIES

Multilevel MC: Sampling frorn several approxirnations Qm of Q (Multigrid...)

Ingredients:

► {Mt = 0, L} With MO < • • < M

IP. Estimation of E [Qm] by means of correction w.r.t. the next lower level

ye 
Ldef QMie QMf —1 ie _)ilinectrity E [QM] = E [wild E E [QM, 

— 
chit = E xel

Q0 t = 0 2=1. f =0

10. Multilevel Monte Carlo estimator

NeeiAlL def =
t=c, iL-'=1 Me 4

Me-1
)

► The Mean Square Error is

E [COL E [Q])2] = llrar [Yd (E [QM - Q])2
¢=0

Note If Qm Q (in a mean square sense), then Var [Yt] 0
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GEOMETRICAL MLMC
DESIGNING A MLMC SIMULATION: COST ESTIMATION

Let us consider the numerical cost of the estimator

L
CAL) = E N.ece

i=o

Determining the ideal number of samples per level (i.e. minimum cost at fixed variance)

C(Or) = E N,ece
r=0 Lagrange multiplier

L
E NT1Var [Yi] = 62/2

Z=0

2 L 

Are — 2 2_, (Var [yid Co1/2 
Ce

1 ear [Yd

6 k=0

L
Var [C] = ENT1Var (Y,e).

r=0

► MLMC can be reinterpreted as a particular instance of recursive control variate (more on this later)
► MLMC has been originally introduced for problems for which it is possible to control the highest resolution

(full MSE control)

► No need to estimate coefficients, but optimal for very controlled scenarios (i.e. discretization level)

[1] Giles, M.B., Multilevel Monte Carlo path simulation. Oper. Res. 56, 607-617, 2008.

[2] Haji-Ali, A., Nobile, F., Tempone, R. Multi index Monte Carlo: When Sparsity Meets Sampling, Numerische
Mathematik, Vol. 132, 767-806, 2016.
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MULTILEVEL-MULTIFIDELITY APPROACH
COMBINATION OF DISCRETIZATION AND MODEL FORM

10. OUTER SHELL — Multi-level: no need to estimate coefficient (mesh based, high correlation)

E [Q1-m1F] =
LHF 
E E [y7F] =LEYQF
/=. /=.

► INNER BLOCK — Multi-fidelity (i.e. control variate on each level)

1,7* = 1,7 (14F _ E [y/1)

Final properties of the estimator

and

ormF = [kip ± (1(17 E [YVD]
1=0

Var [03131F] = LIEIF (tu,Var [Y7F] (1 r%.7e 14))
/=0 Ne
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MULTILEVEL-MULTIFIDELITY
OPTIMAL ALLOCATION ACROSS DISCRETIZATION AND MODEL FORMS

► Target accuracy for the estimator: e2

► Cost per level is now Cr = +CQFre

10: the (constrained) optimization problem is

LHF (HF 1 

NHF
argmin (C), where C= E Nrcr + E Var[41 ]11.e(rt)— e2 /2Nr , =(:) P=0

rt ► Ne(re) —1 p2
t re

After the first iteration the algorithm can adjust the number of samples on the HF or LF side depending on the
correlation properties discovered on flight

After the minimization (Me = NIP F= NYFr,e)

2r* = pt

p2r 

we 

, where tvf =

= 2 [iZg (Var 
[yr] ) 1/2

/\QJ1 — 4 

[Y1,11

(IL P!)

Var

Ce
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ENHANCING THE CV EFFECT
MAXIMIZING THE CORRELATION FOR A FIXED LF MODEL (1/2)

Possible cures for low-correlation (of the discrepancy terms):

10: Iteration with the application team to identify the lack of convergence

► LF model improvement

► Algorithmic-contained correlation improvement
► Reformulation of the LF discrepancy to gain optimality

LF 
Ye = Yr QI;F QV_ 1,

where N is chosen in order to maximize the correlation between YIP and YQF

Following the same MLMF approach

LEIF r — 1 0
Var ALMF] = E ar [IIF] (1  p2 e)) , where

i=o 
e

et =
Cov (yr, yi,F)
Cov or, y?)

Var 07)

Te 
—  

Var (Yr)
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ENHANCING THE CV
MAXIMIZING THE CORRELATION FOR A FIXED LF MODEL (2/2)

The optimal LF model coefficient 'ye can be computed analytically:

Cov oF 1) Cov (OF, QV 1) — Var (el) Cov (yip, QiiF)
Var (QV) Cov (reiF, Qv 1) — Cov QQF) Cov (Qv, Qv 1)

The resulting optimal allocation of samples across levels and model forms is given by

r; =

2
2 "if,T

= CleI F /Cl/we, where we

\

= 1

1 —

2pe 
-1-E

,5,2

r; — 1

1/2

71

2

-

LEH

E
k=0

[ Var (Yr) Cr
Ak (ri: )1 \

\

(1 ei \ var (Yr)

2 

)

1 _ —e
p,

7 - ) clIFpl
Tt

[1] G. Geraci, M.S. Eldred & G. laccarino, A multifidelity control variate approach for the multilevel Monte Carlo
technique. Center for Turbulence Research, Annual Research Briefs 2015, pp. 169-181.

[2] G. Geraci, M.S. Eldred & G. laccarino, A multifidelity multilevel Monte Carlo method for uncertainty
propagation in aerospace applications 19th AIAA Non-Deterministic Approaches Conference, AIAA SciTech
Forum, (AIAA 2017-1951)
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PRACTICAL IMPLEMENTATION
BUDGET-CONSTRAINED OPTIMIZATION

1 (Coupled) Pilot runs for LF and HF

1 P2ri; — \ 1 iepi2e mg , where sug = ClielF /CV
— 

N7F,* 2 [LE (v“, [IF] ClIF Aie) 1/21 (1 p_, ,Thr [4.1, 

'2 k =0 1 — 4 U cr
2 Optimal ratio sequence (e independent!)

N
HF,*

N
HF,*
2-1

(1 — 4)Var [IF] cr1

(1 — 11_1)1,ar [1,11F1
1 CHF

NHF,*

r* = (ri 1 , r* —  
HF,* 2 HF *
No N '

=  NL —1 

*-2 

3 Given the target number Ntilrirget of HF runs at finer resolution L

L — —1 )

A'P " = NIEget / 1-1 —q
q=0

4 Optimal low fidelity simulations NV = 71k1,IF'*
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Heat equation — Parabolic 1D
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HEAT EQUATION
VERIFICATION TEST CASE (WE KNOW THE EXACT SOLUTION)

Heat-equation in presence of uncertain thermal diffusivity and initial condition:

x,t a2Ou(,t) t) 
ce(t) = 0, a > 0,xE[O,L]=S2 clil

at ax2
u(x,t, 0) = uo(x, t), t E [0, tF] and t G ..:7:. c Rd

u(x, t, t)laci = 0

uo (x, t) = g(t)T1 (x) + I(t)T2(x)

800

600

400

200

0

200

-400

-600

0.2

—Initial condition —
Low Fidelity —
High Fidelity —

0.4 0.6 0.8

P. Low-fidelity:

ntow = {1,2,3} E Plow] = 33.15

0. High-fidelity: hhigh = niow U {9, 21}

E [Qhigh] = 41.98

p. Discrepancy E [Qhigh] — E [Ciim] = 8.83
(21%)
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NUMERICAL RESULTS
DESIGNING A CHALLENGING TEST CASE - MC ON Nx = 1000

50

45

40

a: 35
LLI

30

25

20
0 100000 200000 300000 400000 500000 600000 700000

N

MC LF
exact LF
MC HF

exact FIF

LF HF

# modes 3 21
Nx we

=0 5 30 42
E =1 15 60 28
E =2 30 100 23
=3 60 200 23

<>, The LF cannot increase the overall accuracy because it is heavily biased...
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NUMERICAL RESULTS
MULTI-LEVEL MULTI-FIDELITY (COMPARISON WITH MLM(.' AND MC)

70

65

60

55

50

45

40

35

30

25
10

MLMF _

100 1000 10000 100000 1e+06 1e+07

N

Expected Value

10

0.1

0.01

MLMF
MLMC

10 100 1000 10000 100000 1e+06 1e+07

N

Accuracy E
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Non-linear elastic waves propagation — Hyperbolic CLAWs 1D
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ELASTIC WAVES PROPAGATION IN A COMPOSITE MATERIAL
28 UNCERTAIN VARIABLES

in

12

10

8

I. Rod constituted by 50 layers, two alternated materials (A and B) with constitutive laws

10"A = lqtc + rp, 4 = 1 and 4 = — Li (0.01, 0.02)
'713 = IC13 c + Klic2, .re,',. = 1.5 and 4 =0.8

I. Uncertain initial static (u(x, t = 0) = 0) pre-loading state:

i exp ( (x — 0.35)(x — 0.25)  )
if

2 x 0.002 
0 < x < 1/2 ,.., U (0.5, 2)

Q(x) 
=

— 0.65)(x — 0.75) )exp  if 1/2 < x <

2 x 0.002 
1 U(0.5, 6.5)

I. Spatially varying uncertain density: p(x) = + 0.5 sin (2irx), U(1.5, 2)

► Clamped rod as B.C.

2  
0

LF 21 nodes -
LF 41 nodes - - -
IF 81 nodes - - -

LF 151 nodes - - -
HF 101 nodes —
HF 201 nodes —
HF 401 nodes —
HF 1001 nodes —
initial Solution —

0.2 0.4 0.6 0.8

Nx

Low-fidelity

(GODUNOV)

21

41

81

151

High-fidelity

(MUSCL—van Leer)

101

201

401

1001

Nt At

50 3.6 x 10-
100 1.8 x 10-3
150 1.2 x 10-3
288 6.25 x 10-4

200 9 x 10 4

400 4.5 x 10-4
900 2 x 10-4

2000 9 x 10-5

TABLE: Low- and high- fidelity simulations
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ELASTIC WAVES PROPAGATION IN A COMPOSITE MATERIAL
28 UNCERTAIN VARIABLES

tn
2

0.1

0.01

0.001
10

Standard Deviation of the Estimator

100 1000

Equivalent HF runs

10000 100000
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ELASTIC WAVES PROPAGATION IN A COMPOSITE MATERIAL
28 UNCERTAIN VARIABLES - AVERAGE OF 50 REALIZATIONS

St
an
da
rd
 D
ev
ia
ti
on
 

1

0.1

0.01

0.001

Average Standard Deviation of the Estimator

MLMC
MLMF YI
MLMF QI  

10 100 1000

Equivalent HF simulations

10000

Level MLMC MLMF-Yl MLMF-Ql
Ne NIP NI( re 4 NIIF W re f4

0 80029 5960 243178 40 0.97 4682 192090 40 0.97
1 6282 2434 12487 4 0.49 1049 13781 12 0.83
2 1271 262 3877 14 0.82 151 3657 23 0.92
3 212 47 966 19 0.84 34 754 21 0.86
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ELASTIC WAVES PROPAGATION IN A COMPOSITE MATERIAL
28 UNCERTAIN VARIABLES - AVERAGE OF 50 REALIZATIONS

St
an
da
rd
 D
ev
ia
ti
on
 

1

0.1

0.01

0.001

Average Standard Deviation of the Estimator

MLMC
MLMF YI
MLMF QI  

10 100 1000

Equivalent HF simulations

10000

Level MLMC MLMF-Yl MLMF-Ql
NE NI( re ,4 N.7 NliF re 4

0
ily-IFffi

243178 40 0.97 4682 192090 40 0.97
1 2434 12487 4 0.49 1049 13781 12 0.83
2 1271 262 3877 14 0.82 1 3657 23 0.92
3 47 966 19 0.84 754 21 0.86
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ELASTIC WAVES PROPAGATION IN A COMPOSITE MATERIAL
28 UNCERTAIN VARIABLES - AVERAGE OF 50 REALIZATIONS

St
an
da
rd
 D
ev
ia
ti
on
 

1

0.1

0.01

0.001

Average Standard Deviation of the Estimator

MLMC
MLMF YI
MLMF QI  

10 100 1000

Equivalent HF simulations

10000

Level MLMC
Ne NIP

MLMF-Yl
NIIF re f)., NIIF

MLMF-Ql
W re

0 80029 5960 243178 0.9 4682 192090
1 6282 2434 12487 4 0.49 1049 13781 12
2 1271 262 3877 14 0.82 

1
151 3657 23

3 212 47 966 19 0.84 34 754 21
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Cardiovascular flow — Flow/Structure interaction
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CARDIOVASCULAR FLOW
COURTESY OF C. FLEETER (STANFORD), PROF. D. SCHIAVAZZI (NOTRE DAME) AND PROF. A. MARDSEN
(STANFORD)

1.YItl 2. Maws & Segmentation 4. Solid 7. Slweiallon

17J

Cost
Solver (1 simulation)

Effective Cost
(No. 3D Simulations)

3D
1D

OD

96 hr
11.67 min

5 sec

1
2E-3

1.45F,5

3D Model 1D Model
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CARDIOVASCULAR FLOW
COMPUTATIONAL SETTING AND UQ SETUP

► We considered 9 uncertain BC parameters
(i.e. resistances)

0- Steady inlet flow (5 L/min)

► 20 Qols:
► Flows and pressures at the branches outlets
► Min and Max wall shear stress

105

100

• 95

E • 90
a
E 85
0.

80

75

Solver No. Simulations

3D
1D
OD

100
2000
10 000

Box Plot tor Qol 14 (Pressure at Lett Renal Artey) 

OD Model 1D Model 3D Model
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CARDIOVASCULAR. FLOW
UQ RESULTS

Accuracy 01 first 18 Qols with each method
10

1. CT Row

9
2. CB Flow
3. SMA Flow

MLA
8

4. RR Flow
5. LR Flow

HF
I SD B. RII Flow

LF 1 10 I
141.

13D1 HF

MLMF

HF 1301
7

6

E. 5

7. Ul Flow
8. RI Flow
8. LI Flow
10. CT Press
11. CB Press
12. SMA Press

I ID I

MEI MLA
1° 
4,

LF Eitel 41-0' I op I 4

13. RR Press
10. LR Press
15. RH Press

CV HF
I sp I 4'

LF. 3

15. LII Press
17. RI Prems
15. LI Press 

2

LF 1OD 1

(a) MultifIdelity (CV) (13) Multilevel (c)
0

II II

$,e 
4‘5.. 4'5' 4,

Estimators

Method
Effective Cost

(3D Simulations)
No. 3D

Simulations
No. 1D

Simulations
No. OD

Simulations

MC 9 885 9 885

MFB 39 36 154 880

i MLA 305 212 41 990
MLB 156 150 342 060

M LC
MLMF

165
165

156
156

1 324
1 249

351 940
362 590
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Nozzle flow — Aero-Thermo-Structure interaction
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AERO-THERMO-STRUCTURAL ANALYSIS
PROBLEM DESCRIPTION

(a) X47B UCAS (b) Nozzle close-up

FIGURE: Northrop Grumman X-47B UCAS and close up of its nozzle (Source: http://www.
northropgrumman. com/Mediallesources/Pages/MediaGallery . aspx?Product Id=1.1C- 10028)
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AERO-THERMO-STRUCTURAL ANALYSIS
COMPUTATIONAL SETTING

111.strlaselo

1-D engine model

7 8

Non-ideal nozzle aero

T,

1-D Conjugate Heat Transfer

a(x) = P(x) 

D 

(

)

Simplified hoop stresses

Low-fidelity model

= • .

1-6engine model

AVsymmetric Euler / RAN.$ egm
Adaptive meshing

7774f-7--
Flee loal Meh load

.L-IJ Heat Transfer

Coarse FEM structural mode!"

1-D'engirce model

RANS nozzle aerodynamics

Conjugate heat transfer

FEM structural model

Medium-fidelity model High-fidelity model
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AERO-THERMO-STRUCTURAL ANALYSIS
15 UNCERTAIN PARAMETERS

Parameter Range

inlet stagnation temperature [K] 897.75-992.25
Atmospheric Temperature [K] 248.9-275.1
inlet stagnation pressure [Pa] 216,000-264,000
Atmospheric Pressure [Pa] 57,000-63,000

Thermal conductivity [W/m K] 8.064-9.856
Elastic modulus [Pa] 7.38e10-9.02e10

Thermal expansion coefficient [1/K] 1.8e-6-2.2e-6
lower Bspline 1 [-] 0.005-0.03
lower Bspline 2 [-] 0.005-0.03
lower Bspline 3 [-] 0.005-0.03
lower Bspline 4 [-] 0.005-0.03
upper Bspline 1 [-] 0.005 -0.03
upper Bspline 2 [-] 0.005-0.03
upper Bspline 3 [-] 0.005-0.03
upper Bspline 4 [-] 0.005-0.03

TABLE: Uncertain parameters for the nozzle problem

► HF
Flow: Euler
Thermal/Stress: FEM

► LF
Flow: 1D non-ideal nozzle
Thermal/Stress: Thermal resistances and hoop model

► LF (updated)
Flow: 1D non-ideal nozzle
Thermal/Stress: FEM

. Control variate only at coarsest level!

Recent Advancements on Multifidelity UQ 55/135



delity UQ Multifidelity sampling AS for

AERO-THERMO-STRUCTURAL ANALYSIS
MESH DISCRETIZATION HIERARCHY

(a) Coarse

(c) Fine

(b) Medium

FIGURE: Close up of the meshes.

Triangles
Coarse 6,119
Medium 29,025
Fine 142,124

TABLE: Number of triangles.

LF HF
Coarse 0.016 0.053
Medium N/A 0.253
Fine N/A 1.0

TABLE: Computational cost.
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AERO-THERMO-STRUCTURAL ANALYSIS
CORRELATION AND VARIANCE REDUCTION

LF
correlation Variance reduction [%]

LF (updated)
correlation Variance reduction [%]

Th rust 0.997 91.42 0.996 94.2
Mechan ica I Stress 2.31e-5 2.12e-3 0.944 89.2
Thermal Stress 0.391 12.81 0.987 93.4

TABLE: Correlations and variance reduction for E2/4 = 0.001.

Accuracy (e2 / eP)
LF

Coarse Coarse
HF

Medium Fine
LF (updated)

Coarse Coarse
MF
Medium Fine

0.1
0.01
0.003
0.001

N/A
21,143
69,580
212,828

N/A
1,757
5,775
17,715

N/A
20
36
109

N/A
20
20
34

404
3,091
N/A

32,433

20
177
N/A
1,773

20
31
N/A
314

20
20
N/A
20

TABLE: Sample profiles for the LF and HF model as function of the normalized accuracy E2/4.
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AERO-THERMO-STRUCTURAL ANALYSIS
MULTILEVEL/MULTIFIDELITY EFFICIENCY

Es
ti
ma
to
r 
Va

ri
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ce
 (
no
rm
al
iz
ed
) 

0.1

0.01

0.001

MC —0—
MLMC —0—
MLMF -0—

MLMF (LF updated) 0--

10 100 1000 10000

Equivalent HF runs

100000
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Scramjet — 2D/3D LES (Combustion)
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SCRAMJET ENGINES
A LITTLE BIT OF CONTEXT: OPPORTUNITIES AND CHALLENGES

Supersonic combustion ramjet (Scramjet) engines

► are propulsion systems for hypersonic flight

► aim at directly utilize atmospheric air for stable combustion while maintaining supersonic airflow
► obviates the need to carry on-board oxidizer
► overcome the losses from slowing flows to subsonic speeds (no rotating element)

Several challenges

► characterizing and predicting combustion properties for multiscale and multiphysical turbulent flows (under
extreme environments)

► low throughput time vs need for mixture and self-ignition
► stable combustion for constant thrust

Designing an optimal engine requires

► Maximization of the combustion efficiency

► Minimization of the pressure losses, thermal loading

► Reducing the risk of unstart and flame blow-out
► Accomplishing these tasks under uncertain operational conditions (robustness and reliability)

From Jurzay (2018): The challenge of enterprising supersonic combustion in scramjet is b..] as difficult as lighting
a match in a hurricane.

[1] Urzay, J., Supersonic Cornbustion in Air-Breathing Propulsion Systerns for Hypersonic Flight, Annual Review of Fluid Mechanics,
Vol. 50, No. 1, 2018, pp. 593627. dob10.1146/annurev-fluid-122316-045217.

[2] Leyva, l., The relentless pursuit of hypersonic flight, Physics Today, Vol. 70, No. 11, 2017, pp. 3036. doi:10.1063/PT.3.3762.
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HYPERSONIC INTERNATIONAL FLIGHT RESEARCH AND EXPERIMENTATION (HIFIRE)
PROBLEM DESCRIPTION

► The HIFiRE project studied a cavity-based hydrocarbon-fueled dual-mode scramjet configuration

► Ground test rig, HIFiRE Direct Connect Rig (HDCR), built to replicated the isolator/combustion section

Computational
domain

Prirnary
injectors

(a) HIFIRE Flight 2 payload

S IZtd.7n 

tL:

0J r Isolator I Cavity _7-1 

273 214 2r 19 ill 4-119

Combustion chamber

(b) HDCR computational domain

711mm

FIGURE: Top: HIFIRE Flight 2 payload [1]. Bottom: HDCR schematic.

[1] Jackson, K. R., Gruber, M. R., and Buccellato, S., HIFiRE Flight 2 Overview and Status Uptate 2011, 17th AIAA International
Space Planes and Hypersonic Systerns and Technologies Conference, AIAA Paper 2011-2202, San Francisco, CA, 2011.
dok10.2514/6.2011-2202.
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HIFIRE DIRECT CONNECT RIG
DEVICE FEATURES AND COMPUTATIONAL SETUP

Computational
domain

Primary
injectors

Secondary
injectors

Isolator Combustion chamber
cavity

203 244 295 359 401 419 7 1 mm

(b) HDCR computational domain

Given the publicly available data for HDCR we used this device as reference in our ScrajetUQ project

► Constant area isolator attached to a combustion chamber

► Primary injector are mounted upstream of flame stabilization cavities (top and bottom walls)

► Secondary injectors are mounted similarly downstream of the cavities

► Geometry symmetric about the centerline in the y direction (we model only half rig)

► The fuel supplied is a gaseous mixture containing 36% methane and 64% ethylene by volume (similar to the
JP-7 fuel)

Computational setup

► A reduced three-step mechanism to characterize the combustion process

► Arrhenius formulations of the kinetic reaction rates (parameters are fixed at values that retain robust and
stable combustion)

► Large Eddy Simulations carried out by using RAPTOR code (Oefelein)
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RAPTOR CODE
COMPUTATIONAL FEATURES

RAPTOR

► Fully coupled conservation equations of mass, momentum, total-energy, and species for a chemically reacting
flow

► can handles high Reynolds numbers

► real gas effects

► robust over wide range of Mach numbers

► non-dissipative, discretely conservative, staggered finite-volume schemes
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No

SUPERSONIC COMBUSTING RAMJET
PROBLEM DESCRIPTION

Laminar-to-6J nce
Trans.°

Vehicle
Bow-Shook

Forebody

Shock/Boundary Layer
Interactions

'''4111111111.11111".:42i

Isolator
Shock Train Fuel Injectio'n

ln= I 'sc"t°r I C°'"custor l 
Intemal 
 I

Com,. Heat

Plasma Control Fuel Transfer
Subsystem

In flight

Radiation

Supersonic Mixing
and Combustion

Aftbody

E

Numerical model

•

L.

L.
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SCRAMJET
INSTANTANEOUS TEMPERATURE FIELD OVER DIFFERENT MESH RESOLUTIONS

400

T [K]

600 800

279 887
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SCRAMJET
24 UNCERTAIN PARAMETERS

Parameter Symbol Range
inflow boundary conditions
inlet
Stagnation pressure
Stagnation temperature
Mach number

Turbulence intensity

Turbulence intensity ratio
Turbulence length scale
Boundary layer thickness

Fuel injection (36%CH4, 64%C2H4)

Mass flux
Static Temperature
Mach Number

Turbulence intensity

Turbulence length scale

Aoi
Toi
M,

4 = ui/u,
h. = vi /ui

Li
bi

thf
Tf
Mf

if = uf/Uf

Lf

1.48 MPa ± 5%
1550 K ± 5%
2.51 ± 10%

[0.0 — 0.05]
1.0

[0.0 — 8.0]mm
[2.0 — 6.0]mm

7.37 x 10-3 kg/s ± 10%
300.0 K ± 5%

1.0 ± 5%

[0.025 — 0.075]

[0.02 — 1.0] mm

Wall boundary conditions
Wall Temperature T.,, Profile from KLE

Expansion (10 params)

Turbulence model parameters
Static Smagorinsky
Modified Smagorinsky constant
Turbulent Prandtl number
Turbulent Schmidt number

CR
Prt

set

[0.01 — 0.016]
[0.5 — 1.7]
[0.5 — 1.7]

TABLE: Summary of the uncertain parameters for the SCRAMJET problem.
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SCRAMJET

UQ RESULTS

correlation
Coarse Fine

Variance reduction [%]
Coarse Fine

PO 'mart 0.997 0.761 93 50
PO,,.,,,„,,,,,e“„ 0.875 0.593 72 30

Alm.= 0.975 0.649 89 36
TKEme„„, 0.824 0.454 64 17

Xmean 0.450 0.714 19 44

TABLE: Correlations and variance reduction.

2D 3D
d/8
d/16

5E-4 0.11
0.014 1

TABLE: Computational cost.

2D 3D
d/8
d/16

4,191 263
68 9

TABLE: LES simulations (target of 9 runs at 3D d/16 and e2/4 = 0.045).
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SCRAMJET
UQ SETTING

,D
0.1

w

0.01
10 100 1000 10000

Equivalent HF runs

100000 le+06
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MULTILEVEL, MULTIFIDELITY AND MLMF
RELATIVELY LARGE EXPERIENCE WITH REALISTIC PROBLEMS

Success stories

01. PSAAP 11— particle laden turbulence flow in radiative environment (collaborators: laccarino, Doostan, Jofre,
Fairbanks)

1. Cardiovascular flows — fluid-structure (collaborators: Fleeter, Schiavazzi, Marsden)

► Aero-thermo-structural analysis for nozzle devices (collaborators: Alonso, laccarino, Constantine)

► SCRAMJET engine (collaborators: Najm, Safta, Huan)

1. Large Eddy Simulations for wind plants (collaborators: David Maniaci, Ryan King)

11. Computer networks (collaborators: Laura Swiler, Jonathan Crussell)

Does MLMF always work better than MLMC?

► It cannot be worse than MLMC (except for the cost of the pilot samples), but not always better than MC if
MLMC is outside the 'design conditions' (more on this later on)

11. Wind turbine analysis with LES: 3 levels worse than a 2 levels...
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OPTIMAL CONTROL VARIATE
M LOW-FIDELITY MODELS WITH KNOWN EXPECTED VALUE

Let's consider M low-fidelity models with known mean. The Optimal Control Variate (OCV) is generated by
adding M unbiased terms to the MC estimator

ocv = +

► 0i MC estimator for the ith low-fidelity model

10. known expected value for the ith low-fidelity model

► = [cei, am]T set of weights (to be determined)

Let's define

► The covariance matrix among all the low-fidelity models: C E RMxM

► The vector of covariances between the high-fidelity Q and each low-fidelity Qi: c E RM

► c = c/Var [Q] = [Thyar [Qi] , . . , piviVar [Qm-]IT, where pi is the correlation coefficient (Q, Qi)

The optirnal weights are obtained as ce* = —C—lic and the variance of the OCV estimator

yar [VI/ = Var [0] (1 — eTC—lie)

= Var [0] (1 — /4civ), 0 < /4cv < 1.

For a single low-fidelity model: 4c,_1 = pl.t
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APPROXIMATE CONTROL VARIATE

M LOW-FIDELITY MODELS WITH UNKNOWN EXPECTED VALUE

For complex engineering models the expected values of the M low-fidelity models are unknown a priori

► Let's define the set of sample used for the high-fidelity model: z

► Let's consider /S/, ordered evaluations for zi (we assume b/, =

► Let's partition zi in two ordered subsets zt u 4 = zi (note that in general 4 n 4 ~ o)
The generic Approximate Control Variate is defined as

(=K,z) = 0(z) + E c,i (0,(z1) — tii(zh) = 0(z) + E ajAi(zi) = Q +
i=i

The optimal weights and variance can be obtained as

cvACV = Coo L, 4.1-1 coy [4,0]

Var [e? (aACV)] = Var [0] (1 — Coo [A, 01T C" [4'41
[ 0] 

1 Cov [4,
j Var 

= Var [0] (1 — R2Acv) .

,<I>, For a single low-fidelity model: Ricy_i = V p? (this result does not depend on the partitioning of z1)

NOTES: we are going from Cov [Q,,Qi] to coy [Ai, 4i]
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RECURSIVE DIFFERENCE ESTIMATOR
A RECURSIVE PARTITIONING WITH INDEPENDENT ESTIMATORS (EQUIVALENT TO MLMC FOR FIXED BIAS)

❑ D

.1

MLMC can be obtained from ACV with

► zt = z
• = .1±, for i =1, . . ,M — 1
▪ = —1 for all i

eLmc (z) = Q + E (-1) (ei(z1) - tij(z?))
i=1

var. [OMLMC] = Var [0] (1 — EltDiff)

M2 TM
RLiff = —aTiT? 2C".1)171 — c1M— E — (0,!T? + T? - 2.i.i_lpi,i_vriTi_l)nm 1=2 Th-1

where

— 
Var 
Var111,22(Q1) and ni = Izi21 /N is the ratio between the cardinality of the sets and z.

(Q)

NOTES

II' Given the recursive nature of RDiff, we can show that R6,. < pi (as ri —> oo and N is fixed)
11. It is actually possible to compute an optimal set of weights instead of using ai = —1 (w-RDiff)
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MULTIFIDELITY MONTE CARLO (PERERSTORFER, WILLCOX AND GUNZBURGER, 2016)
AN APPROXIMATED CONTROL VARIATE WITH A RECURSIVE PARTITIONING

Q Qs Quf

I I
sL

► 
MFMC can be obtained from ACV with

zt = I_l and zr = z, for i = 2, ... ,M

= z and zv = z,

MFMC Cov [Q,Qi] 
ai =  for i = 1, . . . ,M,

Var [Qi]

and the variance of the estimator is

Var [aMFMC] = Var [0] (1 — R4Fmc)

M r •

RMFMC = r-14 - PI (rl 1
i=1 r1

+ E 
i=2 riri-1

NOTES

► Given the recursive nature of MFMC, we can show that R1Fmc < pl. (as ri —> oo and N is fixed)

► Surprisingly, the covariance matrix Cov A] is diagonal you can compute in close form the optimal
weights, but the ability to leverage correlations among all the models is lost
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EXAMPLES OF CONVERGENT ESTIMATORS
IS IT POSSIBLE TO OVERCOME THE LIMITATION OF THE RECURSIVE SAMPLING SCHEMES?

We proposed two sampling strategies that overcome the limitation of the recursive schemes

Q Q2 • • Q.

i

Qa.

(a) ACV-IS sampling strategy. (b) ACV-MF sampling strategy.

As an example, let's consider the ACV-MF estimator

RACV—MF = [diag (F(MF)) o T[C o diag (F(MF))] —1 [diag (F(MF)) o .

The matrix F(MF) E RAI"I encodes the particular sampling strategy and is defined as

min(ri — 1
min(ri

ri 1
ri

iff ¢ j
, for ri oo, 0") —> 1M and 112AGv_MF RPcv

otherwise

NOTE

11.• No closed form for the optimal weights and the samples allocation per model
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A PARAMETRIC MODEL PROBLEM
WHAT HAPPENS FOR A LIMITED NUMBER OF LOW-FIDELITY SIMULATIONS?

We designed a parametric test problem to explore different cost and correlation scenarios (x, y /A-1,1))

Q = A (cos B x2 + sin 61 375)

Q1 = A1 (cos 191 x3 + sin Si y3)

Q2 = A2 (Ms 02 X + sin 02Y)

We use the following definitions

0.• A = N/il, A1 = -0, and A2 = isA (give unitary variance for each model)

► = fr/2 and 02 = fr/6 and 01 varies uniformly in the bounds 02 < 01 <

I. We consider a fixed cost ratio between models, i.e. a relative cost of 1 for Q, 1/w for Qi and 1/w2 for Qg

1.0

0.9

0.8

0 7

d 0.6

0.5

0.4
1.0
Bi

(a) Correlations

0.6 1.0
01

(b) Var. reduction ratios
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A PARAMETRIC MODEL PROBLEM

COMPARISON OF DIFFERENT ESTIMATORS (EQ. COST 100 HF)

1.0

0.8

it. 0.6

‘6 0.4

ig 0 2

0.0

0.6

0.0

0.6 0.8 1.0 1.2 1.4

(a) w = 10

0:6 018 110 112

(d) w = 50

1:4

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0:6 o:s 1.0 1.2

(b) w = 15

1.4

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0 . 0.0
0.6 0.8 1.0 1.2

(e) w = 100

1:4

0:6 0:8 1.0 1.2

(c) w = 20

0.6 0.8 1.0 1.2

(f) w = 1000

1.4

1.4

FIGURE: Variance reduction for cost ratios of [1, 1/w, 1/w2] for Q, Qi, and Q2
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Non-linear elasticity in heterogeneous media — Hyperbolic 2D CLAWs
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NON-LINEAR ELASTICITY IN HETEROGENEOUS MEDIA
PROBLEM SETUP

Hyperbolic system of equations describing the elastic wave propagation (normal and shear components) in two

spatial dimensions for a domain with two materials

0 0

A = —
0
[ 

0

,,

0
0

-+-
P

0

0 0

Parameters I P1
Distribution U (0 .5 ,1.5)

0.75

0.5

0.25

0

-0.25

-0.5

-0.75

1

qt Aq. +13.7), = 0, where
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NON-LINEAR ELASTICITY IN HETEROGENEOUS MEDIA

DETERMINISTIC RESULTS — CLAWPACK http://www.clawpack.org (VER. 5.x)

I order II order
Resolution 200 100 50 25 10 200 100 50 25 10
Norm. Cost 1.000 0.147 0.026 0.009 0.002 0.498 0.080 0.013 0.004 0.002

TABLE: Normalized cost with respect to the cost of the second order 200 x 200 resolution.

)1 -005 -0555

HF: top row — LF: bottom row

02

005 0-05

0 0

075-05-0-25 0 025050

9nra, saws -.0510,--26.20

r

Li

FIGURE: Shear stress at final tirne 0.5 for the two rnodel fidelities (top and bottom rows) and the five
discretization levels (200 x 200, 100 x 100, 50 x 50, 25 x 25, 10 x 10 from left to right) corresponding to the mean
values of the random parameters. The Qol is the average value of the shear in the dashed region within the right
materia I.
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NON-LINEAR ELASTICITY IN HETEROGENEOUS MEDIA
CORRELATION MATRIX

200 (l1) 100 (II) 50 (II) 25 (11) 10 (I1) 200 (I) 100 (I) 50 (I) 25 (I) 10 (I)

1.00000 0.99838 0.99245 0.96560 0.70267 0.99312 0.98333 0.93857 0.85400 0.56719

0.99838 1.00000 0.99092 0.96461 0.69060 0.99160 0.98380 0.93360 0,84743 0.55127

0.99245 0.99092 1.00000 0.98759 0.76255 0.99866 0.99484 0.96738 0.89785 0.63184

0.96560 0.96461 0.98759 1.00000 0.83904 0.98697 0.99400 0.99102 0.94874 0.71607

0.70267 0.69060 0.76255 0.83904 1.00000 0.76356 0.79165 0.89148 0.96032 0.96725

0.99312 0.99160 0.99866 0.98697 0.76356 1.00000 0.99700 0.96965 0.90058 0.63184

0.98333 0.98380 0.99484 0.99400 0.79165 0.99700 1.00000 0.98022 0.92207 0.66156

0.93857 0.93360 0.96738 0.99102 0.89148 0.96965 0.98022 1.00000 0.97785 0.78607

0.85400 0.84743 0.89785 0.94874 0.96032 0.90058 0.92207 0.97785 1.00000 0.89023

0.56719 0.55127 0.63184 0.71607 0.96725 0.63184 0.66156 0.78607 0,89023 1.00000

Table 6: Correlation matrix for the ten models used in the elastic equation problem Equation (45). The second-order (II) and the first-order (I)
schemes both employ five different resolution levels.
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NON-LINEAR ELASTICITY IN HETEROGENEOUS MEDIA
ALGORITHMS PERFORMANCE UNDER THREE REALISTIC SCENARIOS

10-0

y

11e,

10,

► Single fidelity (coarsening only): HF: 200 (II), LF: 100 (II), 50 (II), 25 (II), 10 (II)

► MultiFidelity + Coarsening: HF: 200 (II), LF: 100 (I), 50 (I), 25 (I), 10 (I)

► MultiFidelity + Aggressive Coarsening: HF: 200 (11), LF: 50 (I), 25 (l), 10 (l)

Haft

CV,IF

—

-V-

100
Target cost

FIGURE: Coarsening only

10,

'>•
10-0

100
Target cost

FIGURE: MF + Coarsening

10-0

8 10-0

Target cost

FIGURE: MF + Aggressive Coarsening
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Aero-thermo-structural analysis — A more realistic engineering example
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AERO-THERMO-STRUCTURAL ANALYSIS OF A JET ENGINE NOZZLE
PROBLEM INSPIRED BY THE NORTHROP GRUMMAN UCAS X-47B

(a) X47B UCAS (b) Nozzle close-up

FIGURE: Northrop Grumman X-47B UCAS and close up of its nozzle2.
Operative conditions

► Reconnaissance mission for an high-subsonic aircraft

► Most critical condition is the top-of-climb (Required thrust is 21, 500 N) CO 40, 000 ft and Mach 0.51
Nozzle structure Two layers separated by an air gap

► Inner thermal layer: ceramic matrix composite

► Outer load layer: composite sandwich material (titanium honeycomb between two layers of
graphite-bismaleimide Gr/BMI)

Uncertain parameters 40 uncertain parameters — mix of uniform and log-normal variables

10. 35 material properties variables

I. 2 atmospheric conditions

► 2 inlet conditions

O. 1 heat transfer coefficient

2http://www.northropgrumman.com/MediaResources/Pages/MediaGallery.aspx?Productld=UC-10028
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AERO-THERMO-STRUCTURAL ANALYSIS OF A JET ENGINE NOZZLE
COMPUTATIONAL SETUP (DATA COURTESY OF JEFF HORANSON AND PAUL CONSTANTINE, CU BOULDER)

A multiphysics problem (forward coupling)

► An Engine simulator provides the inlet conditions of the nozzle

► The SU2 CFD solver computes the temperature and pressure profile along the walls

► The Finite Element solver AERO-S computes (several metrics for) mechanical and thermal stresses in the
structure

Quantities of Interest (Qols)

► Mass as a surrogate for the cost of the device

► Thrust for the aerodynamics performance

► A temperature failure criterion in the inner load layer (Thermal stresses)

► A strain failure criterion in the thermal layer (Mechanical stresses)

NOTE: this problem naturally leads to a multifidelity setup

► Several CFD choices ranging from 1D ideal solver up to 3D RANS

► Geometrical approximations (Axisymmetric assumption)

► Several spatial resolutions for both the CFD and FEM meshes

► etc.
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PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM

COMPUTATIONAL SETUP (DATA COURTESY OF JEFF HORANSON AND PAUL CONSTANTINE, CU BOULDER)

10. We demonstrated that all the recursive schemes (MLMC, MFMC, MLMF, MIMC etc.) are bounded by the
correlation of the first low-fidelity rnodel

I. We want to verify that for the Sequoia problem a more efficient estimator can be built, i.e.

RG.C17 14cv_i

CFD FEM (Thermal/Structural) Cost
1D COARSE 2.63e-04

Euler 2D COARSE COARSE (axisymmetric) 9.69e-04
Euler 2D MEDIUM MEDIUM (axisymmetric) 3.18e-03

Euler 2D FINE FINE (axisymmetric) 9.05e-03
Euler 3D COARSE COARSE 1.16e-02
Euler 3D MEDIUM MEDIUM 3.58e-02
RANS 3D COARSE COARSE 1.00

TABLE: Relative computational cost for several model fidelities for the nozzle problem. All the cost

are normalized with respect to the 3D RANS solver.
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PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM
COMPARISON BETWEEN OCV AND OCY-1

Variance reduction
Qol OCV OCV-1 Ratio OCV/OCV-1

Thrust 0.020595 0.050432 0.41
Thermal stresses 0.0043612 0.0075662 0.58

Mechanical stresses 6.2981e-04 0.011720 0.05

TABLE: Performance of OCV and OCV-1 for the nozzle problem and three difFerent Qols.

► A separation between OCV and OCV-1 exists for all Qols

► OCV-1 attains more than one order of magnitude reduction over MC

I. For Thrust and Thermal stresses an additional 60% and 40% reduction can be gained with OCV

► For the Mechanical stresses the additional benefit is larger than 90%

‹ , The next step is to include the cost to understand how effectively we can exploit this gap with the
estimators we proposes
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CAN WE ENHANCE CORRELATION BETWEEN MODELS?
MULTIFIDELITY UQ ON THE REDUCED (SHARED) SPACE

Core Question
Q: Can we identify a shared space between models (possibly with independent/non-shared pararneterization) where
the correlation is higher?
A: Active Subspace method seems well suited for this (but this idea is not limited to it)

Pivotal idea and its main features

► For each model one can search for Active Directions independently

► lf the input variables of a models are standard Gaussian variables then the Active Variables are also
standard Gaussian variables

► Therefore, for each model the Qol can be represented on a (possibly reduced) space characterized by a join
standard Gaussian distribution

► We can sample along these shared Active Directions and 'map back' to the original coordinates of each
model separately

Some Questions:

► How do we treat the inactive variables?

► What if the model input are not Gaussian variables?

► What does it happen if the Active Directions are different between models? We expect this to happen often
in practice

► Why is this even supposed to work from a physical standpoint?
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ACTIVE SUBSPACES IN A NUTSHELL
(ALMOST) EVERYTHING YOU NEED TO KNOW TO USE IT WITH MULTIFIDELITY — SEE CONSTANTINE (2015) FOR MORE

We consider a black-box approach, i.e. the Qol Q is obtained through a computational model f given a vector of
input parameters x

f (a) Q

► Vector of Input parameters: x E Rm with joint distribution p(x)

► Let's introduce the m x m matrix C

C = f (tf) (tf)T p(x)dx

► Since C is l) Positive semidefinite and II) Symmetric, it exists a real eigenvalue decomposition

C = WAWT, where

► W is the m x m orthogonal matrix whose columns are the normalized eigenvectors

P. A = diag • • • , Xa,} and .Xj. > • • • > am, > 0

Let's define two sets of variables

y = E Rn (Active)
x = WAY Wrz WAY

z = Wja E R(m—n) (Inactive)

Linearity: x •-•••• JV(0, (X = Rm) then y = E y = WTot, x E Rm i• and y ,•••• ./V-(0, I)

This is true for each model, i.e. there will always be a shared space between different models (even if they have
a different parameterization)
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A QUICK DEMONSTRATION - GAUSSIAN INPUT
LOW-CORRELATED MODELS (CORRELATION SQUARED 0.05)

3
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A QUICK DEMONSTRATION - GAUSSIAN INPUT
IMPORTANT DIRECTIONS IN ACTIONS (CORRELATION SQUARED FROM 0.05 TO 0.9)
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A QUICK DEMONSTRATION — GAUSSIAN INPUT
NUMERICAL EXPERIMENT SETUP

We performed the following numerical experiment:

► We fix a computational budget (300 HF runs)
1.- We compute 1000 realizations for each estimator

► For MF estimator the cost of the total set of HF+LF runs is considered
P.- We report the pdf of the estimated Expected Value

NOTE 1: For this problem the expected value is known
NOTE 2: In this example the AS are searched for each estimator realization during
the pilot sample phase (this cost is not included, but they can be reused if needed...)
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A QUICK DEMONSTRATION
MONTE CARLO VERSUS CONTROL VARIATE
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A QUICK DEMONSTRATION
MONTE CARLO VERSUS CONTROL VARIATE
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A QUICK DEMONSTRATION
MONTE CARLO VERSUS CONTROL VARIATE
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A QUICK DEMONSTRATION
MONTE CARLO VERSUS CONTROL VARIATE
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Same computational cost for all the estimators!
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WHAT ABOUT THE INACTIVE VARIABLES?
HOW DO YOU TREAT THE INACTIVE VARIABLES?

x = WAY + WNAZ

► Given a sample along the Active Variable y, we need to recover x

► This mapping is ill-posed (infinitely many x exist)
► One possible regularization: conditional expected value of f given y

fAs (3') = f f (WAY + WNAZ) Pzly dz f (WAY + WIE [z]) f Pzly dz = f (WAY)
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JOINT NORMALITY: IS THIS REQUIRED?
NON LINEAR TRANSFORMATION EMBEDDED IN THE BLACK-BOX APPROACH

Q: Is the assumption of joint-normality on the input space of the model required?
A: No, a normal distribution is used only for the AS mapping in order to obtain a shared space between models

Let's assume, for example xi U (-1, 1) and toi Ai (0,1), we can define (i.e. Rosenblatt, Nataf, etc.) a non
linear function x = h(w) such that

—) h(w) f(R)
wi

Q, where xi = h(wi) = erf (—)
N/

From an AS perspective only w exists (however, for each w we can obtain x)

= WAY + WNAZ WAt

Flesponses along AS (Uniform Distribution) Scatter Plot along AS (Uniform Distribotion)
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JOINT NORMALITY: IS THIS REQUIRED?
NON LINEAR TRANSFORMATION EMBEDDED IN THE BLACK-BOX APPROACH

Q: Is the assumption of joint-normality on the input space of the model required?
A: No, a normal distribution is used only for the AS mapping in order to obtain a shared space between models

Let's assume, for example xi U (-1, 1) and toi Ai (0,1), we can define (i.e. Rosenblatt, Nataf, etc.) a non
linear function x = h(w) such that

—) h(w) f(R)
wi

Q, where xi = h(wi) = erf (—)
N/

From an AS perspective only w exists (however, for each w we can obtain x)

= WAY + WNAZ WAt

Responses along AS (Uniform Distribution)
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DISSIMILAR PARAMETERIZATION
ADDITIONAL INPUT VARIABLE FOR THE HIGH-FIDELITY MODEL

f (x , y , z) = exp (0.7x + 0.3y) + 0.15 sin (27x) + 0.75z3, where z — N(0, 1/3)

0.3

= 0.25

0.2

g, 0.15

0

1000 Estimator Realizations (Eq. Tot Cost 300 HF)

MC MCI

MC-MFAS =

— -

1 02 1.04 1.06 158

Expected Value

1.12

FIGURE: Normalized histograms for 1000 realizations in the case of dissimilar parametrization.

<> In this case we used 2 active directions for the HF and 1 for the LF
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WHY IS THIS SUPPOSED TO WORK FROM A PHYSICAL POINT-OF-VIEW?
ACTIVE DIRECTIONS LET EMERGE THE UNDERLYING PHYSICS

As an example, let consider the supersonic isoentropic flow in a diverging nozzle (sonic throat)

'Y

Pe = PO 
(1 + 1 MO — 1 , where

2

A2

M, [ 

2

„ 1 (1+ -Y 

—

2

1

11101

2( 1)argmin = f (Me) — — with f (Me) = —
Me A*

P. Given the shape of the nozzle (and its exit radius he), we can imagine 2 possible choices: 3D axisymmetric
and 2D planar

► The area ratio (Ae / A*) is linear in the 2D case (he / ht) and quadratic in the 3D case (4/4)
► Given the same longitudinal shape, the 3D nozzle lets the fluid expands more than the 2D nozzle

2D Nozzle Exit Pressure 38 Nozzle Exit Pressure
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WHY IS THIS SUPPOSED TO WORK FROM A PHYSICAL POINT-OF-VIEW?
ACTIVE DIRECTIONS LET EMERGE THE UNDERLYING PHYSICS (p2 = 0.9 -r 0.99)

As an example, let consider the supersonic isoentropic flow in a diverging nozzle (sonic throat)

Pe = PO (1 + 
1 M) -Y — , where

2 e

Ae 2

y+l

—argmin = f (X) — — with f (Me) =
1

Me [ 

2 

„ 1 (1 2 

1 

11'4)]

2( 1)
Me A*

I. Given the shape of the nozzle (and its exit radius he), we can imagine 2 possible choices: 3D axisymmetric
and 2D planar

► The area ratio (A., / A* ) is linear in the 2D case (he /ht) and quadratic in the 3D case (g/q)
10. Given the same longitudinal shape, the 3D nozzle lets the fluid expands more than the 2D nozzle
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Scatter Plot
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Non-linear elastic waves propagation — Hyperbolic CLAWs 1D

Recent Advancements on Multifidelity UQ 92/135



Multifidelity UQ Multifidelity sarnpling AS for MF UQ Surrogate MF Inverse MF UQ MF OUU Conclusions

NON-LINEAR ELASTICITY PROBLEM
CAN WE ENHANCE THE CORRELATION FOR THIS PROBLEM AS WELL?

rn

7

5

4

2

Let's consider an 'extreme' scenario (within the previous test problem)

LF 5 nddes —
HF 801 nodes —

/1-41k, A

0.2 0.4 0.6 0.8

Nx Nt I At
Low-fidelity 5 50 I 36 x 10-4

High-fidelity 801 600 30 x 10-5

TABLE: HF to LF Cost ratio r, 2800

► We compute the AS without the gradient (we use a linear regression)

► We use 40 HF samples for our estimator
IP- We perform 250 repetitions
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NON-LINEAR ELASTICITY PROBLEM
CAN WE ENHANCE THE CORRELATION FOR THIS PROBLEM AS WELL?
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Active Direction Agnostic sampling: p2 = 0.89
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NON-LINEAR ELASTICITY PROBLEM
CAN WE ENHANCE THE CORRELATION FOR THIS PROBLEM AS WELL?
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Lid- and Buoyancy-driven cavity flow — A CFD example
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
TEST CASE GENERALITIES

Physical test case

► Combination of the Lid- and Buoyancy-driven test cases

► Navier-Stokes equations for a fluid with density p and kinematic viscosity v enclosed in a square cavity of
size L

I. Top wall sliding with velocity UL

► Top and bottom walls held at different temperature —r net body force (buoyancy term via Boussinesq
approx.)

► Adiabatic side walls

► Cavity immersed in a gravity field with components gh and gu

10. Nominal conditions: Re = 1000 and Ra = 100000 for air Pr = 0.71 (constant)

Non-dimensional parameters

ULL
Re = —

Gr — lgl
v2

[3(Th — TO)L3

Pr = —
a

Ra = Pr Gr

Numerical approach

I. Implicit FV code on structured mesh with pressure-based SIMPLE discretiza on and dual-time stepping

► BC imposed via ghost cells
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
FLOW FIELD FOR THE NOMINAL CONDITIONS
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
MULTIFIDELITY UQ CASE

► HF: 101 x 101 spatial cells, T = 80 and Dt = 0.25 CHF = 1

► LF: 21 x 21 spatial cells, T = 15 and Dt = 0.5 —r CLF = 0.00107

Ve
rt
ic
al
 v
el

oc
it

r 
4

3

2

0

-2

-a

-4

-5

6
-0.6 -0.4 -0.2 0.2 0.4 0.6

FIGURE: Vertical velocity profile at the horizontal mid-plane of the cavity for the reference
condition for both HF and LF models.
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
MULTIFIDELITY PARAMETRIZATION

Parameter Min Max Mean
v 0.009 0.011 0.01
AT 9 11 10

gi,
gh

8.1
3.6

9.9
4.4

9
4

Liz, 9 11 10

TABLE: Ranges for the uniform variables of the cavity problem.

Let's have a look at the non-dimensional numbers (Pr is constant and Gr = Gr(Ra, Re) for this case)

Re = Re(v, UL)

Ra = Ra(g,,,gh, AT, v)

1.93  
MF •

1 92
. . • , , •• : .• 44•
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.
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
MULTIFIDELITY PARAMETRIZATION
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.1***, At 10.4 •• "1”• ie4 .1; ',el,".ey . • le•%..• •• • •••
31 3.2 3.3 3.4 3.5 3.6

High-fidelity

3.7 3.8 3.9

FIGURE: Scatter plot corresponding to 500
realizations of the HF and LF model with samples
drawn in the physical space and 60 samples drawn
along the common active direction.

4

Variable
Model

HF LF
v -0.0860585 -0.31282

AT -0.0036777 0.94981

gu -0.0057946 -a -0.0144436 -
U1 0.9961617 -

TABLE: Dominant eigenvectors for the cavlty
problem.
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
NUMERICAL TEST FOR MULTIFIDELITY

1 Fixed nurnber of pilot samples equal to 30 samples (in
the physical space)

0.25

2 AS evaluated (first order regression, no derivatives) from
the pilot samples and this sample set is discarded 

0.2

3 Initialization of the MF algorithm with 30 samples in the
Active variables to estimate the correlation r 0.i5

4 Optimal oversampling ratio for the LF and perform the
mean estimation

3
2 0.05

IP. Items (1-4) are repeated 300 times and the estimated
mean are reported

► In mean we used an equivalent cost of 34 HF samples
per estimator realization (this number is used for MC,
300 repetitions)

► Variance of the mean estimator reduced by one order of
magnitude

0

300 Estimator Realizations (Eq. Tot Cost 34 HF)

MC

MF-AS

_NEL i _MN
3 4 3.45 3. 3.55 3.6 3.65 3 7

Expected Value

FIGURE: Probability density function for the
estimators computed with 300 independent

realizations.
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
ALLEVIATING THE COST OF AS ESTIMATION

► The cost of the pilot samples accounted to
30 x 1 + 30 x 0.001 = 30.03 HF (coming frorn HF
mainly in this case)

► Can we re-use the HF samples without discarding them?

1 Pilot samples are generated in the physical space (30 as
done before)

2 The LF samples are discarded

3 The HF pilot samples are projected onto the active
direction

4 LF samples are generated at the Active Variables
locations of the HF

5 Correlation is estimated and the oversampling is
computed (always on the active variables)

6 The MF estimator is evaluated

► items (1-6) are repeated 300 times and the estimated
mean are reported
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0.15
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0.05

300 Estimator Realizations (Eq. Tot Cost 34 HF)

3.52 3.53 3.54 3.55 3.56 3.57

Expected Value

FIGURE: Probability density function for the
estimators MF-AS computed with 300

independent realizations with and without

reusing the HF samples.
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
PROJECTING ONTO THE ACTIVE VARIABLES FROM THE PILOT REALIZATIONS

10. By reusing the HF sarnples, we need to handle samples
that have not been generated along the active variables

P. Due to the nature of the mapping (inactive variables)
this projection will exhibit a noisy behavior

10: A very simple approach to improve this step is to
perform a regression over the active variables

4

3.9

3.8

3.7

3.6

3.5

3.4

3.3

3.2

3.1
-2

IR •

. •

HF •
HF (ref ularizpd) •

-1.5 -1 -0.5 0 0.5 1

Active variable
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FIGURE: High-fidelity realizations for 40 pilot
samples projected on to the active variable space

with and without regularization.
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
PROJECTING ONTO THE ACTIVE VARIABLES FROM THE PILOT REALIZATIONS

► By reusing the HF sarnples, we need to handle samples
that have not been generated along the active variables

P. Due to the nature of the mapping (inactive variables)
this projection will exhibit a noisy behavior

10: A very simple approach to improve this step is to
perform a regression over the active variables

1.92

1.91
Ir

1.9

1.89 seen
1.88

1.87

"
HF - LF •

1.86
HF (regularized) - LF •

1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 43

HF

FIGURE: High-fidelity realizations for 40 pilot
samples projected on to the active variable space

with and without regularization.
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LID- AND BUOYANCY-DRIVEN CAVITY FLOW
CAN I RE-USE ALSO THE LF PILOT SAMPLES?

► We can conceptually apply the same strategy for the LF
samples, however there is an additional challenge...

► ..we do not have a common sample set to estimate
the correlation along the active variables

► In order to compute the correlation before evaluating the
additional LF samples we use the PC expansion
(analytical expression)

P. Once the correlation is evaluated and the LF
oversampling is defined the initial LF set might be fully
re-used

► We can now perform MF-AS (re)starting from legacy
dataset

1 30 pilot samples extracted from a dataset of 500
evaluations (LF and HF are consistent)

2 300 repetitions of the estimator with full re-use of both
HF and LF

0. NOTE: there is a non-zero probability of using the same
evaluation multiple time (for different estimator
realizations)
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FIGURE: Probability density function for the
estimators MF-AS computed with 300

independent realizations with and without

reusing the pilot samples.
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Aero-thermo-structural analysis — A more realistic engineering example
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PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM
PROBLEM SETUP

► We only consider the ACV-1 estimator here, but the extension to ACV is straightforward

► The high-fidelity model is 3D Euler with a COARSE mesh

► The low-fidelity model is 2D Euler with either a consistent or inconsistent parametrization, i.e. the area of
the duct is forced to correspond to the one of 3D geometry

CFD FEM (Thermal/Structural) Parameterization Cost
3D Euler COARSE COARSE 1.00
2D Euler COARSE COARSE (axisymmetric) Consistent 0.201
2D Euler COARSE COARSE (axisymmetric) lnconstistent 0.135

TABLE: Re ative computational cost for the models used for the Active Subspace tests for the
nozzle problem. All the costs are normalized with respect to the 3D Euler COARSE solver.

We considered three scenarios

1 High- and low-fidelity model with inconsistent parametrization evaluated for the same set of samples (40
UQ parameterss);

2 High- and low-fidelity model with consistent parametrization evaluated at an independent set of samples
(40 UQ parameters);

3 High- and low-fidelity model with inconsistent parametrization evaluated for the same set of nominal
samples (96 + 40 UQ parameters).

,(), We use linear regression for all cases to compute AS...
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PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM
SCENARIO 1 - INCONSISTENT PARAMETERIZATION AND SAME SAMPLE SET

4 1 0 1

Aalv•Varlable

(a)Mass

Pave veriable

(c)Thermal Stresses

ar (KS

aA •

PAN. .51)15

(b) Thrust

/tan Oh.

(d) Mechanical Stresses

FIGURE: Qols w.r.t. the active variable for the nozzle problem in the case of inconsistent
parameterization for both the original data and the PCE regression with respect to the active
variable (Scenario 1).
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PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM
SCENARIO 2 - CONSISTENT PARAMETERIZATION AND INDEPENDENT SAME SAMPLE SET

315
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HF •
HF (PON

LF IPC51 •

A 0
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655
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"4000/
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Me. variable
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(b) Thrust

ele"se HL:F4 

•

Mt..*

(d) Mechanical Stresses

FIGT_TRE: Qols w.r.t. the active variable for the nozzle problem in the case of inconsistent
parameterization for both the original data and the PCE regression with respect to the active
variable (Scenario 2).
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PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM
SCENARIO 3 - INCONSISTENT DIMENSIONALITY 136 vs 40

385 970

16000

15000

14000

13000

12000

11000

10000 •

380 385 28000 28000 30000 32000 34000 38000 38000 40000 42000 44000

HF

(c) Thermal Stresses

5

Thrust

FIGURE: Qols w.r.t. the active variable for the nozzle problem in the case of inconsistent
parameterization for both the original data and the PCE regression with respect to the active
variable (Scenario 3).
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PRELIMINARY RESULTS FOR THE SEQUOIA PROBLEM
SCENARIO 3 — INCONSISTENT DIMENSIONALITY 136 vs 40

Qols p2 p As 2 MC

Estimator St.Dev

OCV-1 OCV-1 (AS)
Mass 0.822 0.999 1 0.178 0.001
Thrust 0.956 0.998 1 0.044 0.002

Thermal Stress 0.982 0.998 1 0.018 0.002
Mechanical Stress 0.985 0.986 1 0.015 0.014

TABLE: (Estimated) Standard DeVation for OCV-1 and OCV-1 (AS) (normalized w r.t. MC) for

the Sequoia application problem in the case of inconsistent parameterization and uncertain design

input in HF (Scenario 3).

<> These results are estirnated through the PCE along the active directions. We need to confirm the results by
running the model
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Supersonic Combustion — A challenging multiphysics problem
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RAPTOR CODE
COMPUTATIONAL FEATURES

RAPTOR

► Fully coupled conservation equations of mass, momentum, total-energy, and species for a chemically reacting
flow

► can handles high Reynolds numbers

► real gas efFects

► robust over wide range of Mach numbers

► non-dissipative, discretely conservative, staggered finite-volume schemes

Numerical settings

► 2D simulations

► 3 grid resolutions where cell sizes are 1/8, 1/16, and 1/32 of the injector diameter d = 3.175 mm (denoted
as d/8, d/16, and d/32)

► 63K, 250K and 1M grid points, respectively

► adaptive time steps with approximately equal simulation physical time

► warm start from a quasi-steady state nominal condition run

► 1.7 x 103, 1.1 x 104, and 7.3 x 10 CPU hours per run, respectively

► Roughly a cost factor equal to 8 between resolution levels
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RAPTOR CODE
EXAMPLE OF FLOW FIELDS

(d/32)1

/co (a/s) 

0 08 0 10 0.14 0.16

FIGURE: Solution fields of Mach number M (top three) and carbon monoxide mass fraction Yco
(bottom three) simulated at a randomly sampled input settings using the three difFerent grids.

Recent Advancements on Multifidelity UQ 105/135



Multifidelity UQ Multifidelity sarnpling AS for MF UQ Surrogate MF Inverse MF UQ MF OUU Conclusions

SC RAMJE T
QUANTITIES OF INTEREST (5)

li. Combustion efficiency (7/comb), defined based on static enthalpy quantities

11(Tref, Ye) — H(Trefi Yref) 

ncomb H(Tref Ye,ideal) H(Tref Yref)

► Burned equivalence ratio (Oburn) is defined to be equal to Oburn OG7/comb•

P. Stagnation pressure loss ratio (Patomo„c) is defined as

Ps,e
Pstagloss = 1 •

irsL

11.• Maximum and average root-mean-square (RMS) pressures (max Prms and ave Prms) are, respectively, the
maximum RMS pressure across the entire spatial domain, and the RMS pressure averaged across the spatial
domain between two injectors:

maxPrms = Tyx \ p(x, y)2 — [P(x, y)]

avePrms = 
1 
— \ P(x, y)2 — [P(x, y)]

2 
dx dy.

V x,y

P. Initial shock location (xshock) is the most upstream shock location.
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SCRAMJET

UNCERTAIN PARAMETERS (11)

Parameter Range Description
inlet boundary conditions:

Po [1.406, 1.554] x 106 Pa
To [1472.5, 1627.5] K

MO [2.259, 2.761]
4 [0, 0.05]
Ri [0.8, 1.2]

Li [0, 8] x 10-3 m

Fuel inflow boundary conditions:
If [0, 0.05]

Lf [0, 1] x 10-3 m

Turbulence model parameters:
CR [0.01, 0.06]
Prt [0.5, 1.7]
Set [0.5, 1.7]

Stagnation pressure
Stagnation temperature
Mach number
Turbulence intensity horizontal component
Ratio of turbulence intensity vertical to horizontal components

Turbulence length scale

Turbulence intensity magnitude

Turbulence length scale

Modified Smagorinsky constant
Turbulent Prandtl number
Turbulent Schmidt number

TABLE: Uncertain model input parameters. The uncertain distributions are assumed uniform

across the ranges shown.
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SCRAMJET DATASET
MULTIFIDELITY APPROACH FROM DATASET

► 2 spatial resolutions

I. 16 random variables (11 uncertainties + 5 design parameters)

► Dataset with 200 realizations (consistent parameterization)
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FIGURE: Qols w.r.t. the active variables for the scramjet application problem.
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SCRAMJET DATASET
MULTIFIDELITY APPROACH FROM DATASET

► 2 spatial resolutions

le 16 random variables

► Dataset with 200 realizations (consistent parameterization)
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FIGURE: Scatter plot for the active variables for the scramjet application problem.
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SCRAMJET DATASET
MULTIFIDELITY APPROACH FROM DATASET

► 2 spatial resolutions

lo• 16 random variables

► Dataset with 200 realizations (consistent parameterization)

Qols
Estimator St.Dev

p2
pAsi 
2 MC OCV-1 OCV-1 (AS)

ob,n 0.802 0.967 1 0.198 0.033
nvomb 0.933 0.986 1 0.067 0.014

TABLE: (Estimated) Standard Deviation for MF and MF-AS (normalized w.r.t MC) for the
scramjet application problem.
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SURROGATE-BASED MF UQ
MOTIVATION

Why do we want to use surrogate-based UQ if we already have sampling-based MF approaches?

► Sampling methods are very robust and often the only viable solution for UQ studies of high-dimensional,
noisy and possibly discontinuous problems...

► ...however many applications (especially their Qols) are much more regular than one might expect a priori

► In these circumstances, surrogate-based approach offer a huge advantage in term of their convergence rate

A recent example:

► DARPA SEQUOIA — aero-thermo-structural design of a nozzle (RANSH-FEM): the Qols where reasonably
well behaved and lower order (at least along the active direction(s))

► DARPA SCRAMJET — supersonic combustion (LES): the Qols were very noisy (additional error contribution
coming from unconverged statistics)

We currently continue the development in both areas to cover different needs for different applications
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THE TWO MAIN BUILDING BLOCKS
NON-INTRUSIVE PC AND SC

11,- Polynomial Chaos: Spectral projection using orthogonal polynomial basis

P+1

f = E #1z‘Pk
k=0

► Stochastic Collocation: Form interpolants for known coefficients

Notes:

► Common tools are regression, tensor/sparse quadrature, etc.
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SEMINAL IDEA
DECREASING 'COMPLEXITY' FOR THE DISCREPANCY FUNCTION

► The concept of multifidelity has been known/exploited in the optimization community for decades

11. One of the first applications of this concept in UQ:

Ng and Eldred. Multifidelity uncertainty quantification using non-intrusive polynomial chaos and stochastic
collocation. ln 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials
Conference, 2012.

The main idea is quite simple and effective: Can you use a LF model to capture most of the response and use
only fewer HF evaluations to correct it?

QHF = exp —0.05e cos 0.5g-0.5 exp — 5)2

QLF = exp —0.05e cos 0.54'

- High-Fidelity Model
- Correction Function

5 10 15
Polynomial Order

FIGURE: Spectral content
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'COMPLEXITY' OF A FUNCTION
ORDER, SPARSITY, LOW-RANK STRUCTURE...

The original idea was based on the following assumptions:

II. the LF model is able to capture the high frequencies of the response

0: only the low-order terms are included in the discrepancy term —> few evaluations of the discrepancy are
needed to build the response for the discrepancy

In many practical applications:

P. the LF model only capture low-order effects

► however the discrepancy term can have a structure that we can still exploit

Two possible structures that we can exploit are:

► Sparsity Compressed sensing: orthogonal matching pursuit (OMP), basis pursuit denoising (BPDN), least
angle regression (LARS), least absolute selection and shrinkage operator (LASSO)...

► Low-rank —r Functional Tensor-Train decomposition (TT)
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EXPLOITING FAVORABLE FUNCTION'S STRUCTURES
THREE MAIN STRATEGIES

In order we have tried several approaches:

1 Optimal resources allocation (direct extension of MLMC concepts to surrogates)
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EXPLOITING FAVORABLE FUNCTION'S STRUCTURES
THREE MAIN STRATEGIES

In order we have tried several approaches:

1 Optimal resources allocation (direct extension of MLMC concepts to surrogates)

2 Exploiting Restricted Isometry Property (RIP)
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EXPLOITING FAVORABLE FUNCTION'S STRUCTURES
THREE MAIN STRATEGIES

In order we have tried several approaches:

1 Optimal resources allocation (direct extension of MLMC concepts to surrogates)

2 Exploiting Restricted Isometry Property (RIP)

3 Greedy Multilevel Refinement
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EXPLOITING FAVORABLE FUNCTION'S STRUCTURES
STRATEGY 1: EXTENDING THE MLMC SAMPLING APPROACH TO SURROGATES

Main idea: Two parameters can be added to parametrize the variance of the recovered discrepancy term

VarN[Ykd Ne
Var

E.c; klyar [Yq] Cg k+, /liar [Yd
7,2/2

Notes:

► -y and k can be obtained as by-product of the k-fold cross-validation process

P. this approach can be extended to level-dependent parameters, i.e. ryg and kE (slightly different closed form
solution)

Findings:

► Abrupt transition in both sparse and low-rank recovery does not allow to efficiently estimate the
parameters and exploit the faster convergence

Low-lidelity 600, Highltdellty 20, degree a Low-hdel 600, H h- !dell 40, degree 4

164CiMM

FT 1= _
ec o 5

A

0.8

MCMC = —

FT =

PC =

Expected yalue

2 5 2.55 2.6 2.65

ExpePed yalus 

2 2.7 2.75 2.8 85 2 9

(a) 1,71,„„ = BOO, N,„gc = 20 and deg = 4 (b) = 000, Nh,o, = 40 and deg = 4

Recent Advancernents on Multifidelity UQ 116/135



Multifidelity UQ Multifidelity sarnpling AS for MF UQ Surrogate MF Inverse MF UQ MF OUU Conclusions

EXPLOITING FAVORABLE FUNCTION'S STRUCTURES
STRATEGY 2: RESTRICTED ISOMETRY PROPERTY (RIP) FROM Jakeman, Narayan, Zhou, 2016

Main idea: Address/Avoid abrupt transition by ensuring enough samples for accurate recovery

RIP : Ni > siLi log3 (s) log (ce)

where

► st is the sparsity, i.e. number of non-zero coefficients

I. Li is the mutual coherence, i.e. if ai are the normalized (aTai = 1) columns of the matrix A then

L = maxlaTajl for i j

► C,e is the cardinality of the dictionary

Algorithm:

► Start with pilot sample to estimate sparsity at each level k
I. Number of samples is increased to allow the recovery

Findings:

I. RIP is quite conservative and it is likely to overshoot so it is necessary to add a constraint on the profile
very difficult to handle the feedback
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0.128.
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EXPLOITING FAVORABLE FUNCTION'S STRUCTURES
STRATEGY 3: GREEDY MULTILEVEL REFINEMENT

Main issues discovered with strategy #1 and #2 are:

► Difficult to estimate a trend

► Difficult to handle the allocation strategy in order to avoid overshoot in term on number of samples

Proposed solution: Greedy refinement - compete refinement candidates to maximize induced change per unit cost

Algorithm:

► One or more candidates are generated per each level

► The impact of each candidate on the final Qols statistics is evaluated and normalized by the relative cost
of level increment

► Greedy selection of the best candidate

► Generation of new candidates for the selected level
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GREEDY MULTILEVEL REFINEMENT
LEVEL CANDIDATE GENERATORS

► Uniform refinement: coarse-grained refinement with one expansion order / grid
level candidate per model level
► Tensor / sparse grids: projection PCE and nodal/hierarchical SC
► Regression PCE: least squares / compressed sensing using a fixed sample ratio

► Anisotropic refinement: coarse-grained refinement with one expansion order /
grid level candidate per model level
► Tensor / sparse grids: projection PCE and nodal/hierarchical SC

► Index-set-based refinement: fine-grained refinement with multiple index set
candidates per model level; exponential growth in size of candidate set with
dimension.
► Generalized sparse grids: projection PCE and nodal/hierarchical SC

► Basis selection: coarse-grained refinement with a few expansion order frontier
advancements per model level
► Regression PCE
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GREEDY MULTILEVEL REFINEMENT
TEST CASE

Steady-state diffusion

— —
d [ du

a(x, — (x, = 10, (x, E (0, 1) x
dx dx

► x is the spatial coordinate

• a vector of independent random input parameters

10. a(x,

► in our test d = 9, i.e. = [-1, 1]9 denotes the (random) diffusivity field
Dirichlet boundary conditions are also assumed

.(0, c) = 0, .(1, c) = 0.

Qols defined as the solution u at specified spatial locations: x= 0.05, 0.5, 0.95. We represent the random
diffusivity field a using the following expansion

d 1
a(x, e) = 1 + E cos(2zrkx)Ck

k=1 k2'2

Multilevel setup: discretization corresponding to 4, 8, 16, 32 and 64 elements
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GREEDY MULTILEVEL REFINEMENT
COMPRESSED SENSING - STATISTICS

9

Pr, CS eh. level
-0-MFPCEOStlevel,0

nALPCECS Slevelx - 2
41-1411,0ECS Sieve,

51 
9

O-Gre.MLPOEC6evel

Slm

.0-erwarmLPccss,..,

FIGURE: Convergence for greedy multilevel PCE based on compressed sensing. Test problem is
steady state diffusion with nine random variables and one, two, or five discretization levels.
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GREEDY MULTILEVEL REFINEMENT
COMPRESSED SENSING - SAMPLES ALLOCATION

Conv Tol N1 N2 I N3 I N4 ± N5 I
1.e-1 198 9 9 9 9
1.e-2 644 198 9 9 9
1.e-3 1802 644 9 9 9
1.e-4 4505 1802 50 9 9

TABLE: Final sample profiles for greedy multllevel compressed sensing applied to steady state
diffusion (9 random variables, 5 discretization levels).

Notes:

P. We impose a collocation ration of 0.9, i.e. the system is underdetermined

► The first order correspond to 10 terms, therefore 9 simulations are needed (initialization/pilot)

► The second order correspond to 55 terms, therefore 50 simulations are needed
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GREEDY MULTILEVEL REFINEMENT
GENERALIZED SPARSE GRID - STATISTICS

—E— PCE UniSG single level
-e- PCE GenSG Smola level
-13- Greedy ML PCE UnGG 5 level

Greedy ML MSC UniSG 5 level
-0- Greedy ML PCE GenSG 5 level
-0- Greedy ML MSC GenSG 5 level

10-

Ei 10

1 104

—E— PCE UniSG single level
-e- PCE GenSG sIngle level
-13- Greedy ML PCE UnGG 5 level

• -13- Greedy ML FISC UniSG 5 level
-0- Greedy ML PCE GenSG 5 level

• -0- Greedy ML MSC GenSG 5 level

'°'-loi io' le 10° 10s 10° '‘' '10' 10' 10' 10° 10s
Equivalent HF Simulations Equivalent HF Simulations

FIGURE: Convergence for greedy multilevel PCE based on (generalized) sparse grids. Test problem
is steady state diffusion with nine random variables and one or five discretization levels (solid and
dashed lines, respectively).

°
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GREEDY MULTILEVEL REFINEMENT
GENERALIZED SPARSE GRID - SAMPLES ALLOCATION

Cony Tol N1 N2 I N3 N4 I N5

1.e-2 43 23 19 19 19
1.e-4 211 83 19 19 19
1.e-6 391 271 156 19 19
1.e-8 1359 743 327 59 19

1.e-10 3535 2311 1039 391 19
1.e-12 10319 5783 2783 1343 43
1.e-14 26655 14991 8063 3703 1535

TABLE: Final sample profiles for greedy multilevel refinement applied to steady state diffusion (9

random variables, 5 discretization levels).

Notes:

I. All levels incur a minimum 2n + 1 = 19 evaluation cost due to the initial set of level-one candidate index sets
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GREEDY MULTILEVEL REFINEMENT
CS/GSG — STATISTICS

10'

PCE CS single level
MF PCE CS 2 level p -10
MLPCECS5levelk-1
ML PCE CS 5 level 1.5

-13- ML PCE CS 5 level
-C1- MLPCECS5levelc=3
-0- Greedy ML PCE CS 5 level
—E— PCE UniSG single level
—e— PCE Gen. single level
-I} Greedy ML PCE UniSC 5 level
-1:1- Greedy ML MSC UniSG 5 level
-0- Greedy ML PCE GenSG 5 level
-0- Greedy ML MSC GenSG 5 level

10' 104
Equivalent HF Simulations

PCE CS single level
MF PCE CS 2 level p -10
ML PCE CS 5 level 1
ML PCE CS 5 level E = 1.5

-ID- MLPCECS5levelc=2
MLPCECS5levelc=3

-0- Greedy ML PCE CS 5 level
—E— PCE UniSG single level
—e— PCE GenSG single level
-13- Greedy ML PCE UniSG 5 level
-13- Greedy ML MSC UniSG 5 level
-0- Greedy ML PCE GenSG 5 level
-0- Greedy ML MSC GenSG 5 level 

10° 10' 10°
Equivalent HF Simulations

10°

FIGURE: Convergence for greedy multilevel PCE comparing generalized sparse grids and

compressed sensing.

Notes:

► The explicit nature of the sparse grid approaches allows for more precise convergence
► The compressed sensing approaches, while supporting sample profiles at the lower end of the cost spectrum,

are currently hampered in accuracy by solution of the large implicit systems that are allocated at the coarse
level
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BAYESIAN INVERSION
THE FULL UQ WORKFLOW

Statistical Inversion

(Bayesian inference)

Random inputs
Quantities of
interest (:201)

Notes:

IP. Prior distributions based on a priori knowledge

► From observational data (experiments, reference solutions.) we can infer posterior distributions via Bayes rule

10. Use of data can reduce uncertainty in parameter to Qol mapping (priors are constrained)

IP. Design using prior uncertainties can be overly conservative

► Reduced uncertainty of data-informed UQ can produce designs with greater performance

<> One of the most important tasks in UQ is to quantify and characterize the uncertainty from data...
...unfortunately it is also often overlooked
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BAYESIAN INVERSION
WAKE CHARACTERIZATION FOR A V27 ROTOR - PROBLEM DEFINITION

♦
DoF: 5480, Cost: 1 (- 8.5 s) DOF: 33952, Cost: 7 (- 1 min) DoF: 229928, Cost: 150 (-21 min)

HH_vel Velocity at hub [m/s] 6.0 10.0

power Exponent for inflow velocity profile 0.11 0.25

wind_angle Angle of wind direction [deg] -7.5 7.5

eff_thickness Effective Thickness of rotor plate 2.4 3.0

axial_induction_factor Ratio of air velocity reduction due to turbine 0.25 0.5

lmax Parameter for RANS turbulence model 10 20

<> For this case we considered 46,851 Qols (u,v,w) components at 5D from the rotor
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BAYESIAN INVERSION
WAKE CHARACTERIZATION FOR A V27 ROTOR — PC STATISTICS

(Stcl deo) velocity v

Gredy ML PC:

► Accuracy tolerance set to 10-7

► Coarse — 641 + 377 = 1018

IP. Medium — 377 + 193 = 570

► Fine — 193

0.• Total equivalent cost = 226

<> Single level greedy Sparse Grid which required (for the same tolerance) 1009 evaluations
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BAYESIAN INVERSION
WAKE CHARACTERIZATION FOR A V27 ROTOR — HF (NALU-WIND) SNAPSHOT
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BAYESIAN INVERSION
WAKE CHARACTERIZATION FOR A V27 ROTOR — HF (NALU-WIND) SNAPSHOT
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BAYESIAN INVERSION
WAKE CHARACTERIZATION FOR A V27 ROTOR - MAP SOLUTION

MidribY4111141

HH_vel [m/s] 8.864

poUder 0.11

wind_angle [deg] -0.516

eff_thickness [m] 3

axial_induction_fac
tor

lmax

0.471

10

Notes:

► WindSE does not have a rotating actuator disk, therefore the solution is symmetric

► Nalu-Wind has a rotating actuator disk/line model so the solution lacks symmetry

I. Three of our six parameters are getting pushed to their prescribed bounds

P. This degrades the efficiency of the MCMC process when we are trying to generate acceptable samples
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BAYESIAN INVERSION
WAKE CHARACTERIZATION FOR A V27 ROTOR — UPDATED SETUP

HH_vel Velocity at hub [m/s] 6.0 10.0

power Exponent for inflow velocity profile 041 0.0055 0.25

wind_angle Angle of wind direction [deg] -7.5 7.5

eff_thickness Effective Thickness of rotor plate 2.4 36 6.0

axial_induction_factor Ratio of air velocity reduction due to turbine 0.25 OA 0.8

lmax Parameter for RANS turbulence model 113 5 20

Dr*: 5480, Cost: 1 (-8.5 sec) poE: 33952, Cost: 7 (-1 min) 0.of: 229928, Cost: 150 (-21 min)

Notes:

I. We updated the bounds

0.• We updated the meshes (keeping the cost pretty much equal)

IP. We considered only 1/4 of the slice for only the u component (5265 Qols)
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BAYESIAN INVERSION
WAKE CHARACTERIZATION FOR A V27 ROTOR — MAP SOLUTION
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CONCLUDING REMARKS
WHAT I HAVEN'T TOLD YOU

FY2019 State-of-the-art Multilevel and Multifidelity use only low-fidelity models defined a priori, i.e. no
data-driven approachesi
LDRD-EE 'On-line Generation and Error Handling for Surrogate Models within Multifidelity Uncertainty
Quantification' (Pls: Blonigan, Geraci)
Main findings/contribution: (On-going collaboration under ASC V&V)

1 Preliminary encouraging results regarding the online construction and evaluation of ROMs from limited HF
data within the multifidelity workflow

2 Lacks of monotonicity in the ROM convergence w.r.t. number of basis terms and time-step size makes the
MF-ROM coupling very challenging

Can we still improve our frameworks/understanding?

► We have both advanced the state-of-the-art in multilevel/multifidelity UQ and developed an experience in
deploying these techniques to several application areas (aerospace, biomedical, energy, cybersecurity, etc.)

► A number of outstanding challenges still remain, a non exhaustive list:

1 How do we exploit very large model ensemble by efficiently discovering the
relationships among models?

2 Can we take advantage of a multi-physics context?
3 Optimization Under Uncertainty, Sensitivity Analysis and Reliability/Safety analysis

require the estimation of higher-order moments, rare events, etc. (Dr. Soren
Taveniers and Prof. Daniel Tartakovsky, Stanford)

4 Can we integrate online error estimators in our multilevel/multifidelity workflow?
(Collaboration with Prof. Guglielmo Scovazzi, Duke)

Recent Advancernents on Multifidelity UQ 134/135



Multifidelity UQ Multifidelity sarnpling AS for MF UQ Surrogate MF Inverse MF UQ MF OUU Conclusions

C ONCLUDING REMARKS
STILL AN ACTIVE RESEARCH AREA

Summary:

► Multifidelity strategies are appealing techniques for UQ

► Recursive estimators are limited by the correlation of the first low-fidelity model

► We proposed a new framework to overcome this issue (we can target arbitrary deep recursive levels ACV-KL,
not discussed here)

► Enhancing the correlation seems also possible by resorting to Active Directions (which also provide greater
flexibility)

► Similar concepts also apply to surrogates

(Incomplete) list of references:

► N. Metropolis, The beginning of the Monte Carlo Method, Los Alamos Science, Special Issue 1987.

► Mike Giles' website: lattps://people.maths.ox.ac.uk/gilests/ (I've borrowed some material from his lectures)

► Monte Carlo Methods by Johansen and Evers, Lecture note. University of Bristol

► Pasupathy et al, Control-variate estimation using estimated control means, IIE Transactions 44(5), 381-385, 2014.

► Halton, J. H., A retrospective and prospective survey of the Monte Carlo method. SIAM Review, 12, 163, 1970.

► G. Geraci, M.S. Eldred & G. laccarino, A multifidelity multilevel Monte Carlo method for uncertainty propagation in aerospace
applications 19th AIAA Non-Deterministic Approaches Conference, AIAA SciTech Forum, (AIAA 2017-1951)

► A.A. Gorodetsky, G. Geraci, M.S. Eldred & J.D. Jakeman, A Generalized Framework for Approximate Control Variates. arXiv
preprint arXiv:1811.04988v2 [stat.00]. Submitted, 2018.

► G. Geraci, M.S. Eldred, Leveraging Intrinsic Principal Directions for Multifidelity Uncertainty Quantification. Sandia Report
SAND2018-10817, 2018.

► G. Geraci, M.S. Eldred, A.A. Gorodetsky & J.D. Jakeman, Recent advancements in Multilevel-Multifidelity techniques for forward
UQ in the DARPA Sequoia project. AIAA Scitech 2019 Forum

► G Geraci, F Menhorn, X Huan, C Safta, Y Marzouk, HN Najm, MS Eldred, Progress in Scramjet Design Optimization Under
Uncertainty Using Simulations of the HIFiRE Direct Connect Rig. AIAA Scitech 2019 Forum

Recent Advancements on Multifidelity UQ 135/135



concnsias

THANKS!

Acknowledgements

► DARPA Equips Program
► Gianluca laccarino, Juan Alonso, Rick Fenrich and Victorien Menier — Stanford

University

► Paul Constantine and Jeff Hokanson — University of Colorado at Boulder
► Laboratory Directed Research & Development Funds 0 Sandia
► DOE EERE through the A2e program

Sandia National Laboratories is a multimission laboratory managed and

operated by National Technology and Engineering Solutions of Sandia,

LLC., a wholly owned subsidiary of Honeywell International, Inc., for

the U.S. Department of Energys National Nuclear Security Administration

under contract DE-NA-0003525.

Recent Advancements on Multifidelity UQ 135/135


