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Introduction and Motivation

• A variety of sources can produce heat flux well beyond those
typical of fire environments:
• Directed Energy Weapons

• Nuclear Weapons

• Explosives, Propellants
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Ignitable Fuels

\

Thermal Radiation
 .

• Arc Faults Thermal Event

• At extreme (» 100 kW/m2) heat flux, the incident energy
dominates the surface energy balance
• Radiation (-100 kW/m2) and convection (-10 kW/m2) are relatively

small even when the surface reaches ignition temperatures (z. 600 °C)

• Objective: Determine ignition and damage thresholds at
extreme heat flux for a wide range of materials.
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Approach

■ The breadth of this problem is daunting:
■ 100's of materials (organics, polymers, composites...)

■ With varying properties:

Color, shape, moisture, degradation...

■ And environmental variables

Wind speed, humidity, orientation, rain/snow/ice...

■ Models are required to collapse the problem:
■ Empirical Models

Simple/Easy, but neglect relevant physics (e.g., gas dynamics)

■ Computational Models

Complex/Difficult, but address wider range of phenomena

■ Develop both types of models supported by concentrated
solar power experiments
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Ignition Models
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Ignition Models
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Ignition Models
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Ignition Models

■ The correct approach depends on the material:

Empirical Approach (Ignition Map) 

For some materials, ignition is

dominated by the solid phase:

Heat
Diffusion

L

ary

GAS PHASE

T

The problem is greatly simplified.

Ignition predicted from well-known
quantities.
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Computational Approach 

For other materials, ignition is coupled
to both the solid and the gas:

SOLID PHASE

k, p, cp

Heat
Diffusion

L  

Turin=

Variability

and more._

Full problem is too complicated for
empirical correlations, high-fidelity

computational models are required.
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Martin's Ignition Map
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Martin, S.B., 10th Sym. Comb. (1) 1965

Norm. Flux:

a*

Norm. Fluence:

Fourier #:

a iapeakL

k

aQ"
Q* = pcpL

Q* at*
Fo = — =

q* L2

• Simple prediction variables (normalized flux and fluence).

• Intensively validated for black, alpha cellulose papers.

• Limited data for similar materials (newspaper, cotton fabric)
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Empirical Ignition Models

■ We believe a limited subset of the ignition problem can be
addressed using empirical ignition models.

■ The remainder of this talk demonstrates this capability by:
■ Reformulating Martin's Ignition Map into an empirical correlation.

■ Reduce ignition threshold dependence on exposure shape.
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1
This Work

■ Related work has focused on experiments:
■ Validating this theory with various cellulosic papers.

■ Extending this theory to other related materials.
Related work l
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Ignition Variables

• Martin focused on four ignition
variables:
• Paper Thickness (L)

• Paper Density (p)

• Exposure Intensity (qp"eak)

• Exposure duration (t or Q'')

• The effects are summarized by
two normalized variables.

• Studies performed for two
exposure t •es:
• Nuclear Weapon (NW)

Square Wave (SW)
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Ignition Types

• By normalizing the ignition variables, Martin's empirical
model predicts the ignition type.

I—Ignition Variables:

Ly Py qp"ealv (2"

Normalized Variables:

q* y (2*
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Ignition Types:
1) Transient Flaming

• Flames during exposure
• Nothing after exposure

2) Sustained Smoldering/Glowing
• Smoldering after exposure

iP
3) Sustained Flaming
i. • Flaming after exposure

r
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Generating the Ignition Map

• Martin generated a separate ignition map for
each exposure type.
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Theoretical Development

• Martin's Map is useful for visual inspection in current form

• How do we transform into empirical model w/ uncertainty?
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Three-Step Approach:

1. Divide into 'upper' and
`lower' thresholds.

2. Develop correlations
for each threshold.

3. Evaluate the impact of
exposure shape.
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Ignition Map: Lower/Upper Thresh.

• Ignition map consists of upper and lower threshold.
• Exceeding lower threshold yields ignition of any type.

• Exceeding upper threshold yields sustained ignition (Glow. or Flam.).
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Ignition Map: Lower Threshold
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• Examine Lower Threshold for

square-wave data.

• Does not have a simple form

for an empirical correlation.

• The shape matches theoretical

predictions for a critical

ignition temperature.

Martin was an advocate for
critical surface temp.

• Early versions of the ignition

map were based on Fourier

number.

Following the approach/mindset of Martin, quantify lower
threshold using a 'critical surface temperature rise'
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Ignition Map: Crit. Surface Temp.

ATS = ATth

L

When does surface
reach critical temp?
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• Thermal diffusion into a radiantly
heated slab.
• Ignore other effects (pyrolysis, losses, etc.)

• Solid temperature has well-defined sol'n:

00
k [T (x , F o) — T i] 2 1 M,7T X

aq' 0 ' L
 = Fo + 

ri- m2 cos (— L
) [1 — exp(—m2m2Fo)]

m=1

00

ATth 2 1
= Foth + in2[1 — 

exp(-772272Foth)]

m = 1
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Ignition Map: Crit. Surface Temp.

• Can predict ignition using criticalFsouthrface temperature rise:
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Correlating Crit. Surf. Temp. Rise

• Using Martin's SW data, generate correlation (w/ UQ) that

describes lower threshold:

• Critical Surf. Temp. Rise varies linearly with Fourier number

• Data scatter were not (significantly) correlated to other variables

log Q;ii = log ATth logf(Foth)

log ATth = 140 + A1 log Foth

Ao = 3.090 ± 0.16%
A1 = 0.052 ± 14.3%

4red = 0.517
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Adding Correlations to the lgn. Map

• Returning to the ignition map, the correlation is transposed
on the data.
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• The upper threshold is captured by a simple correlation:
= 2.84 ± 1.1%

log Qt*h = Bo + B1 log Foth = —0.286 ± 20% 2 2



Why Correlations?

• These correlations are useful because:
• Predict ignition mode (none, transient, or sustained).

• Include uncertainty quantification.

• Doesn't require 'visual inspection.'
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Effect of Exposure Shape

• Based on Martin's work, a new ignition map is required for
every possible exposure shape.
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Reducing Exposure Shape

• Effect of exposure shape can
be reduced/eliminated by:
• Evaluate fluence at the time of

ignition.

ii 
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Reducing Exposure Shape
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• Using the time-of-ignition quantities, the SW and NW data
have reasonable agreement.

• Lower thresholds align, but upper threshold varies.

• Based on above, we can compare lower thresh. to Solar Furnace data.
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Why Time of Ignition?

• The time-of-ignition data are incredibly useful because:
• Single ignition map describes any radiation source (NW, SW, etc.)

Only lower threshold is the same. Upper threshold varies.

• The map does NOT require threshold exposures!

Much more efficient then staircase method used in historical work.

• We can use the developed correlation (SW) for any exposure shape.
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Ignition Map: Other Materials
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• Variables for Empirical Models:

• Every material will have a different ignition threshold!!

For example, ignition of a plastic will (probably) not align with cellulose.

For the empirical model, a new ignition map must be generated for every

material of interest.

• Might be able to tune parameters in critical surface temp. rise model

log Qt*h = A0 + A1 log Foth + log f (F oth)

However, the validity of this model must be demonstrated as the
coefficients are generated.

For relevant materials, we can generate a look-up table.

Material A0 A1

Cellulose (black) 3.09 ± 0.16% 0.0523 ± 14.3%

Polystyrene ? ?

Wood ? ?
28



Conclusions

■ Ignition map neglects a variety of physics, with reasonable
success.

■ The lower and upper thresholds can be described by simple
correlations, with uncertainty quantification.

■ The effect of exposure shape can be reduced by basing the
ignition maps on time-of-ignition data.

■ Data from related work indicate ignition map is perhaps
extensible to other materials.
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Ignition Map: Papers

• Four types of paper were tested at the Solar Furnace

Black Poster Board

— 500 kJ/m2

400 kJ/m2

200 kJ/m2

100 kJ/m2

a-Cellulose Paper
w/ Graph. Powder

180 kJ/m2

120 kJ/m2

60 kJ/m2

20 kJ/m2

a-Cellulose Pulp

— — 2700 kJ/m2

- — 1800 kJ/m2

900 kJ/m2

300 kJ/m2
s1 1 1 1 1 1  EP 
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Copy Paper

— 1500 kJ/m2

1000 kJ/m2

500 kJ/m2

250 kJ/m2
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Ignition Map: Papers

• All papers align reasonably well with ignition map

• Data are insufficient for examining upper threshold.
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Ignition Map: Walnut Veneer

• Map extends reasonably well to wood?
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Ignition Map: High-Impact Polystyrene

• Polystyrene has similar trend, but higher threshold
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