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Introduction and Motivation

= Avariety of sources can produce heat flux well beyond those
typical of fire environments: Ignitable Fuels

Thermal Radiation

= Directed Energy Weapons

= Nuclear Weapons

= Explosives, Propellants
= Arc Faults Thermal Event
= At extreme (>> 100 kW/m?) heat flux, the incident energy
dominates the surface energy balance

= Radiation (~100 kW/m?) and convection (~10 kW/m?) are relatively
small even when the surface reaches ignition temperatures (= 600 °C)

= Objective: Determine ignition and damage thresholds at
extreme heat flux for a wide range of materials.
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Approach UL

= The breadth of this problem is daunting:
= 100’s of materials (organics, polymers, composites...)
= With varying properties:
= Color, shape, moisture, degradation...
= And environmental variables
= Wind speed, humidity, orientation, rain/snow/ice...

= Models are required to collapse the problem:
= Empirical Models
= Simple/Easy, but neglect relevant physics (e.g., gas dynamics)
= Computational Models
= Complex/Difficult, but address wider range of phenomena

= Develop both types of models supported by concentrated

solar power exgeriments 4
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lgnition Models

= The correct approach depends on the material:

Empirical Approach (lgnition Map)

For some materials, ignition is
dominated by the solid phase:

The problem is greatly simplified.

Ignition predicted from well-known
guantities.

Computational Approach

For other materials, ignition is coupled
to both the solid and the gas:

Full problem is too complicated for
empirical correlations, high-fidelity
computational models are required.
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Martin, S.B., 10" Sym. Comb. (1) 1965

Norm. Flux:
CI* . aq;;eakl‘
B k
Norm. Fluence:
. aQII
Q" = i
PCp
Fourier #:
Fo = Q— = 72
q L

= Simple prediction variables (normalized flux and fluence).

= |ntensively validated for black, alpha cellulose papers.

= Limited data for similar materials (newspaper, cotton fabric)
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Empirical Ignition Models Q=N

= We believe a limited subset of the ignition problem can be
addressed using empirical ignition models.

= The remainder of this talk demonstrates this capability by:

= Reformulating Martin’s Ignition Map into an empirical correlation.

= Reduce ignition threshold dependence on exposure shape. This Work

= Related work has focused on experiments:

= Validating this theory with various cellulosic papers.

= Extending this theory to other related materials. o™
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lgnition Variables

= Martin focused on four ignition

variables:
= Paper Thickness (L)
= Paper Density (p)
= Exposure Intensity (qpeqp)

= Exposure duration (t or Q")

= The effects are summarized by

two normalized variables.

= Studies performed for two
exposure types:
= | Nuclear Weapon (NW)

= |Square Wave (SW)

Flux Normalized to Peak
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Ignition Types ) .

= By normalizing the ignition variables, Martin’s empirical
model predicts the ignition type.

lgnition Variables: Ignition Types:
/" . 1) Transient Flaming
L p qpear Q - Flames during exposure

* Nothing after exposure

2) Sustained Smoldering/Glowing
« Smoldering after exposure

Normalized Variables:

q,Q 3) Sustained Flaming
 Flaming after exposure




Flux Normalized to Peak

Generating the Ignition Map

= Martin generated a separate ignition map for

each exposure type.
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Theoretical Development

Normalized Fluence, K

th

Martin’s Map is useful for visual inspection in current form

How do we transform into empirical model w/ uncertainty?
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Three-Step Approach:

1. Divide into ‘upper’ and
‘lower’ thresholds.

Develop correlations
for each threshold.

Evaluate the impact of
exposure shape.
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ignition Map: Lower/Upper Thresh. @&

= |gnition map consists of upper and lower threshold.
= Exceeding lower threshold yields ignition of any type.
= Exceeding upper threshold yields sustained ignition (Glow. or Flam.).
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lgnition Map: Lower Threshold ),
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Examine Lower Threshold for
square-wave data.

= Does not have a simple form

for an empirical correlation.

The shape matches theoretical
predictions for a critical
ignition temperature.

= Martin was an advocate for
critical surface temp.

Early versions of the ignition
map were based on Fourier
number.

Following the approach/mindset of Martin, quantify lower
threshold using a ‘critical surface temperature rise’
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Ignition Map: Crit. Surface Temp. =

f— L — = Thermal diffusion into a radiantly
heated slab.
— = |gnore other effects (pyrolysis, losses, etc.)

14
4o _____

= Solid temperature has well-defined sol’'n:

k|T(x,Fo) — T; 2 1 mmx
[T¢ aqu l] =Fo + —3 ) 3 ¢0s (T) [1 — exp(—m?n?Fo)]
m=1

—

X
AT, = ATy, /

When does surface AT 5 2 g
it 2 th
reach critical temp~ N = Foy, + FZ — [1 — exp(—m?m?Fo,)]
m=1

*
dtn
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lgnition Map: Crit. Surface Temp. W&

= Can predict ignition using critical surface temperature rise:
FOth

Qin = qepFoen = ATy |
Fou + ?Zmﬂ —2 [1 — exp(—m?m2Foy,)]

Qtn = ATen f(Foen)
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Correlating Crit. Surf. Temp. Rise =~ @

= Using Martin’s SW data, generate correlation (w/ UQ) that
describes lower threshold:
= Critical Surf. Temp. Rise varies linearly with Fourier number
= Data scatter were not (significantly) correlated to other variables
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Adding Correlations to the Ign. Map @&

= Returning to the ignition map, the correlation is transposed
on the data.

T T T T B
] -0 Sustained Smoldéring/Flaming [
< oot - O  SW Sust. Glowing
g | L B 0 DT < i O SW Sust. Glow/Flame
E 1077 ‘ V : {  SW Sust. Flaming
5 SN, Transient  f /A SW Trans. Flaming
[ 9 \X% Flaming -~ | Regression
£ Nop-ignition .~ "¢y 7 [ 90% Conf. Int.
2 2 ’ S | |— — —90% Pred. Int.
. » -
T
10 102 10° 10*

Normalized Irradiance (K)

= The upper threshold is captured by a simple correlation:
By= 284 +1.1%
B, = —0.286 + 20% 5

log Q;;, = By + By log Foyy,



Why Correlations?

= These correlations are useful because:
= Predict ignition mode (none, transient, or sustained).
= |nclude uncertainty quantification.
= Doesn’t require ‘visual inspection.’

1 1 IIIIIII 1 1 IIIIIII 1 1 IIIIIII 1 1 1
o =
B 7 o )

Sustained Smoldéring/Flaming~ [
SW Sust. Glowing

O

) - 2 “‘ .

EOER O | QuesET O  SW Sust. Glow/Flame
A

—
o
w

SW Sust. Flaming
/s SW Trans. Flaming

Normalized Fluence (K)

s Flaming - Regression
T SN N G 90% Conf. Int.
- \ E
1 1 I I‘IIIII I I 1 I"IIIII 1 1 | I"I.'IIII I | 1 n
10’ 102 108 10*

Normalized Irradiance (K)
23
—————————————————————————————————————————————————————————————————————————————————————————————————————————————————————



Effect of Exposure Shape

= Based on Martin’s work, a new ignition map is required for
every possible exposure shape.

How can we generate a
‘unified’ map?

Flux Normalized to Peak
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Reducing Exposure Shape ) e,

= Effect of exposure shape can
be reduced/eliminated by:

ti
; gn
= Evaluate fluence at the time of I
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Reducing Exposure Shape

th

= Using the time-of-ignition quantities, the SW and NW data

have reasonable agreement.
= Lower thresholds align, but upper threshold varies.

= Based on above, we can compare lower thresh. to Solar Furnace data.
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Why Time of Ignition? )

= The time-of-ignition data are incredibly useful because:

= Single ignition map describes any radiation source (NW, SW, etc.)

= Only lower threshold is the same. Upper threshold varies.
= The map does NOT require threshold exposures!

Much more efficient then staircase method used in historical work.

= We can use the developed correlation (SW) for any exposure shape.
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Ignition Map: Other Materials UL

= Variables for Empirical Models:

= Every material will have a different ignition threshold!!
= For example, ignition of a plastic will (probably) not align with cellulose.

= For the empirical model, a new ignition map must be generated for every
material of interest.

= Might be able to tune parameters in critical surface temp. rise model
log Qip = Ao + A1 log Foe, +log f(Foen)
= However, the validity of this model must be demonstrated as the
coefficients are generated.

= For relevant materials, we can generate a look-up table.

[T T Y

Cellulose (black) 3.09+0.16%  0.0523 + 14.3%
Polystyrene ? ?

Wood ? ?
28




Conclusions ()}

= |gnition map neglects a variety of physics, with reasonable
success.

= The lower and upper thresholds can be described by simple
correlations, with uncertainty quantification.

= The effect of exposure shape can be reduced by basing the
ignition maps on time-of-ignition data.

= Data from related work indicate ignition map is perhaps
extensible to other materials.
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Ignition Map: Papers ) ks,

= Four types of paper were tested at the Solar Furnace

slack Poster Board a-Cellulose Paper a-Cellulose Pulp Copy Paper

w/ Graph. Powder

= — 2700 kJ/m? - — 1500 kJ/m?

= — 1800 kJ/m? =~ = 1000 kJ/m?
900 kJ/m? | "

~ — 300 kJim’ ~ = 250 kJ/m?

- = 500 kJ/m?
= = 400 kJ/m?

200 kJ/m?
= = 100 kJ/m?

= ==180 kJ/m [EHIIN

= =120 kJ/m” |8
60 kd/m? [

= ==20 kJ/m?




Ignition Map: Papers ) ks,

= All papers align reasonably well with ignition map
= Data are insufficient for examining upper threshold.
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ignition Map: Walnut Veneer @&

‘l_‘\

= Map extends reasonably well to wood?
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lgnition Map: High-Impact Polystyrene

= Polystyrene has similar trend, but higher threshold
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