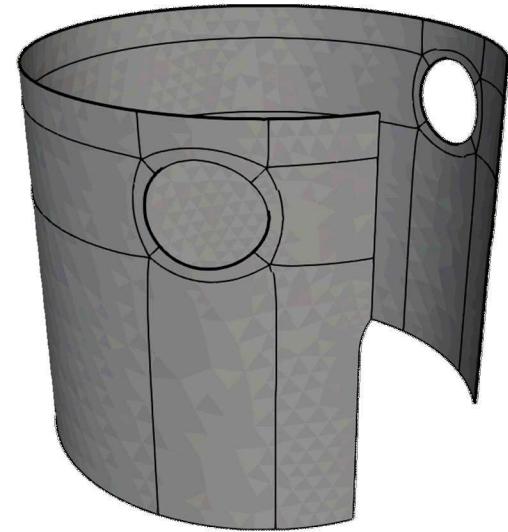


THROUGH ROBUST REFINEMENT OF CROSS SEPARATRIX LINES



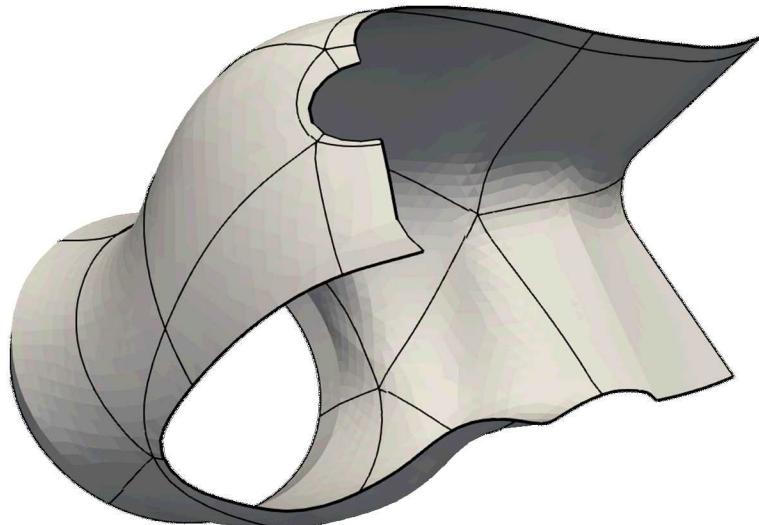
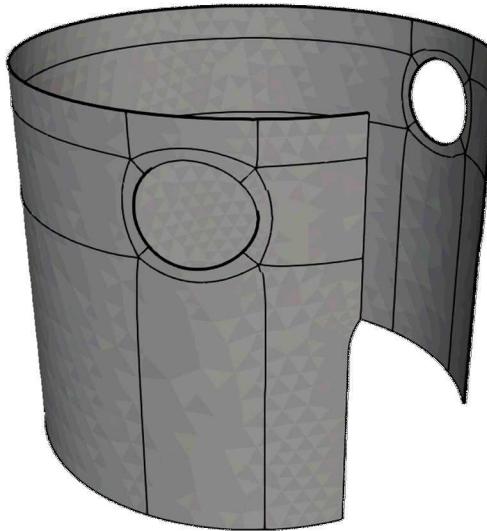
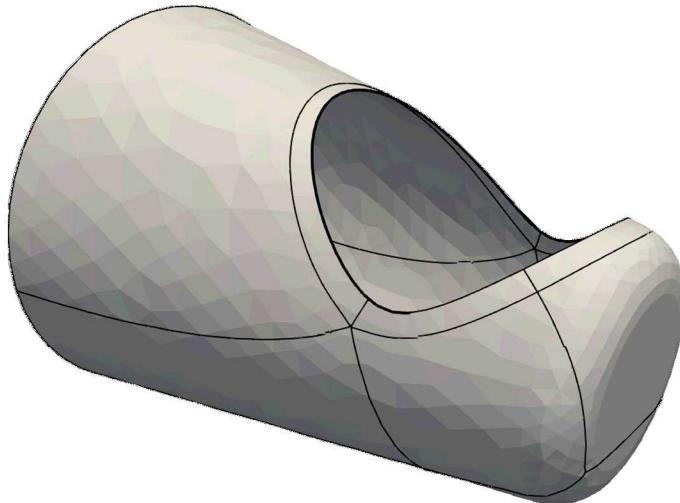
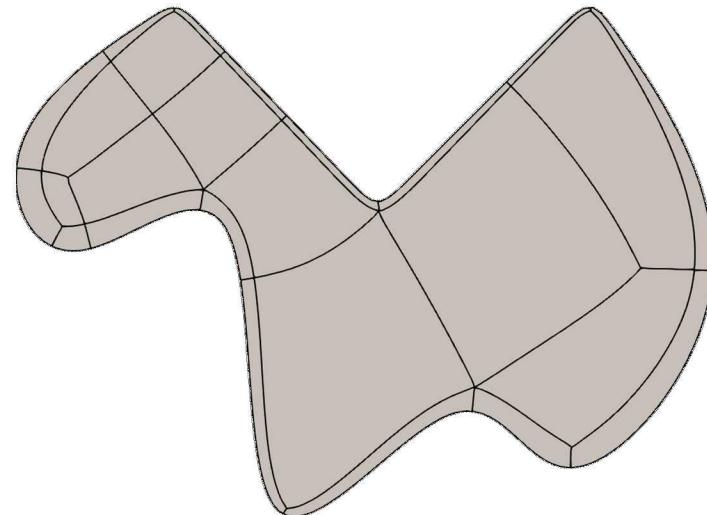
erotel

October 16th 2019

28th International Meshing Roundtable

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Goal: Coarse boundary aligned quad partitions



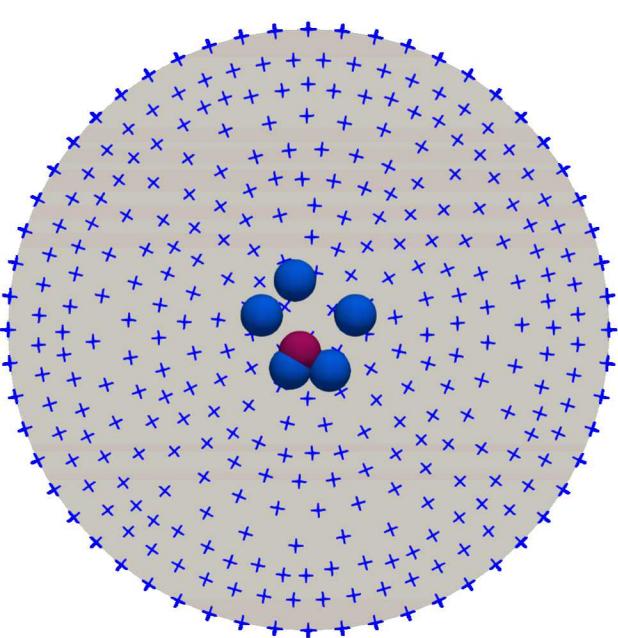
Contributions:

1. Extend MBO method for cross field design to curved surfaces
2. Prove that near singularities, streamlines of a cross field are hyperbolic under a conformal map.
3. Partition simplification algorithm to generate coarse quad layouts

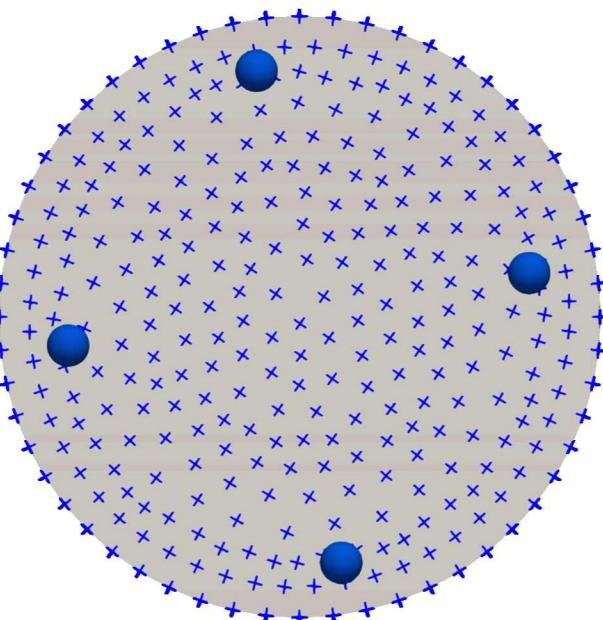
Merriman-Bence-Osher (MBO) Method for Cross Field Design

Why MBO?

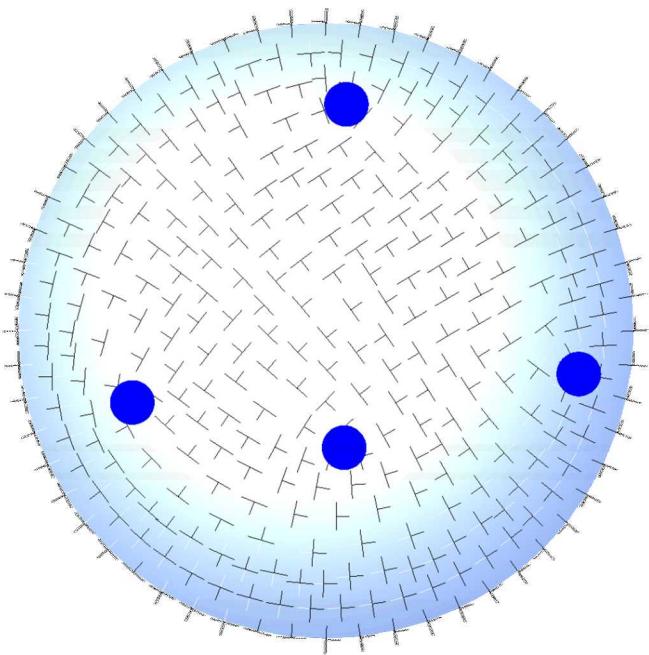
- Easy to implement
- Fast
- Good singularity placement



Knoppel et al. 2013



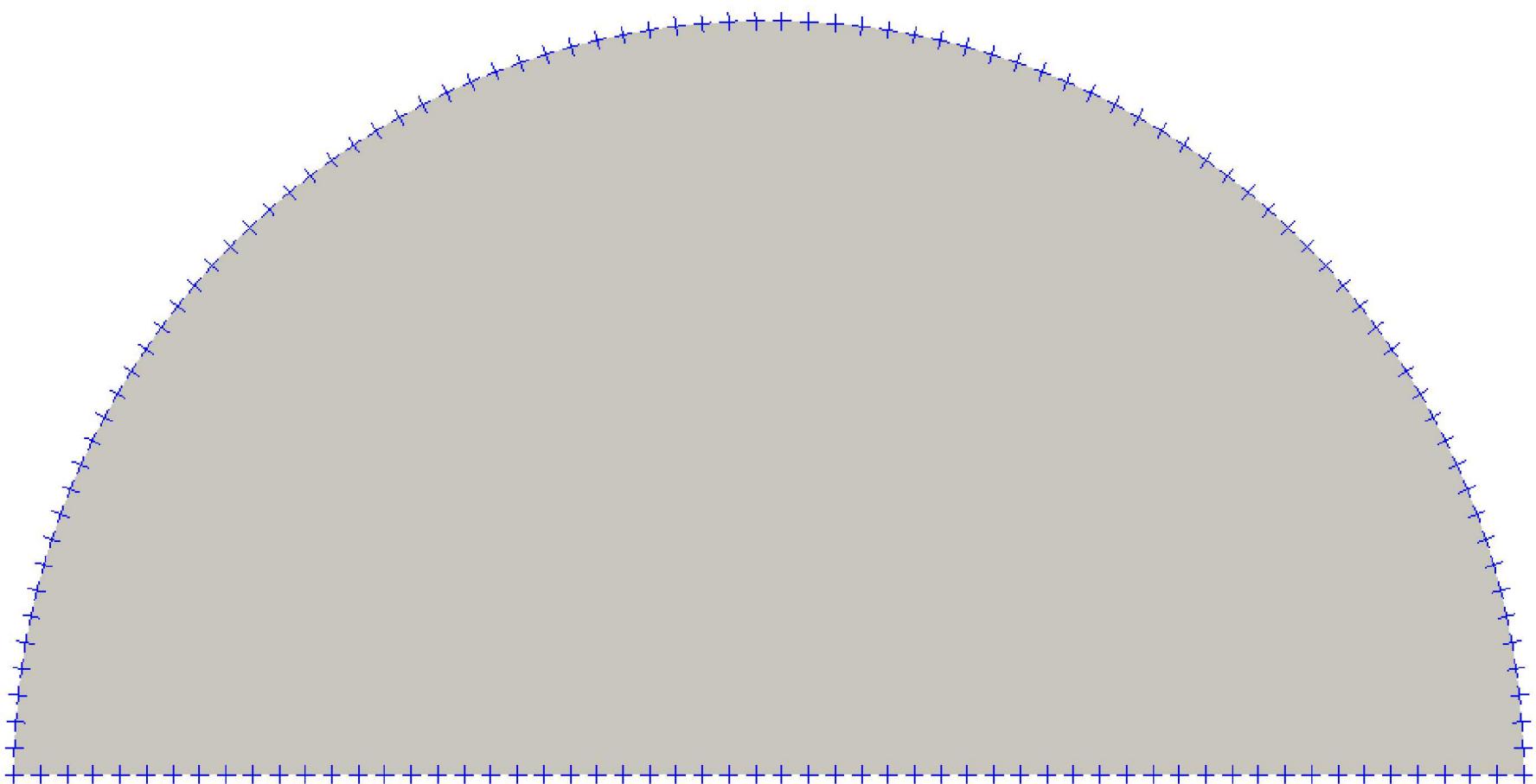
MBO



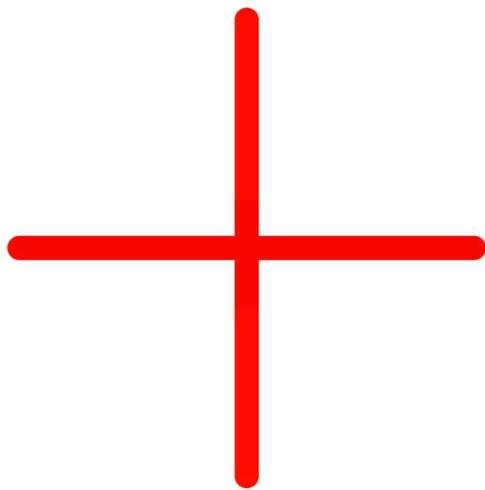
Jakob et al. 2014

MBO Method for Cross Fields

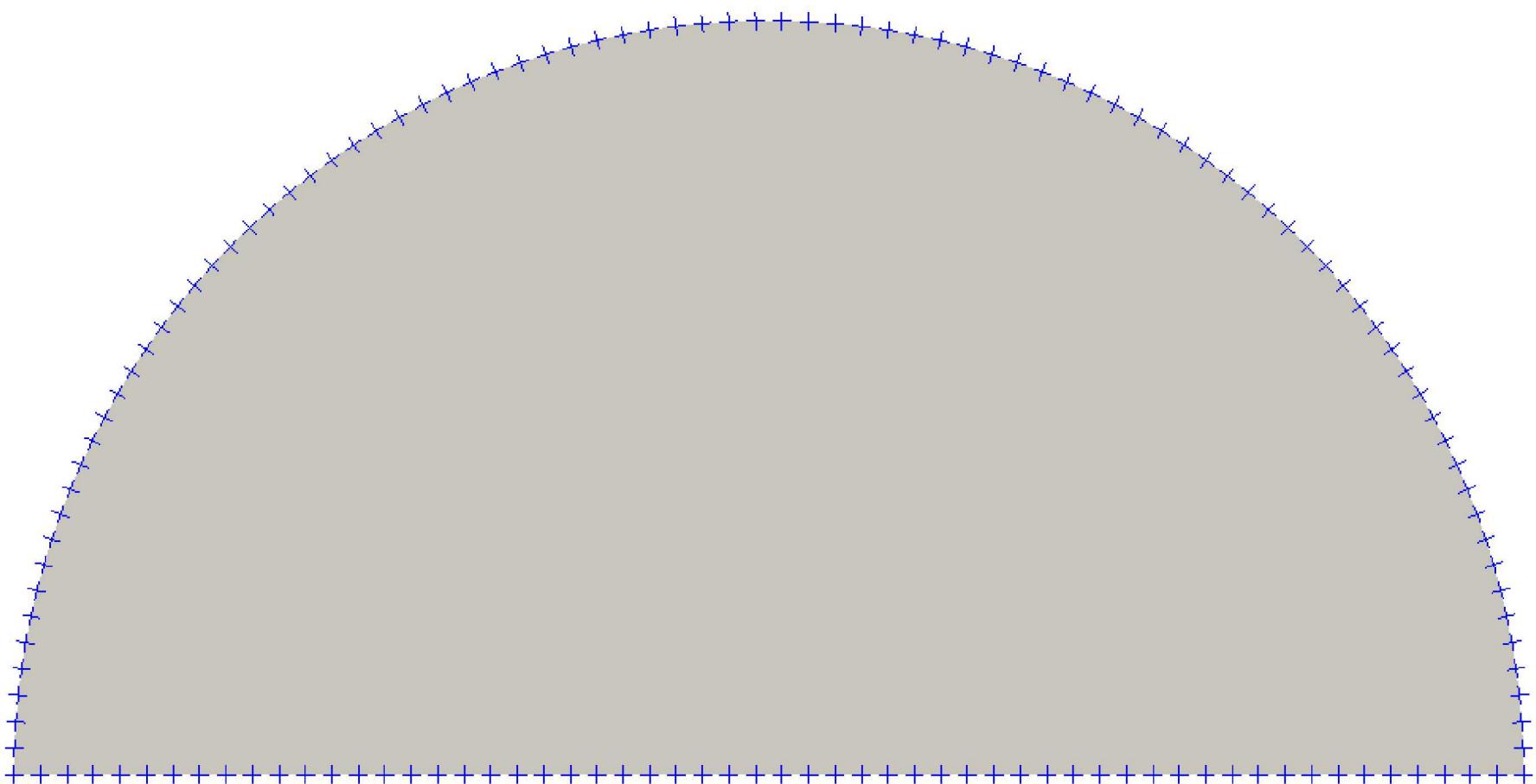
MBO Method for Cross Fields



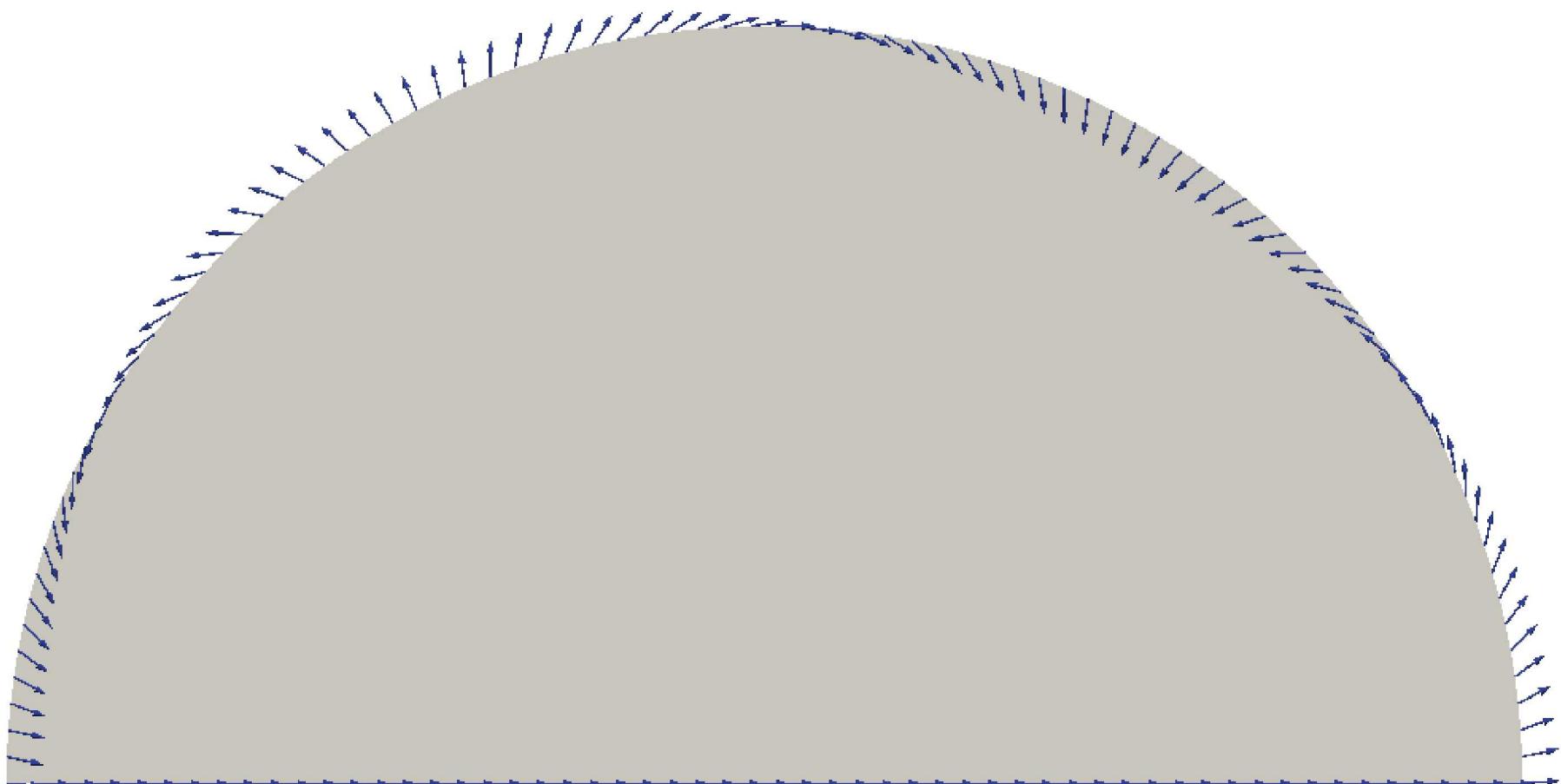
The Representation Map



MBO Method for Cross Fields



MBO Method for Cross Fields



MBO Method for Cross Fields

$$\min_{u \in H_g^1(D, \mathbb{C})} E(u)$$

$$E(u) = \frac{1}{2} \int_D |\nabla u|^2 dA$$

$$u(x) = g(x) \quad \forall x \in \partial D$$

$$|u(x)| = 1 \quad \text{a.e. } x \in D$$

MBO Method for Cross Fields

Ginzburg-Landau Relaxation:

$$E_\epsilon(u) = \frac{1}{2} \int_G |\nabla u|^2 + \frac{1}{4\epsilon^2} \int_G (|u|^2 - 1)^2$$

Iterative method to minimize cross field energy:

1. Until time τ solve

$$u_t(t, x) = \Delta u(t, x) \quad x \in M$$

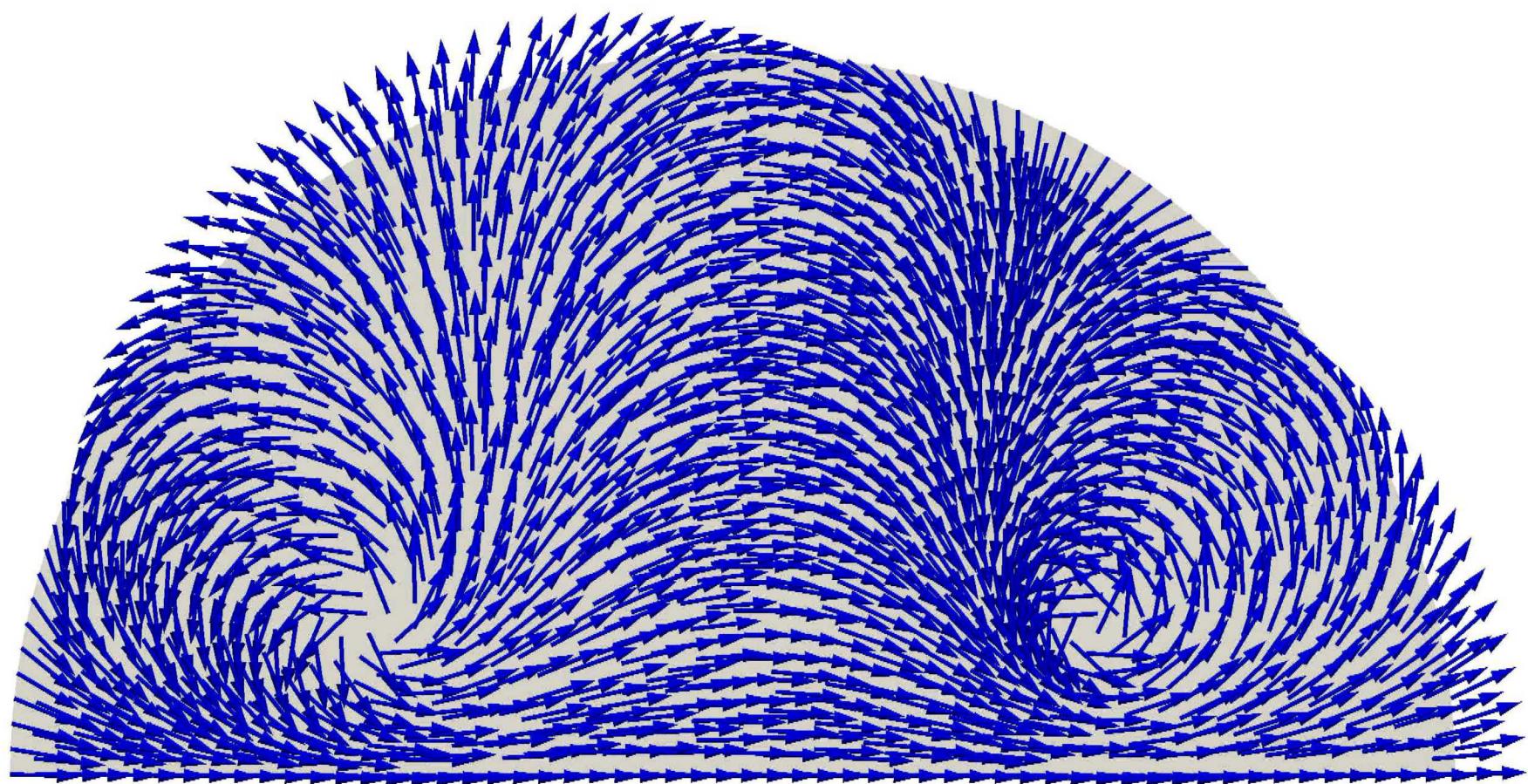
$$u(t, x) = g(x) \quad x \in \partial M$$

$$u(0, x) = u_0(x) \quad x \in M$$

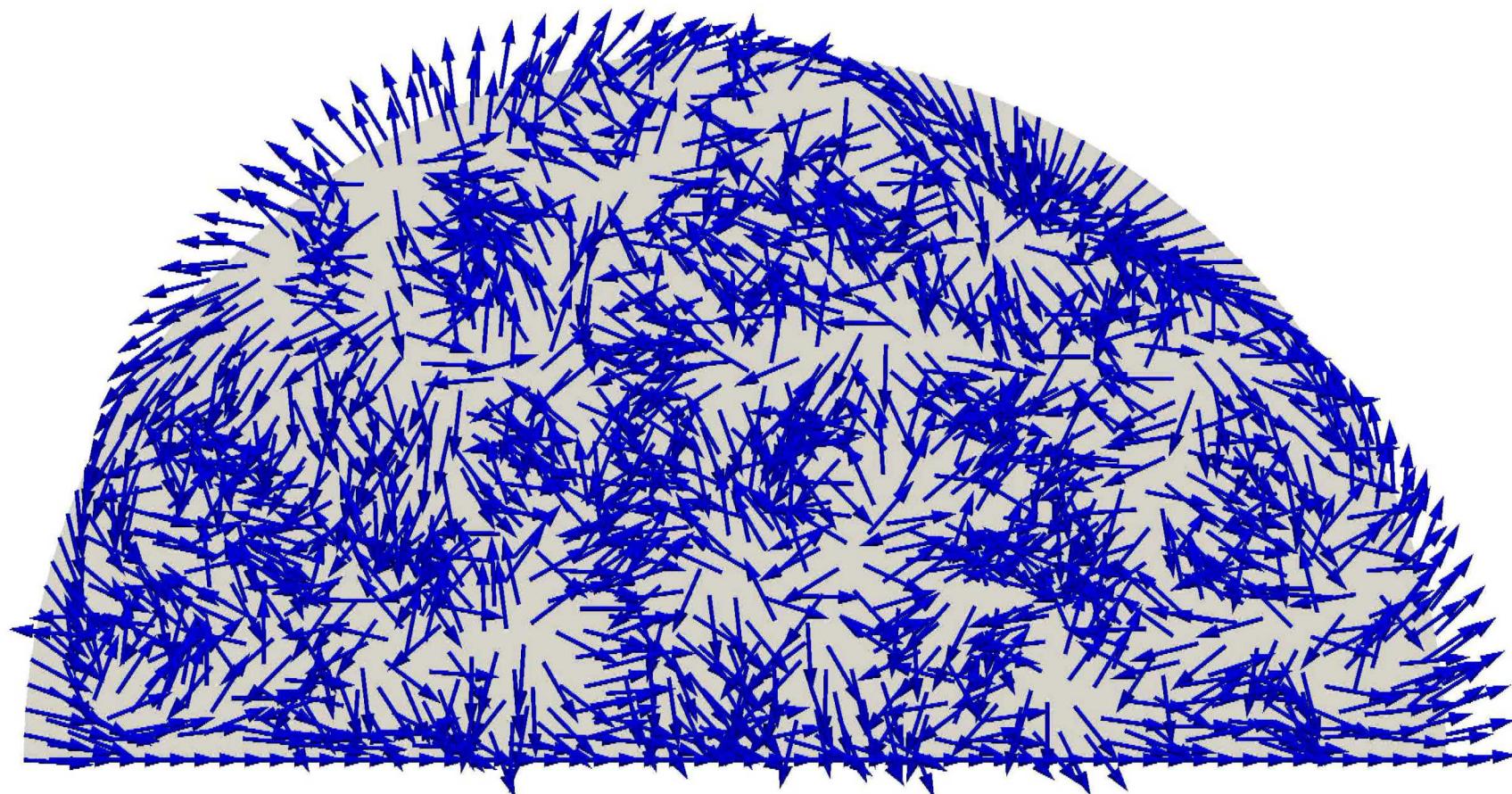
2. Renormalize

$$u(\tau, x) = \frac{u(\tau, x)}{\|u(\tau, x)\|}$$

MBO Method



MBO Method



MBO on Surfaces

1. Until time τ solve

$$u_t(t, x) = \underbrace{\Delta u(t, x)}_{?} \quad x \in M$$

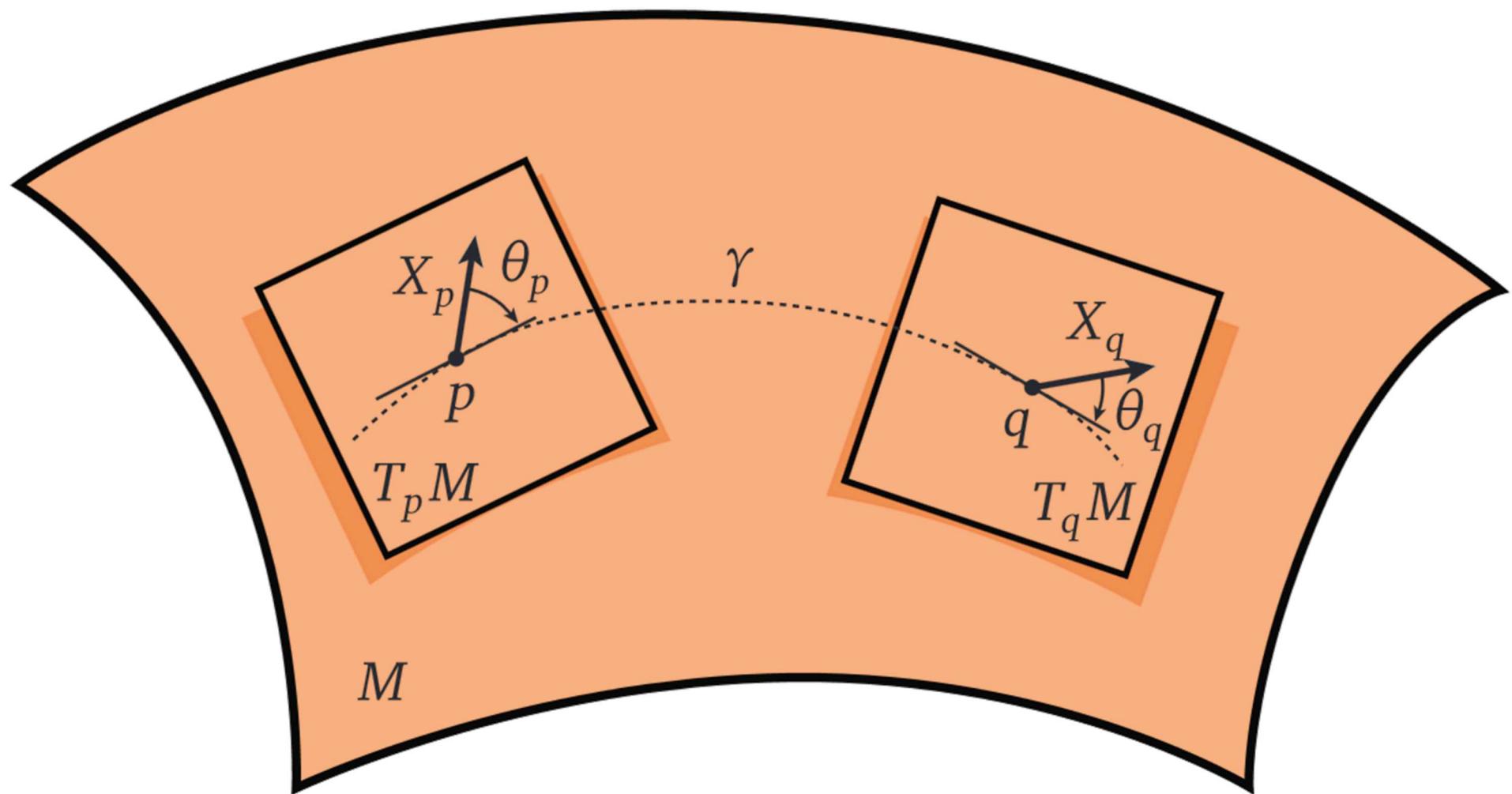
$$u(t, x) = g(x) \quad x \in \partial M$$

$$u(0, x) = u_0(x) \quad x \in M$$

2. Renormalize

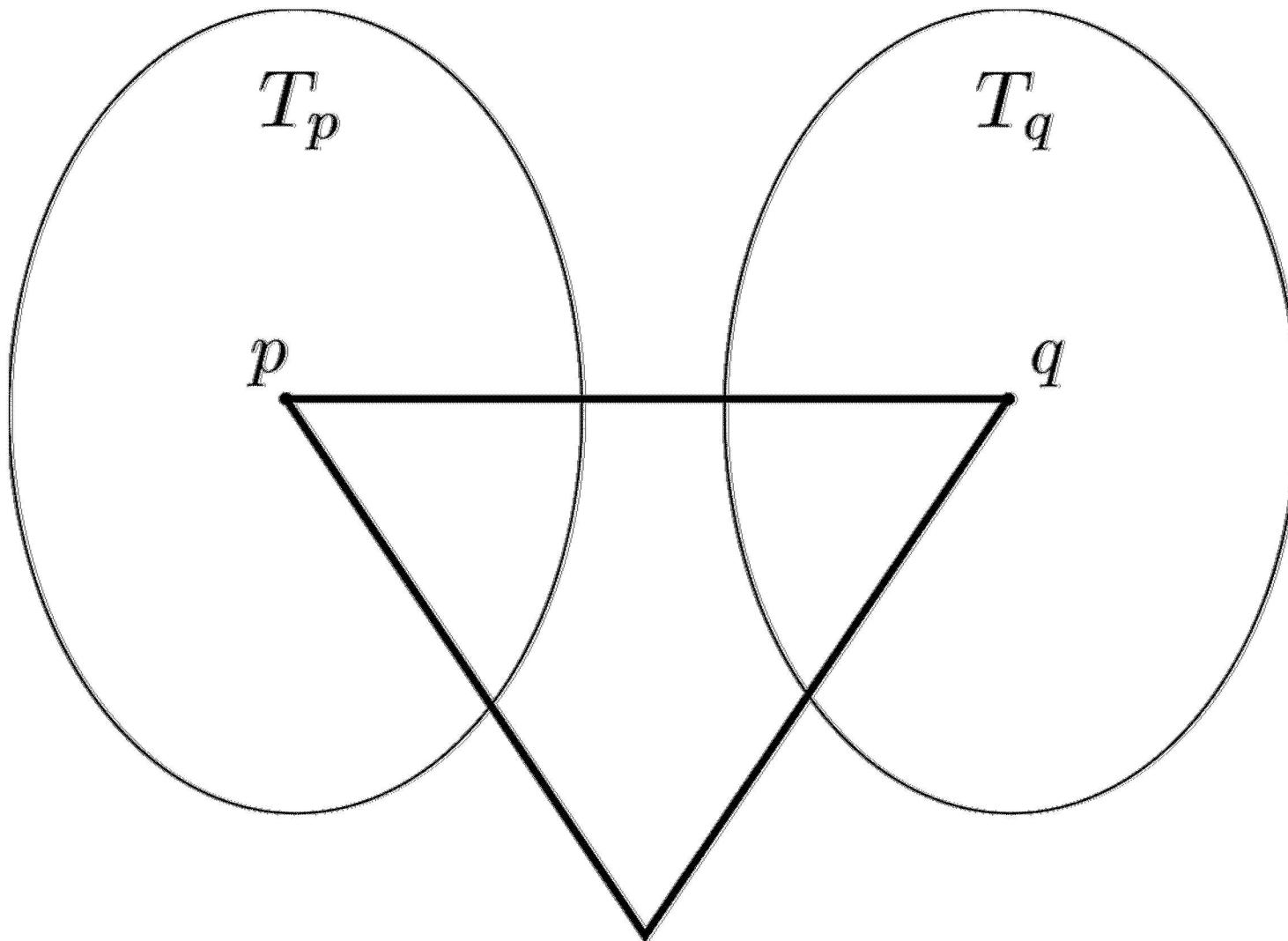
$$u(\tau, x) = \frac{u(\tau, x)}{\|u(\tau, x)\|}$$

Levi-Civita Connection

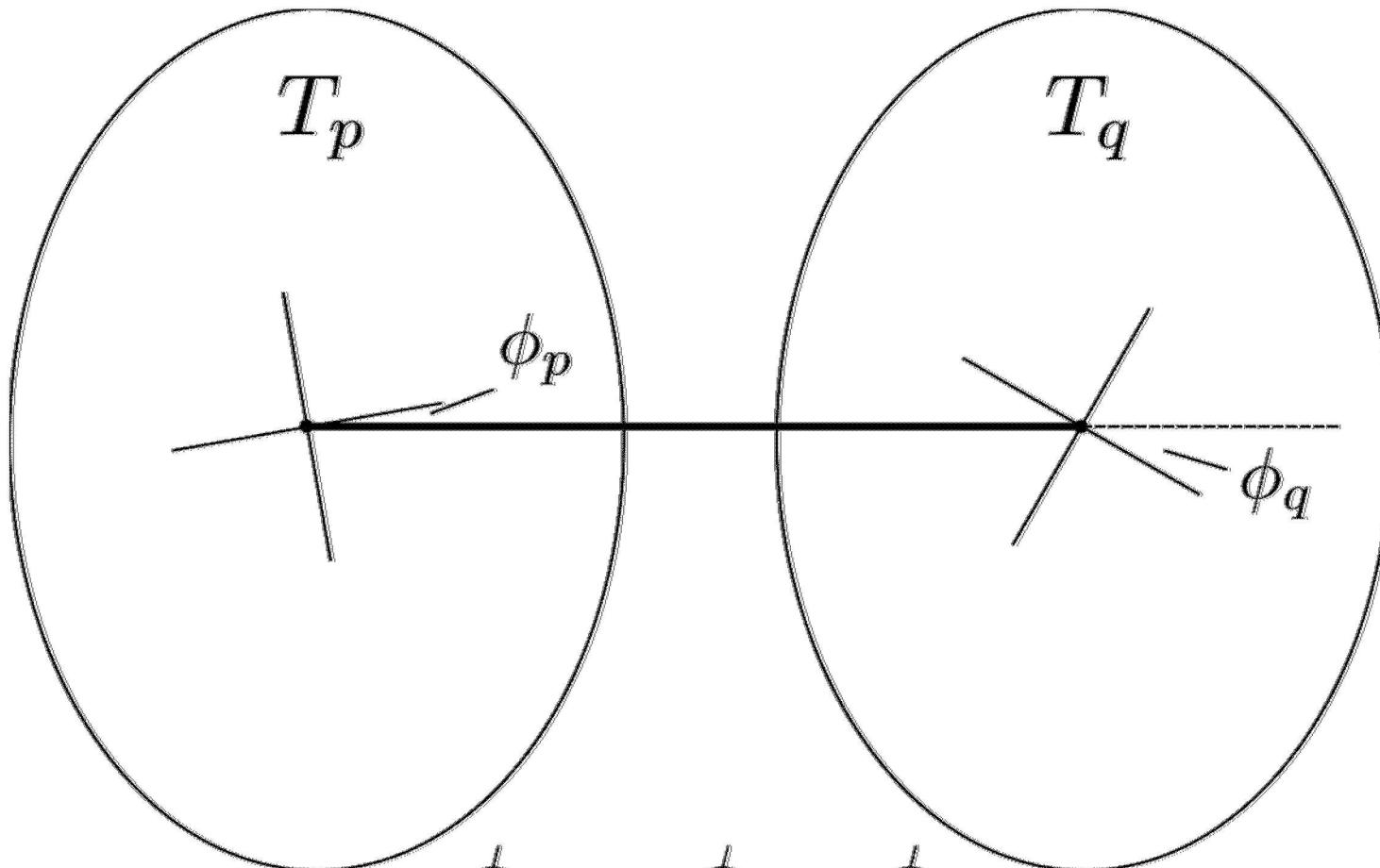


Knoppel et al. 2013

Cross Field Design on Surfaces



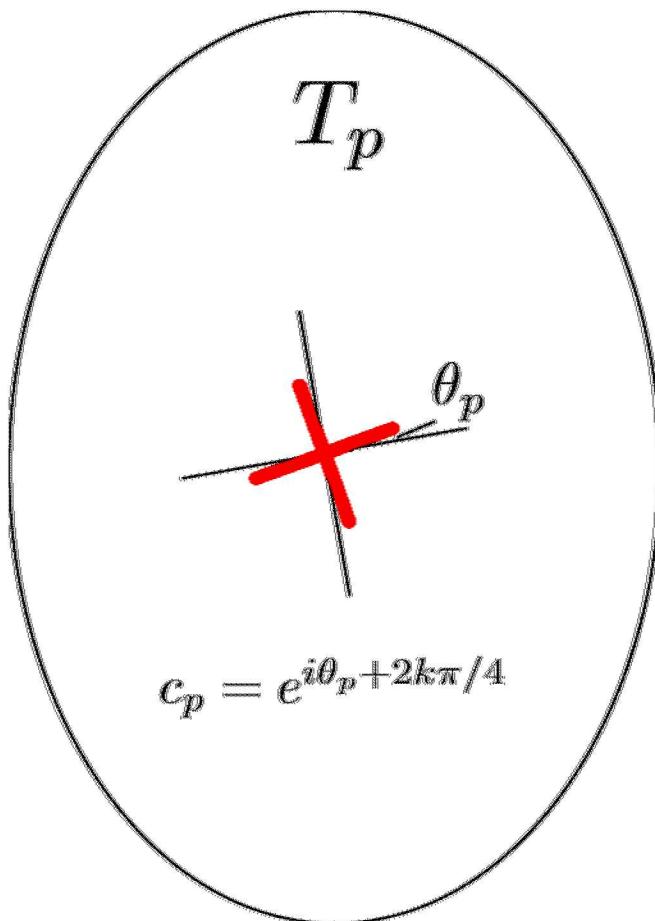
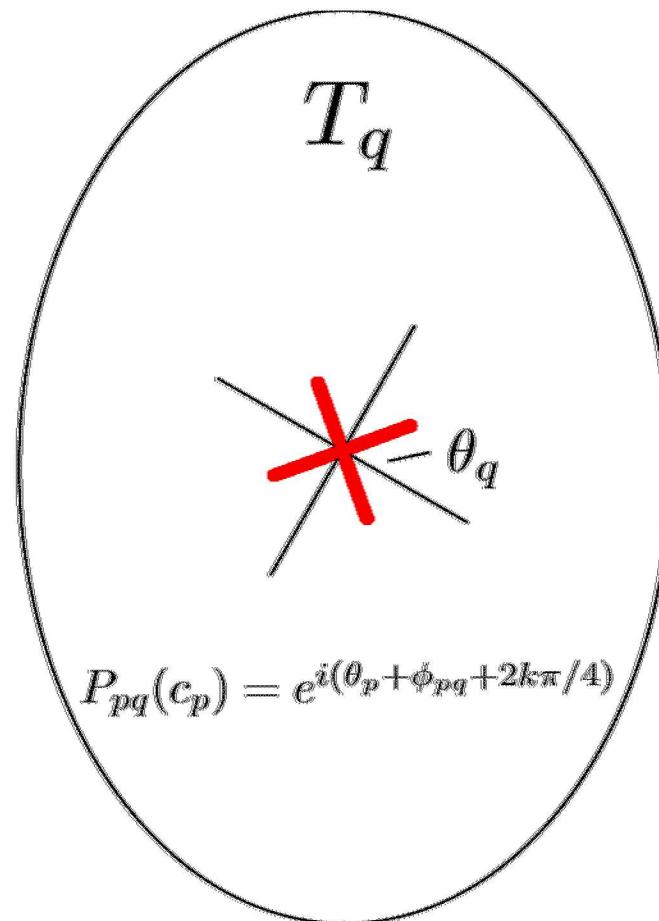
Cross Field Design on Surfaces



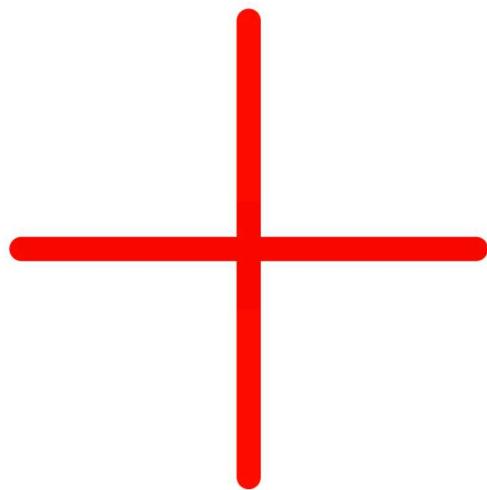
$$\phi_{pq} = \phi_p - \phi_q$$

$$P_{pq}(v) = e^{i\phi_{pq}}v$$

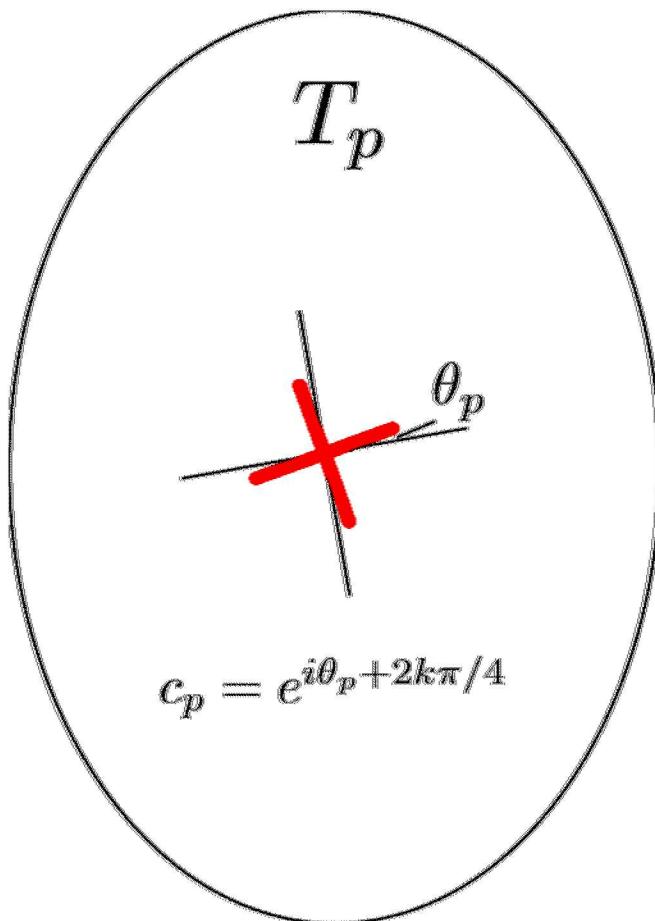
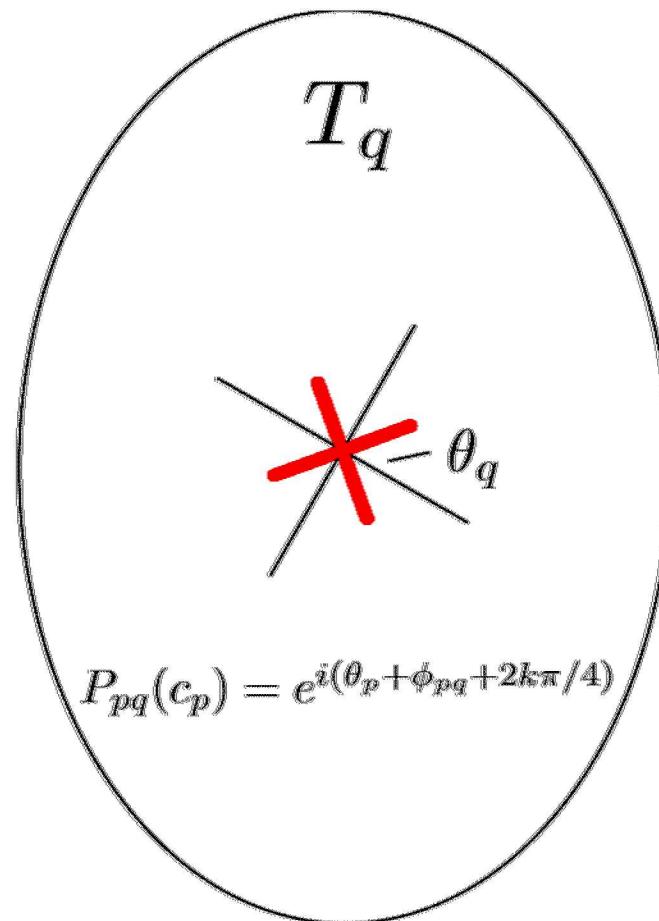
Cross Field Design on Surfaces



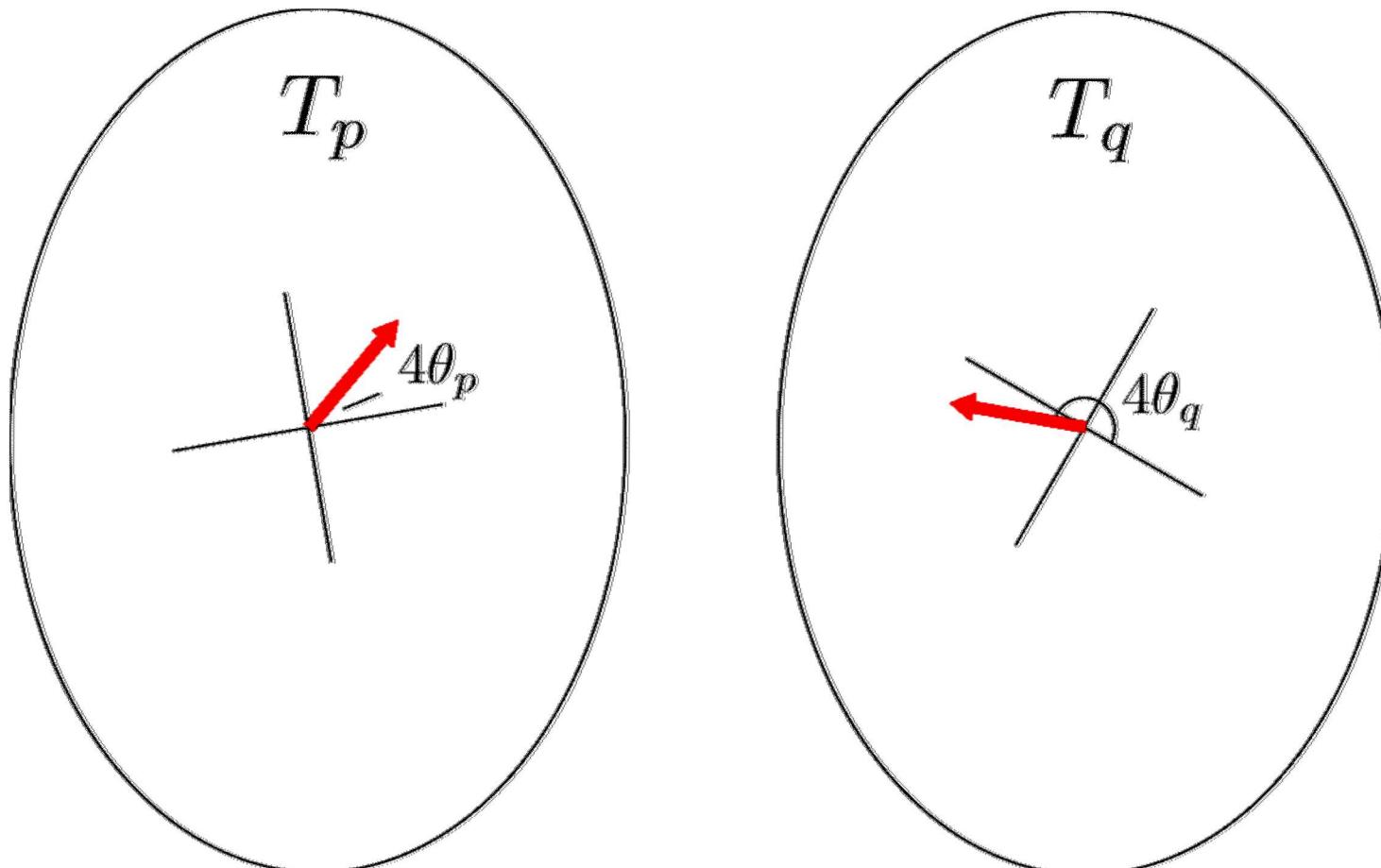
The Representation Map



Cross Field Design on Surfaces



Cross Field Design on Surfaces



$$\begin{aligned} Q_{pq}(e^{4i\theta_p}) &= e^{4i(\theta_p + \phi_{pq})} \\ \implies Q_{pq}(v) &= e^{4i\phi_{pq}} v \end{aligned}$$

Discrete Laplacian for Representation Vectors

$$v \in T_q$$

$$u \in T_p$$

$$|v - Q_{pq}u|^2$$

Discrete Laplacian for Representation Vectors

$$v \in T_q$$

$$u \in T_p$$

$$|v - Q_{pq}u|^2$$

$$\Delta_Q(\vec{u})|_i = \frac{1}{|\mathcal{N}(n_i)|} \sum_{n_j \in \mathcal{N}(n_i)} (u_j - Q_{ij}(u_i))$$

Discrete MBO on Surfaces

Algorithm 2 A diffusion generated method for designing smooth cross fields

Let u^0 be the solution to $Au = b$.

Fix τ , δ , and set $k = 0$.

while $\|u^k - u^{k-1}\| > \delta$, **do**

Solve the discrete diffusion equation,

$$(I - \tau A)u^{k+1} = u^k + \tau b \quad (6)$$

for $j \in [0, n]$ **do**

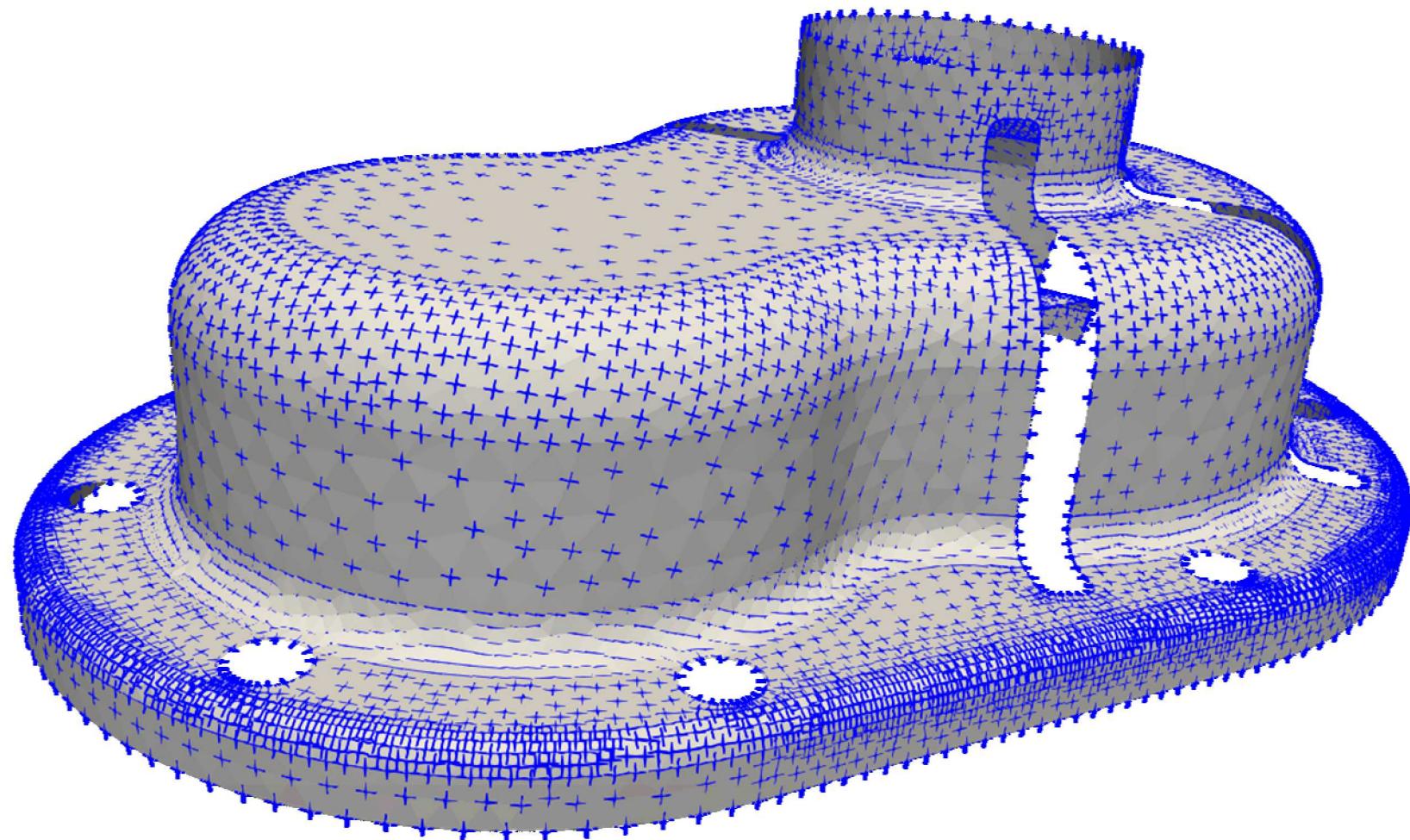
Set $u_j^{k+1} = \frac{u_j^{k+1}}{|u_j^{k+1}|}$

end for

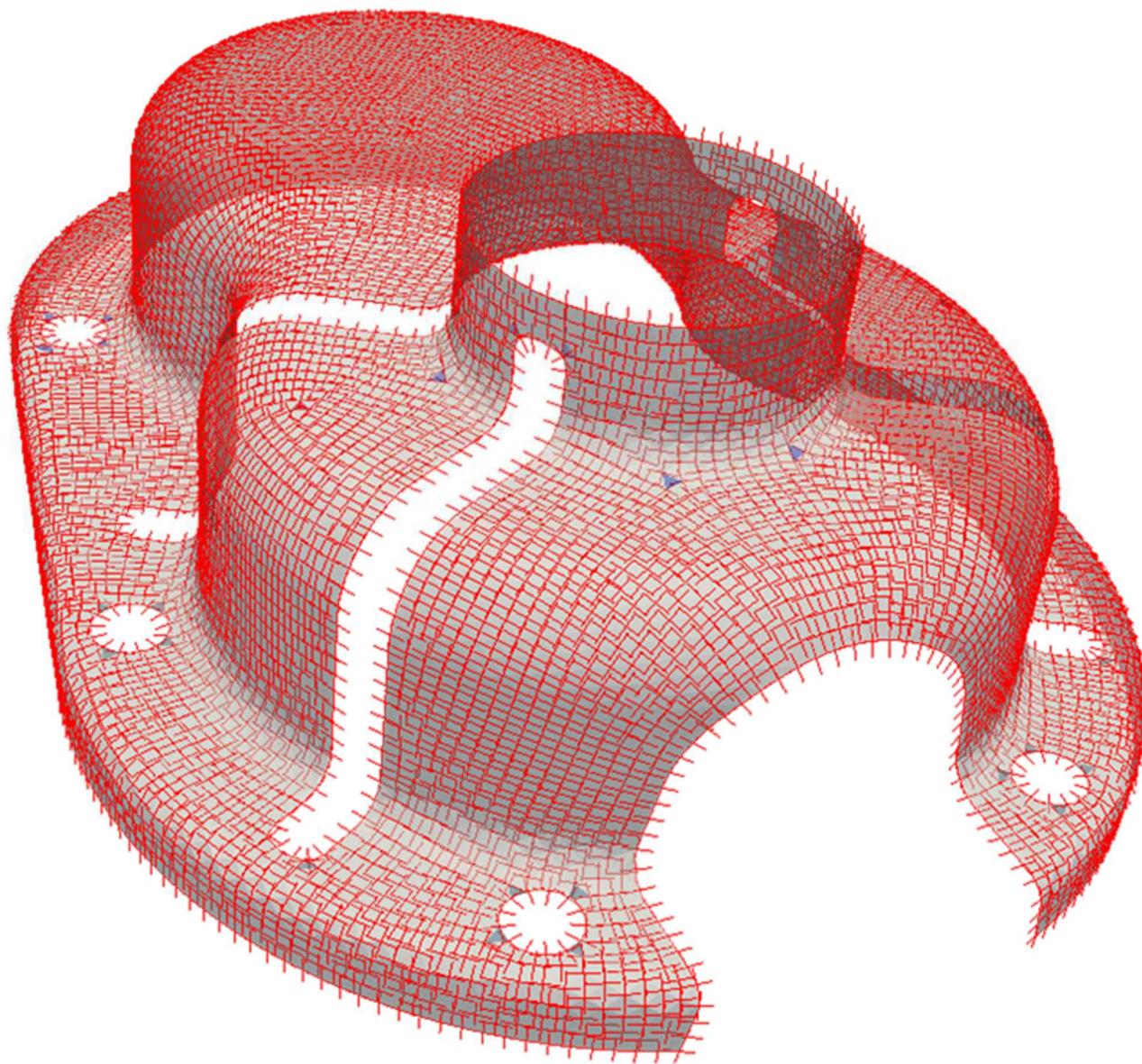
$k++$

end while

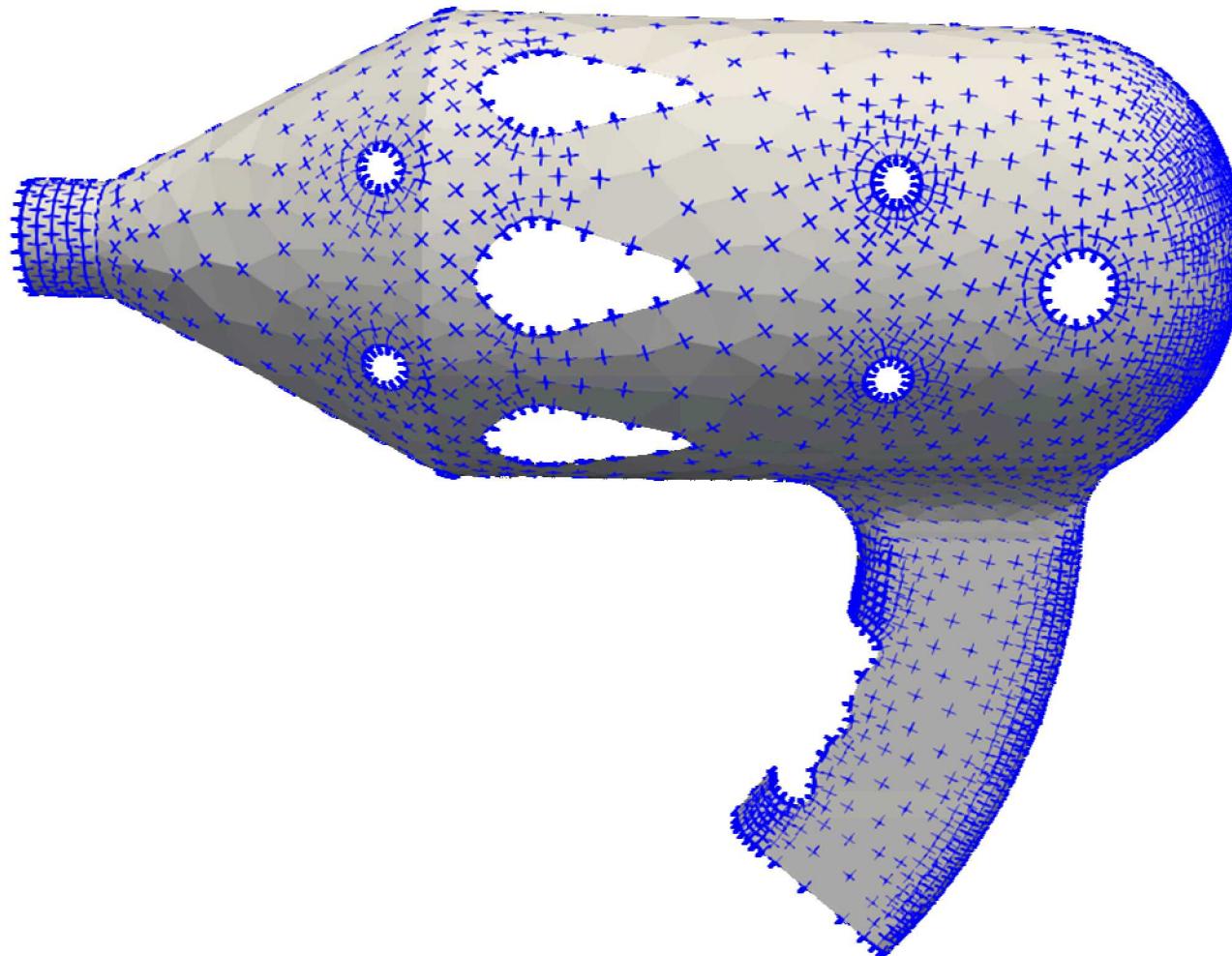
Cross Fields on Surfaces



Curved Surfaces

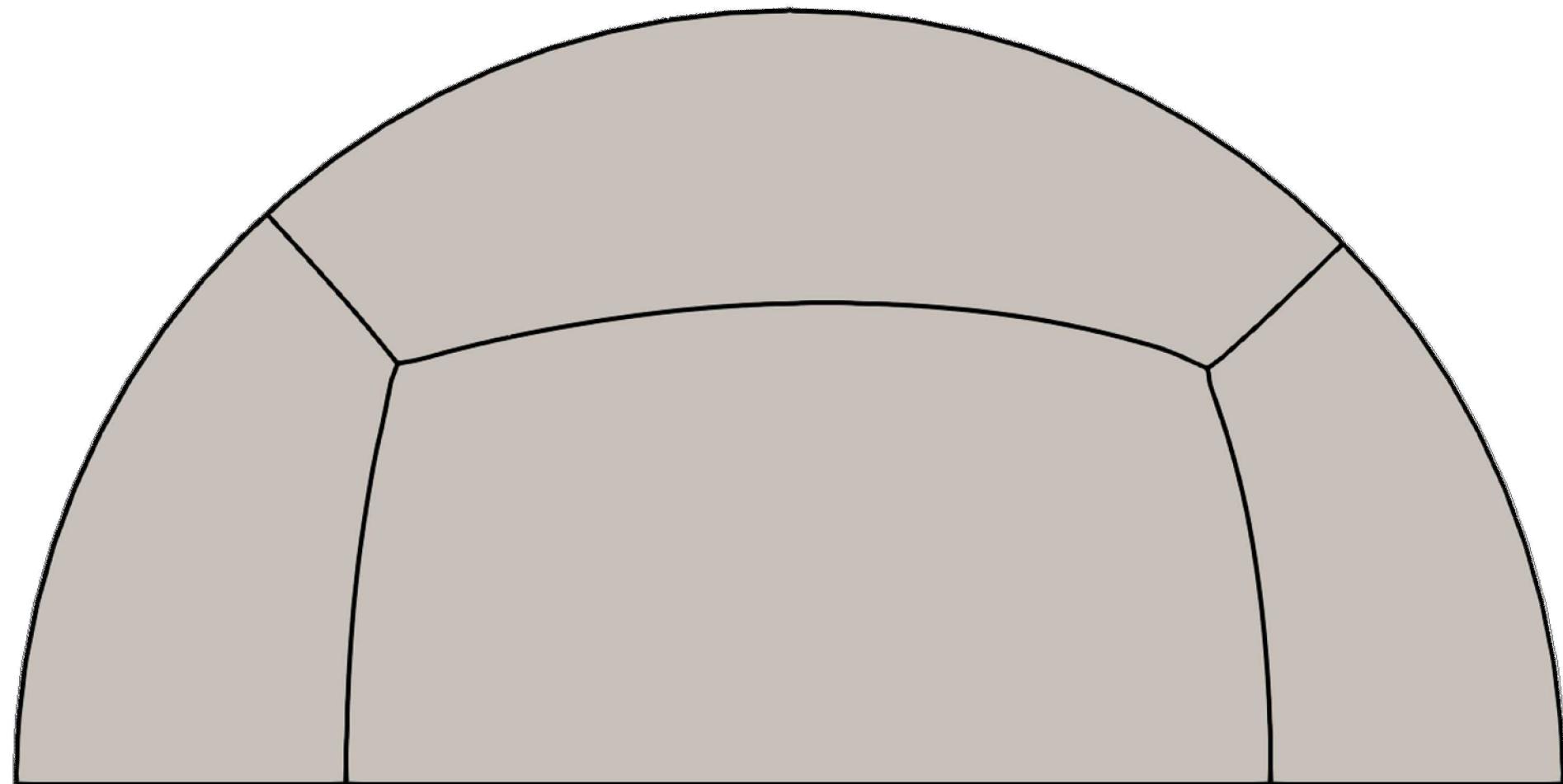


Cross Fields on Surfaces

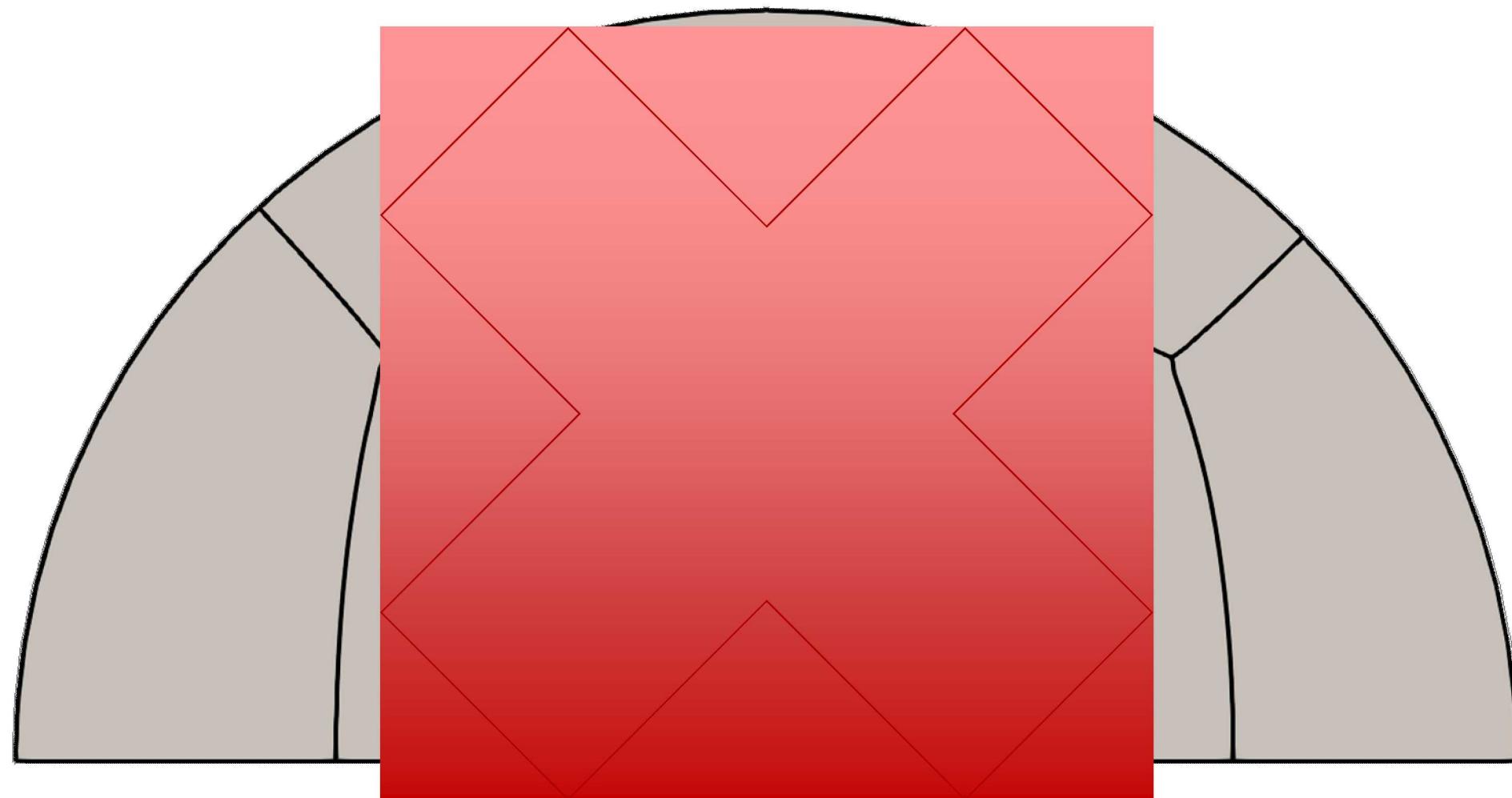


Partition Simplification

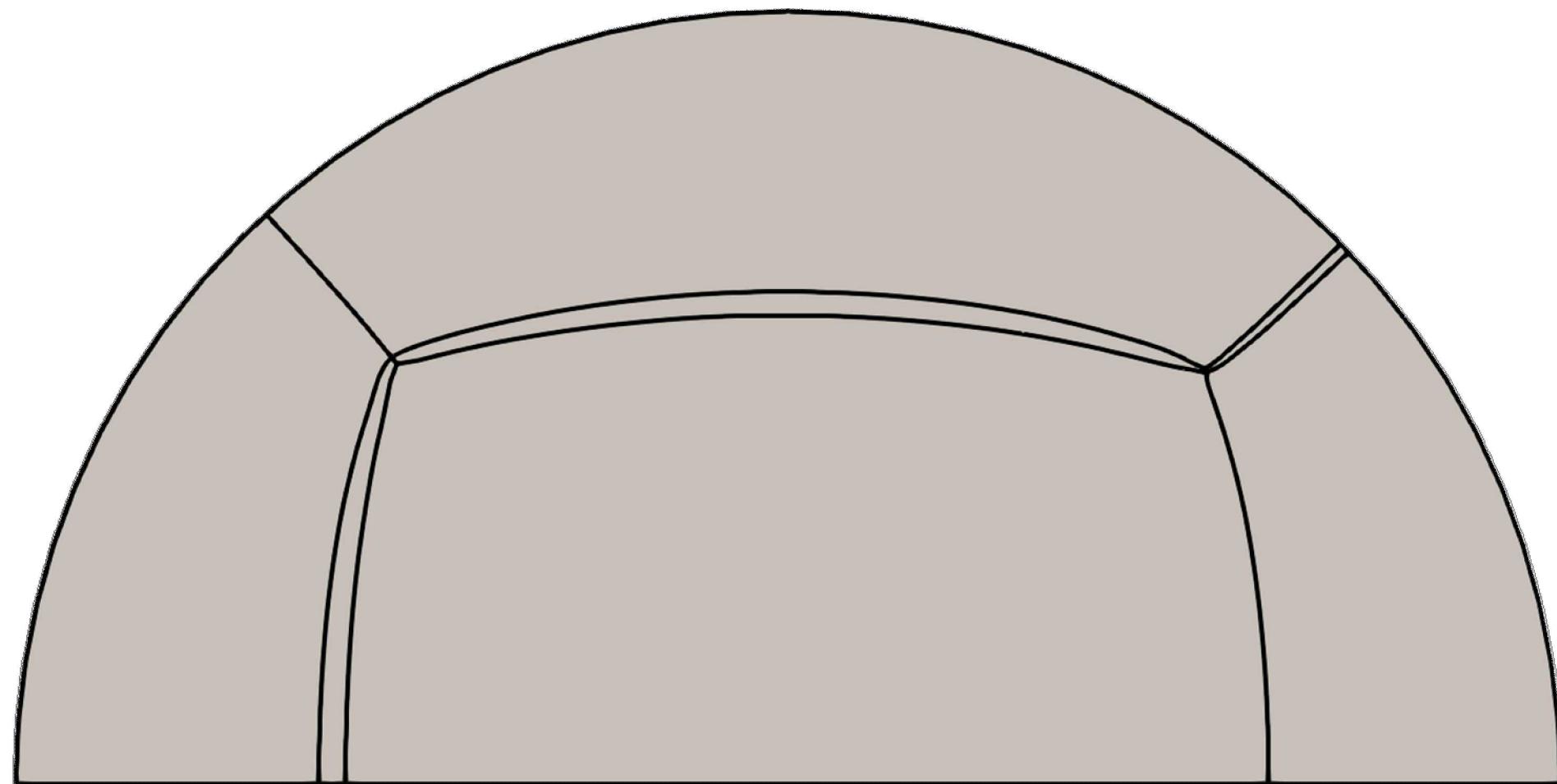
Naive Partition



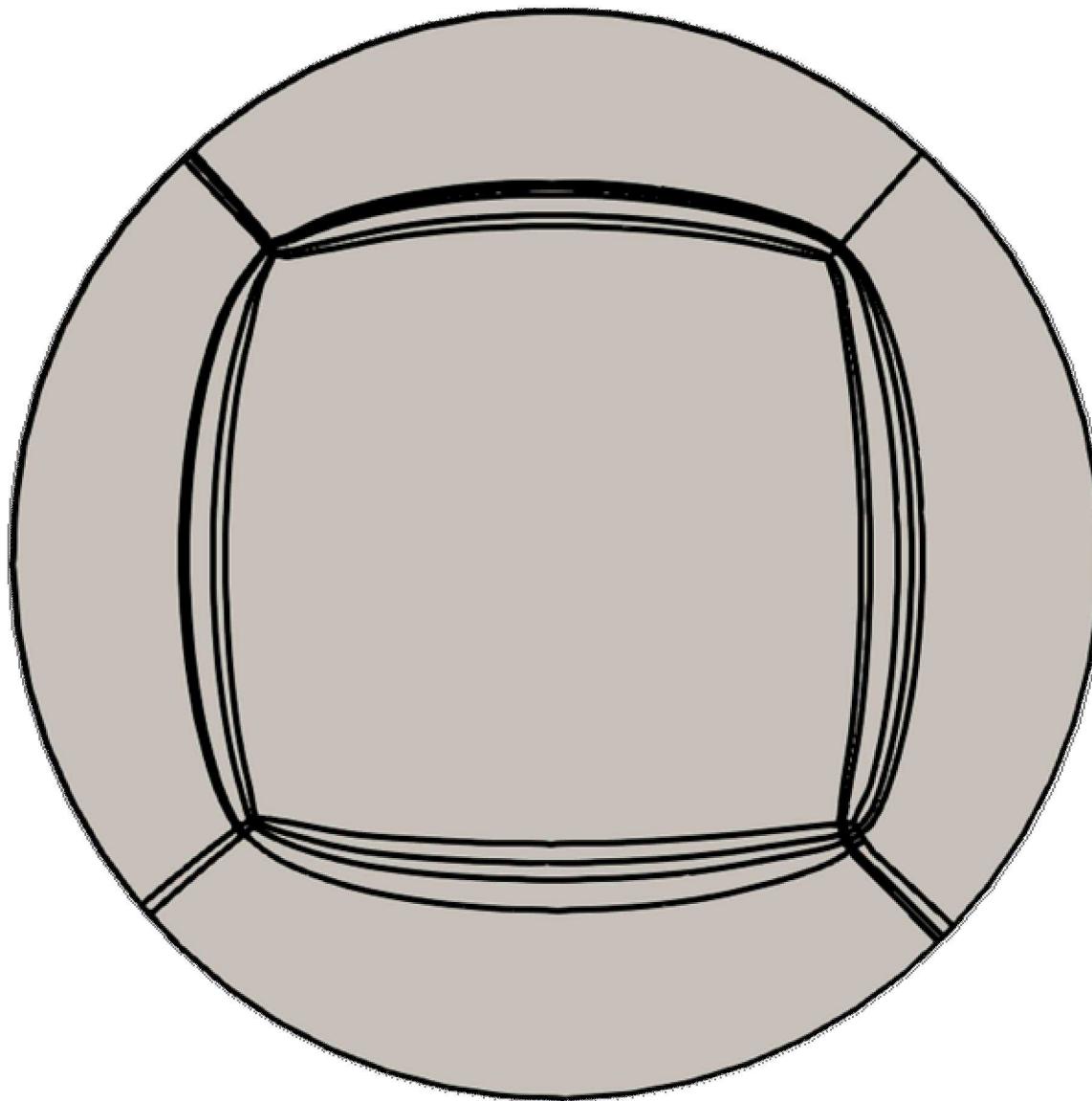
Naive Partition



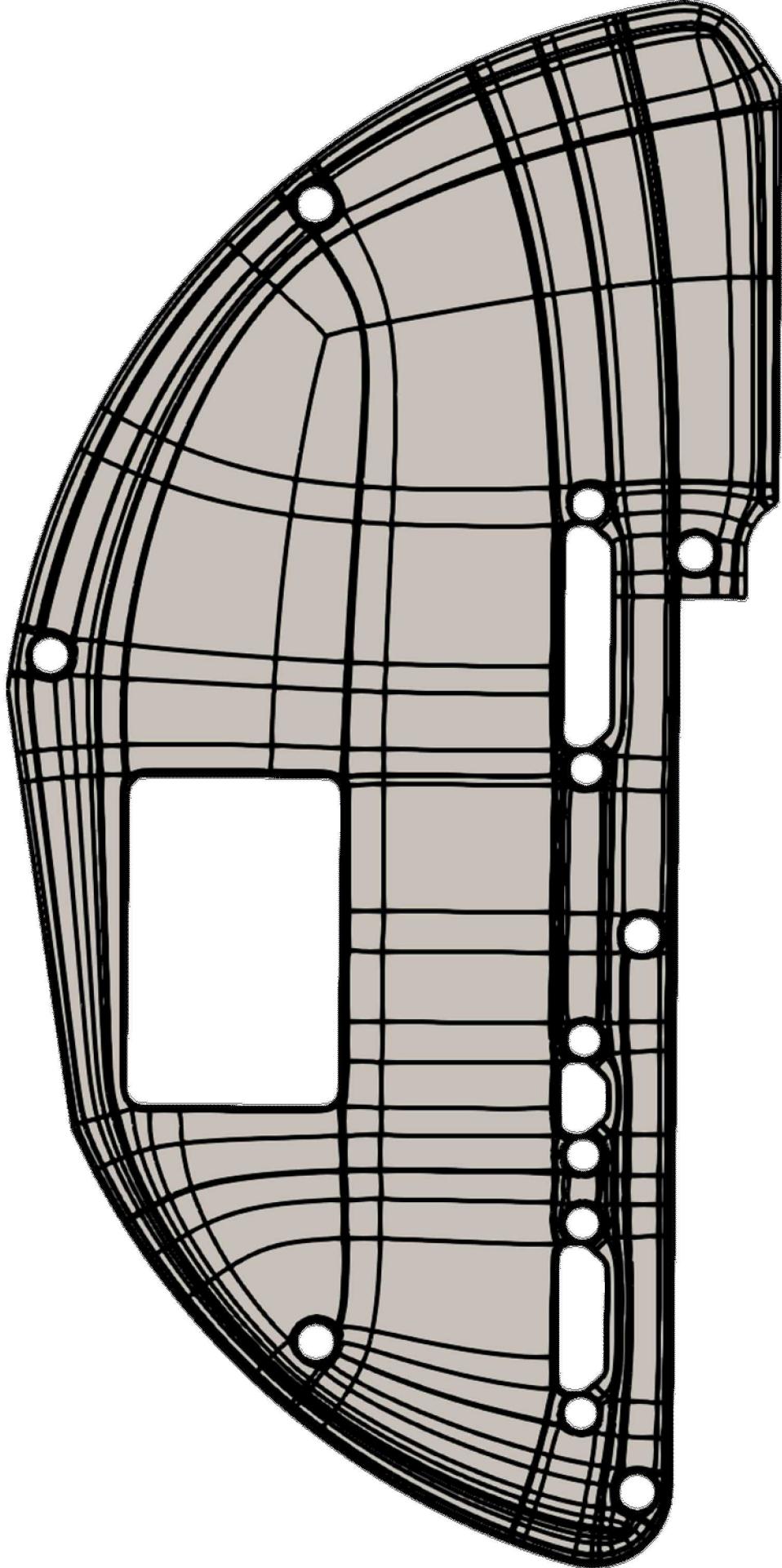
Naive Partition



Limit Cycles Are Common



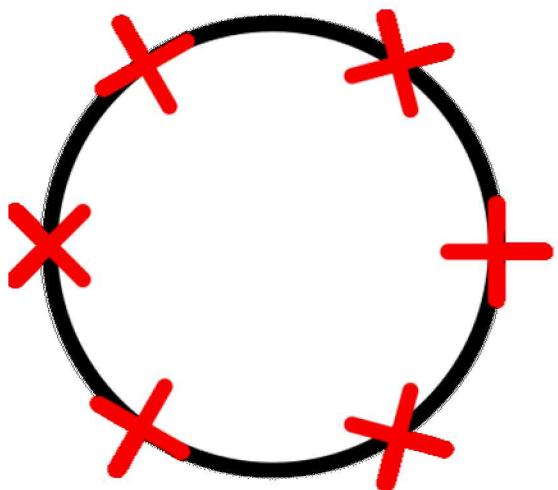
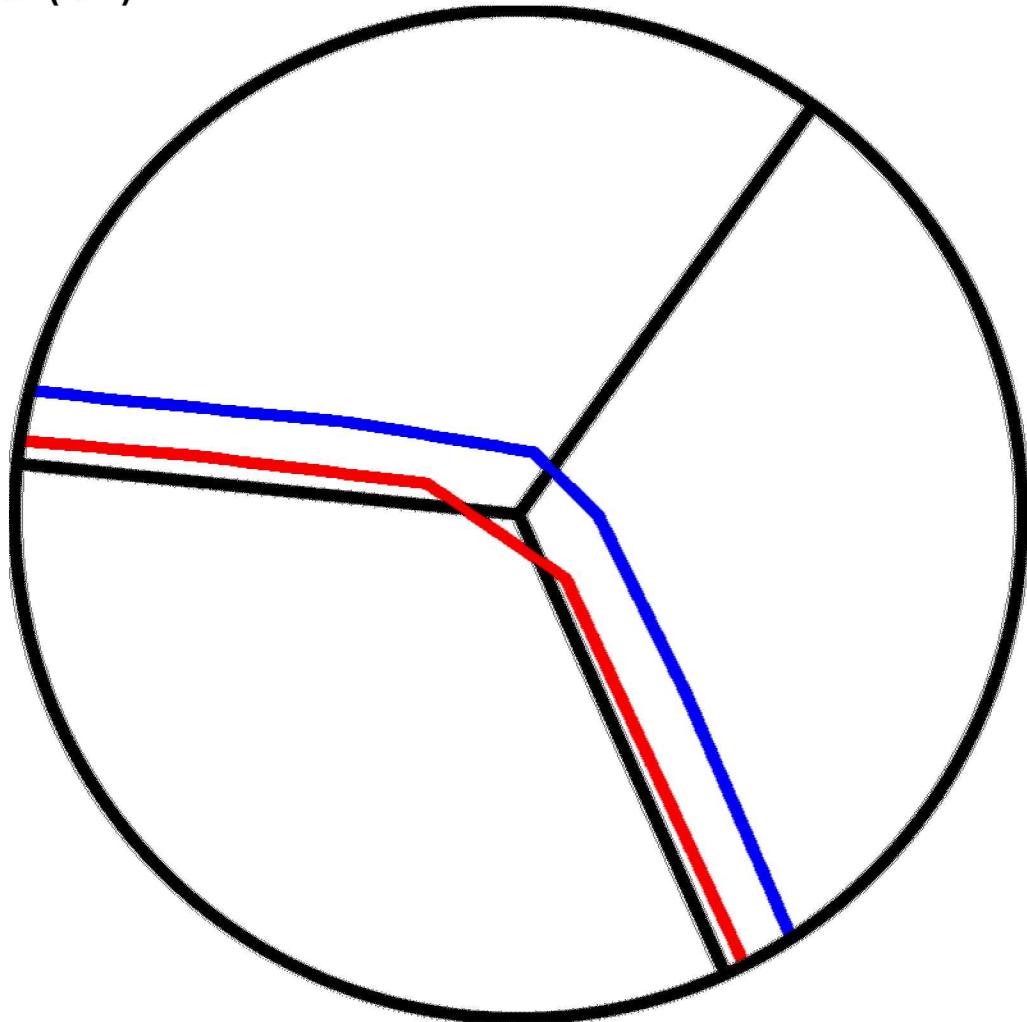
Partition Gets Ugly Quickly



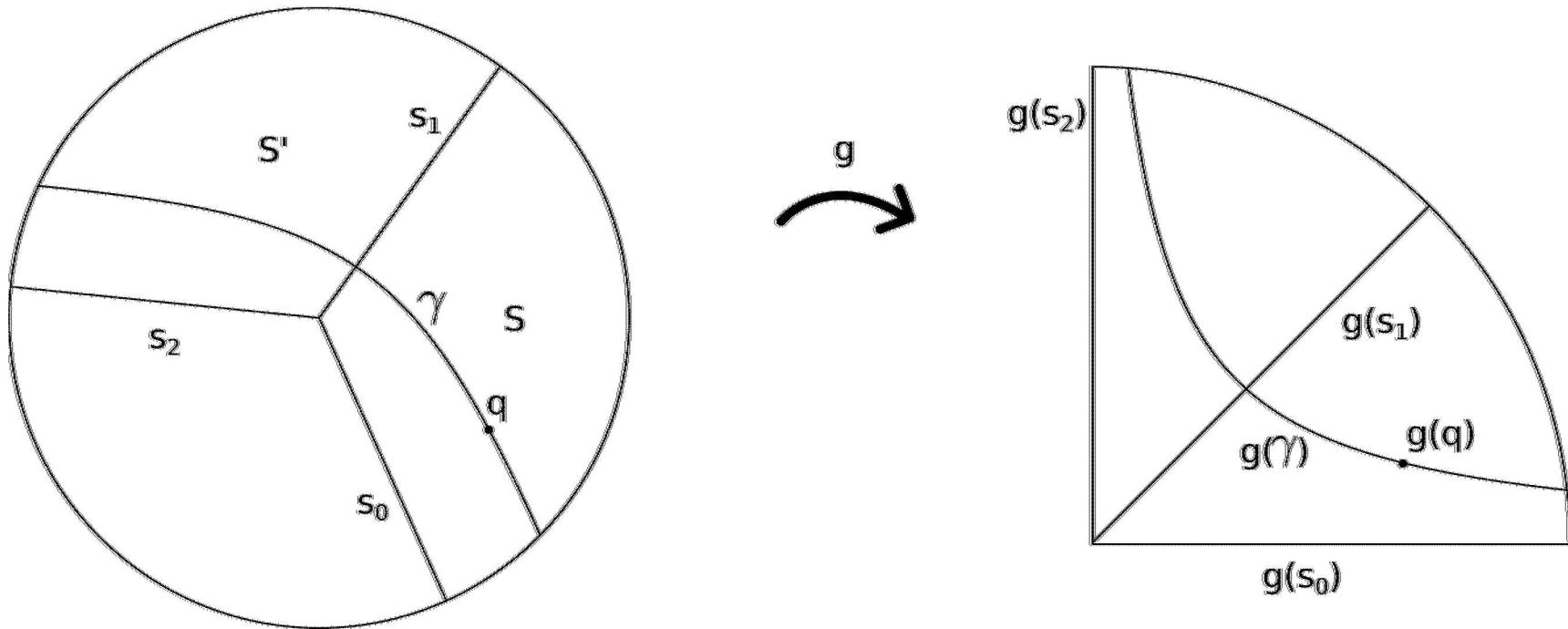
Hyperbolic Trajectory of Streamlines

Streamlines Near Singularities

$$f(z) = e^{i(\frac{d\theta}{4} + \frac{2k\pi}{4})} + o(r)$$

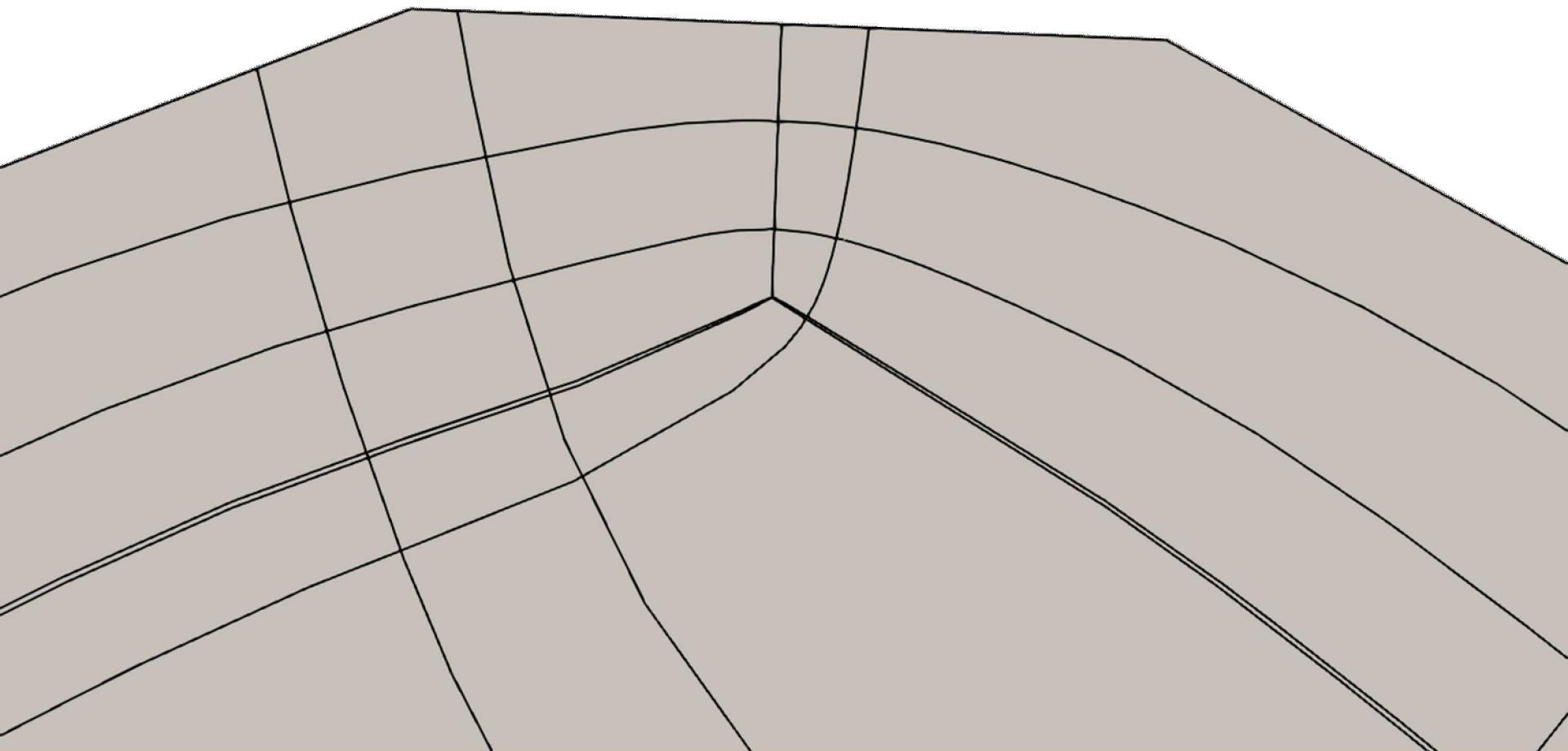


Streamlines Near Singularities



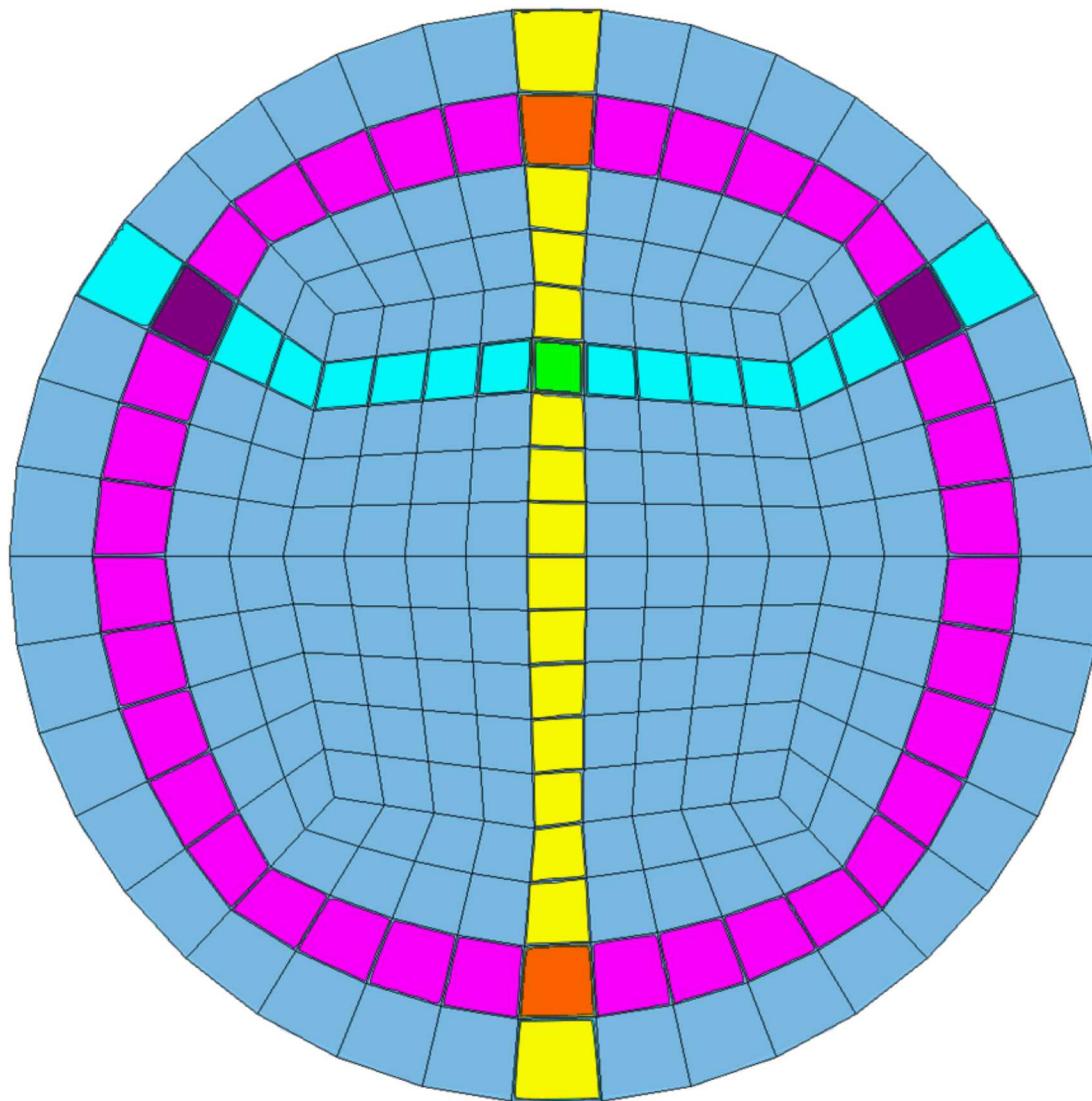
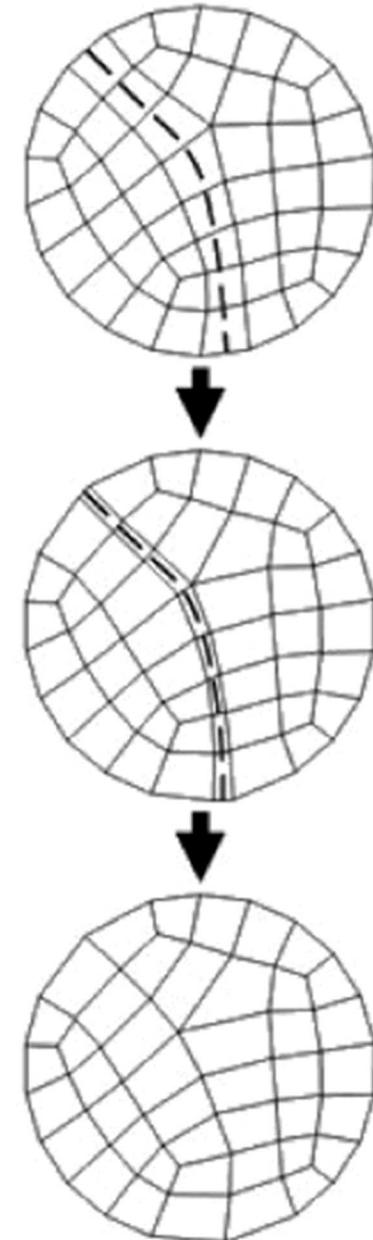
$$g(z) = z^{(4-d)/8}$$

Streamlines Near Singularities

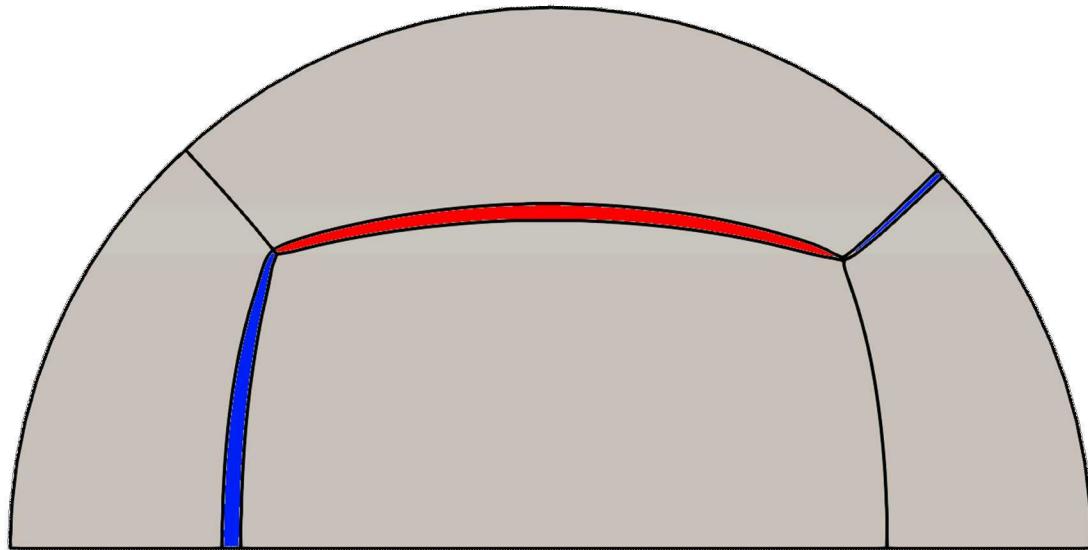
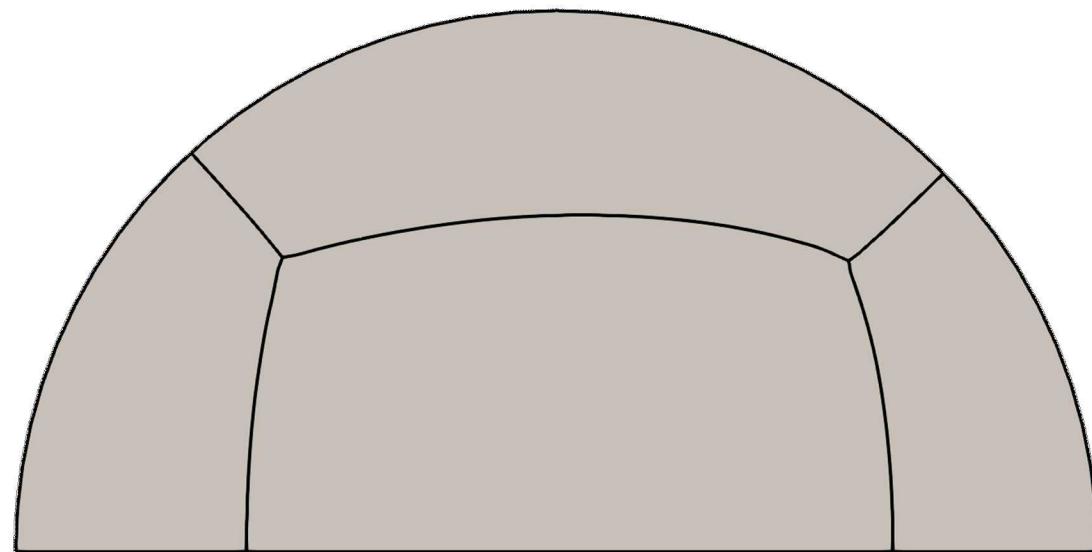


Partition Simplification

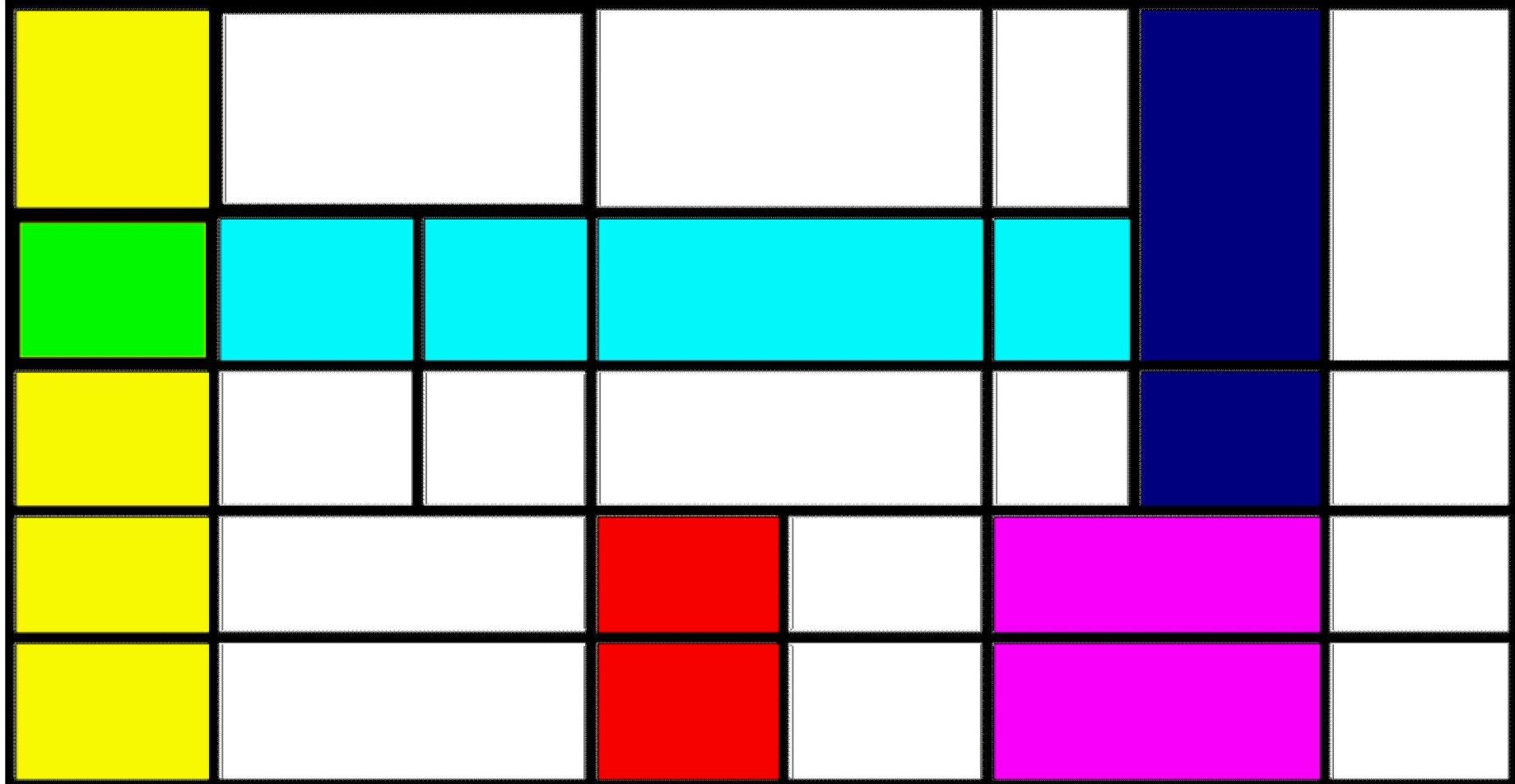
Chord Collapse



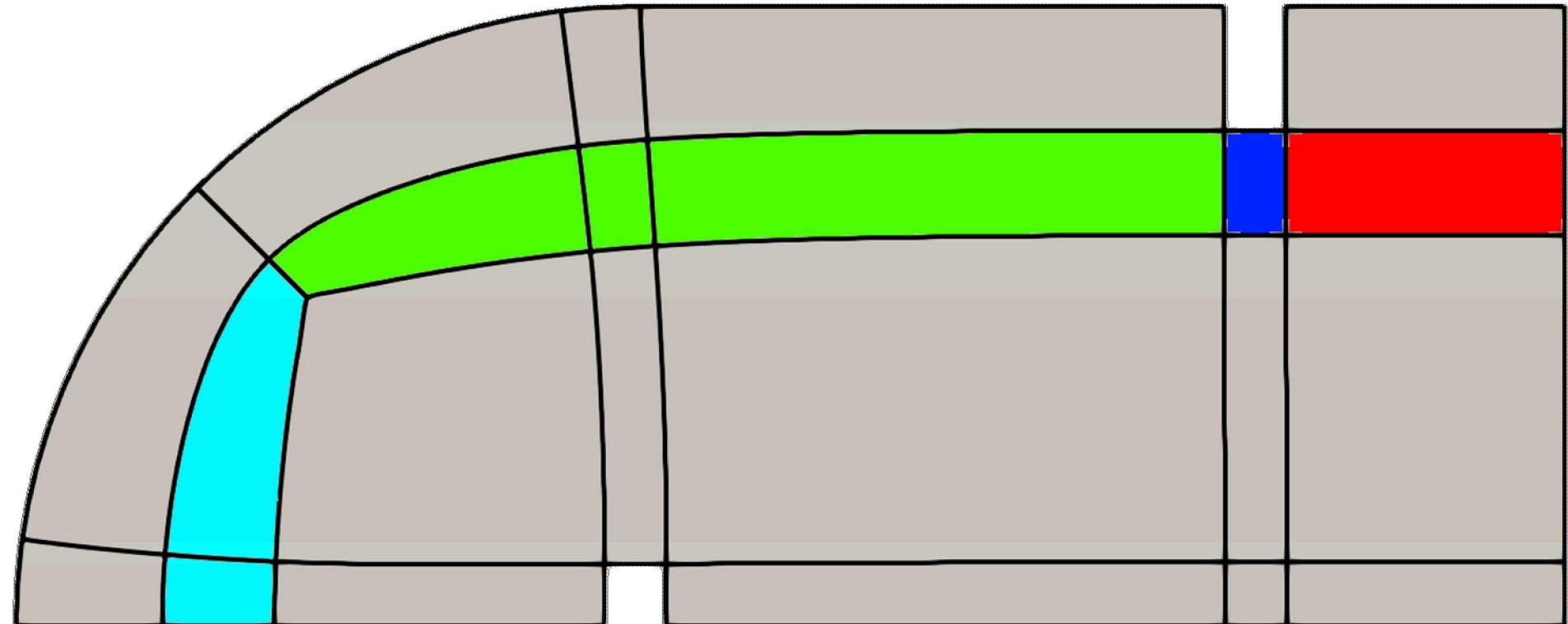
Chord Collapse



Chords of a T-layout

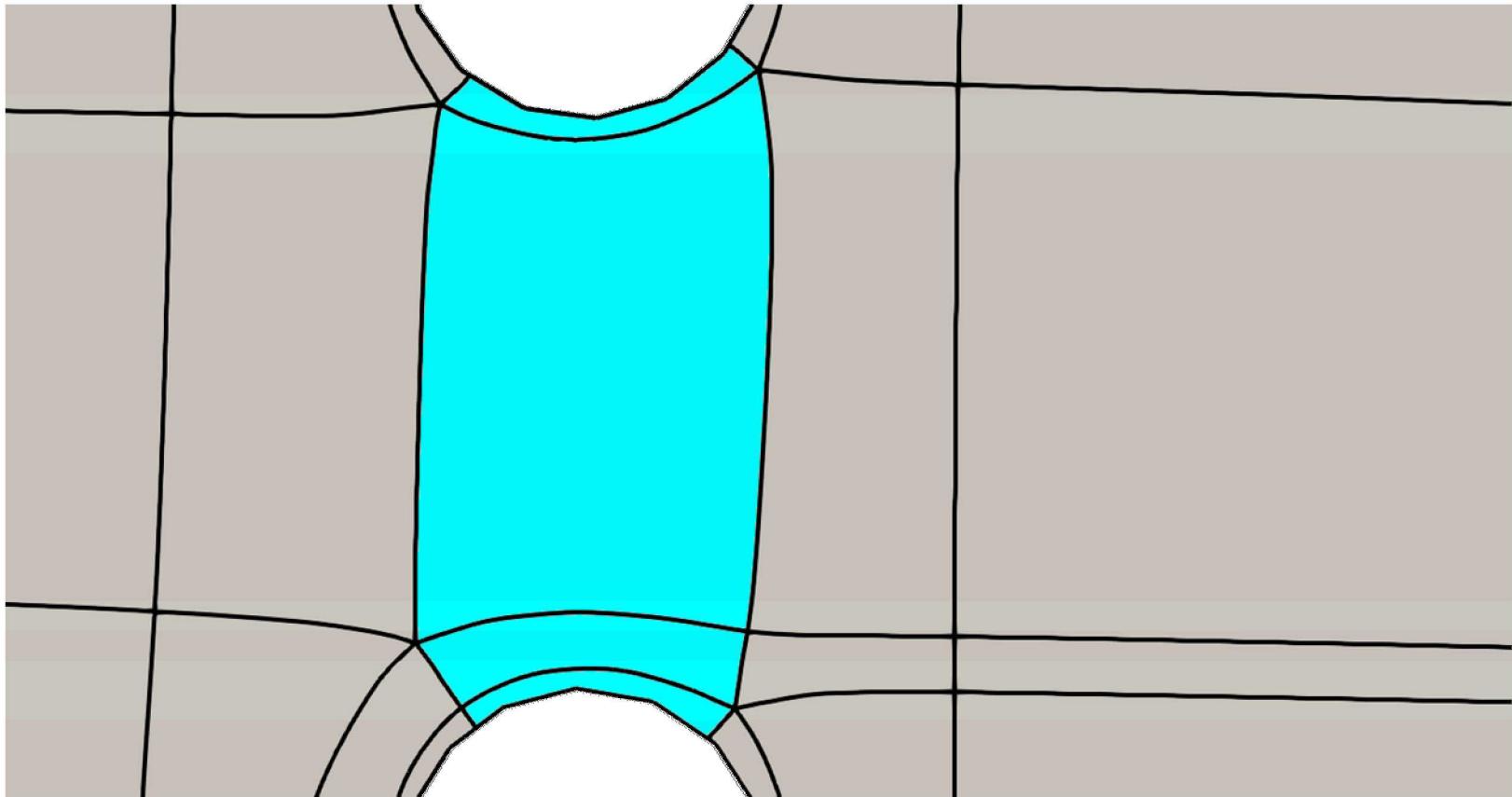


Patches of a Chord



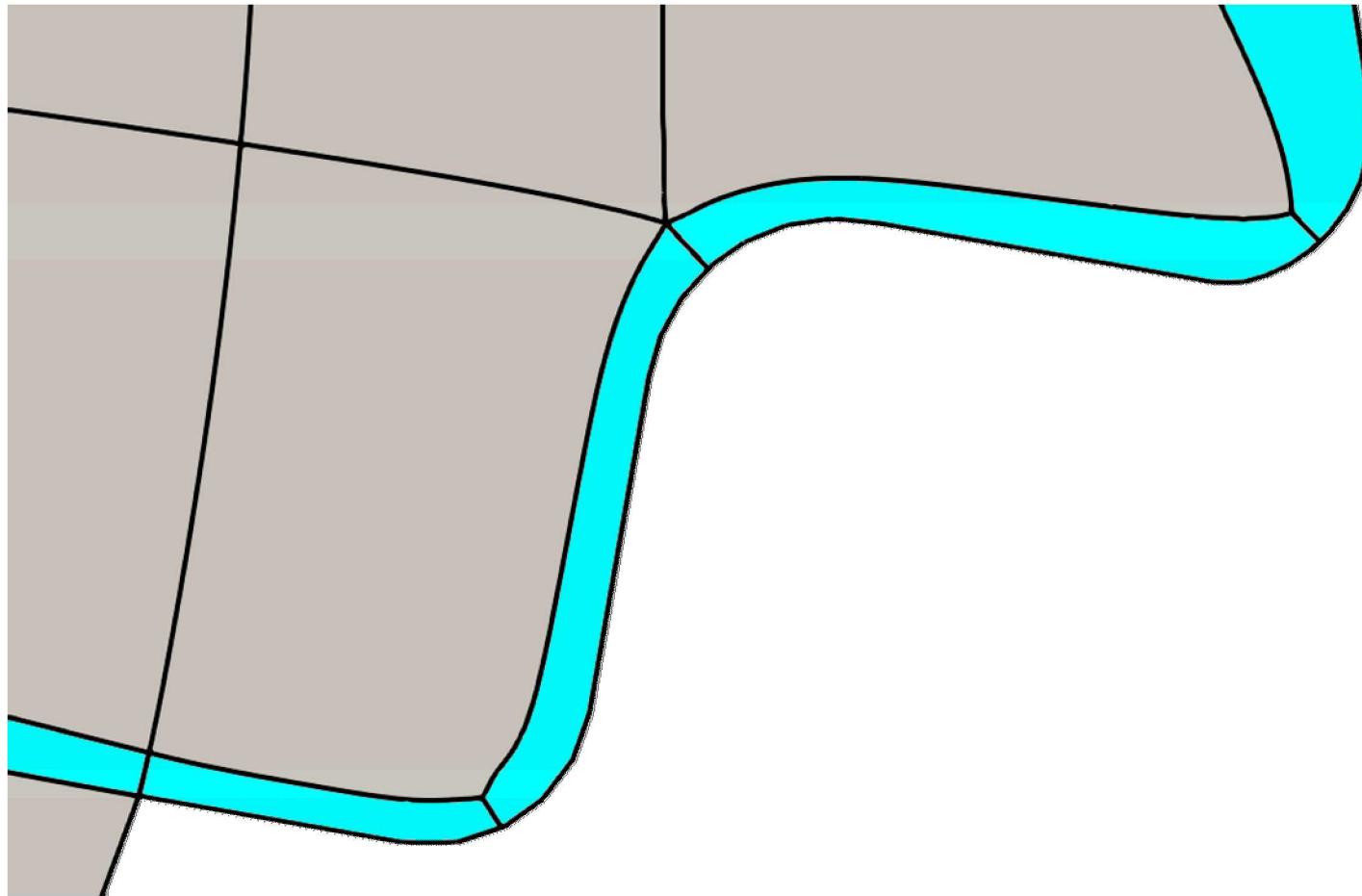
Collapsible Chords

1. No singularities are connected across any transverse rung of the patch.



Collapsible Chords

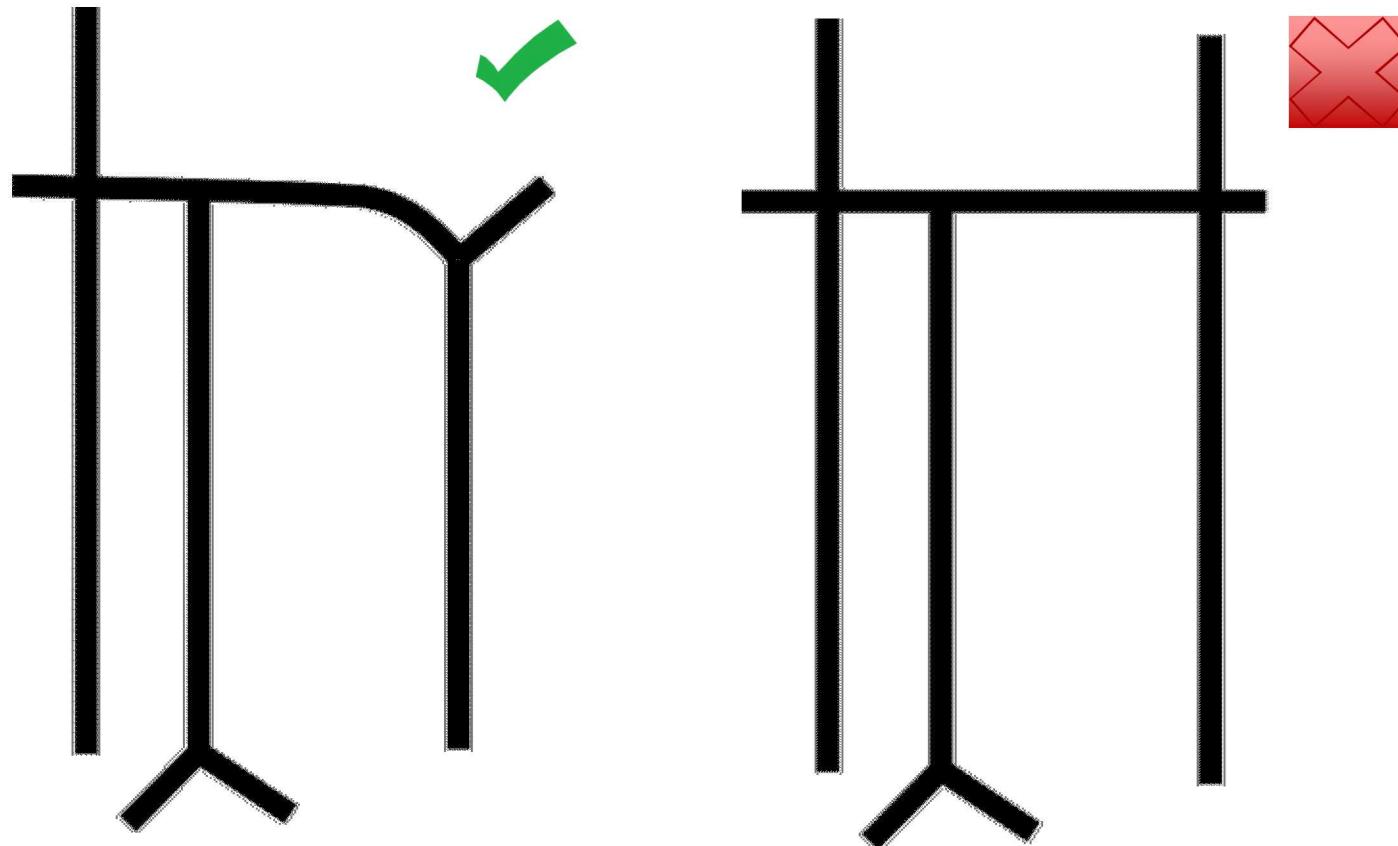
2. No singularity is connected to a boundary across any transverse rung of the patch.



Collapsible Chords

3. If the patch starts or ends at a T-junction:

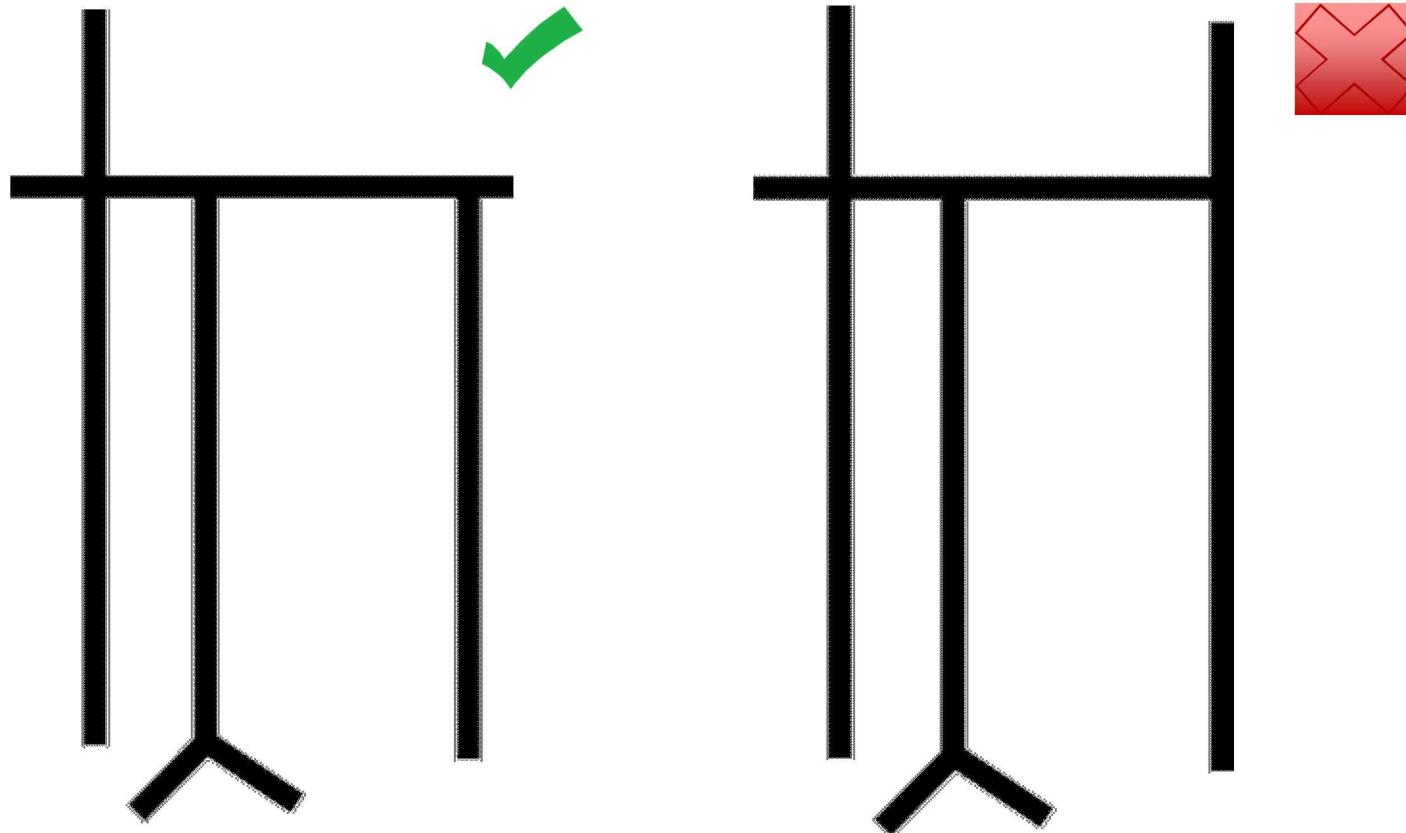
(a) The node opposite the T-junction on the same transverse rung is a singularity.



Collapsible Chords

3. If the patch starts or ends at a T-junction:

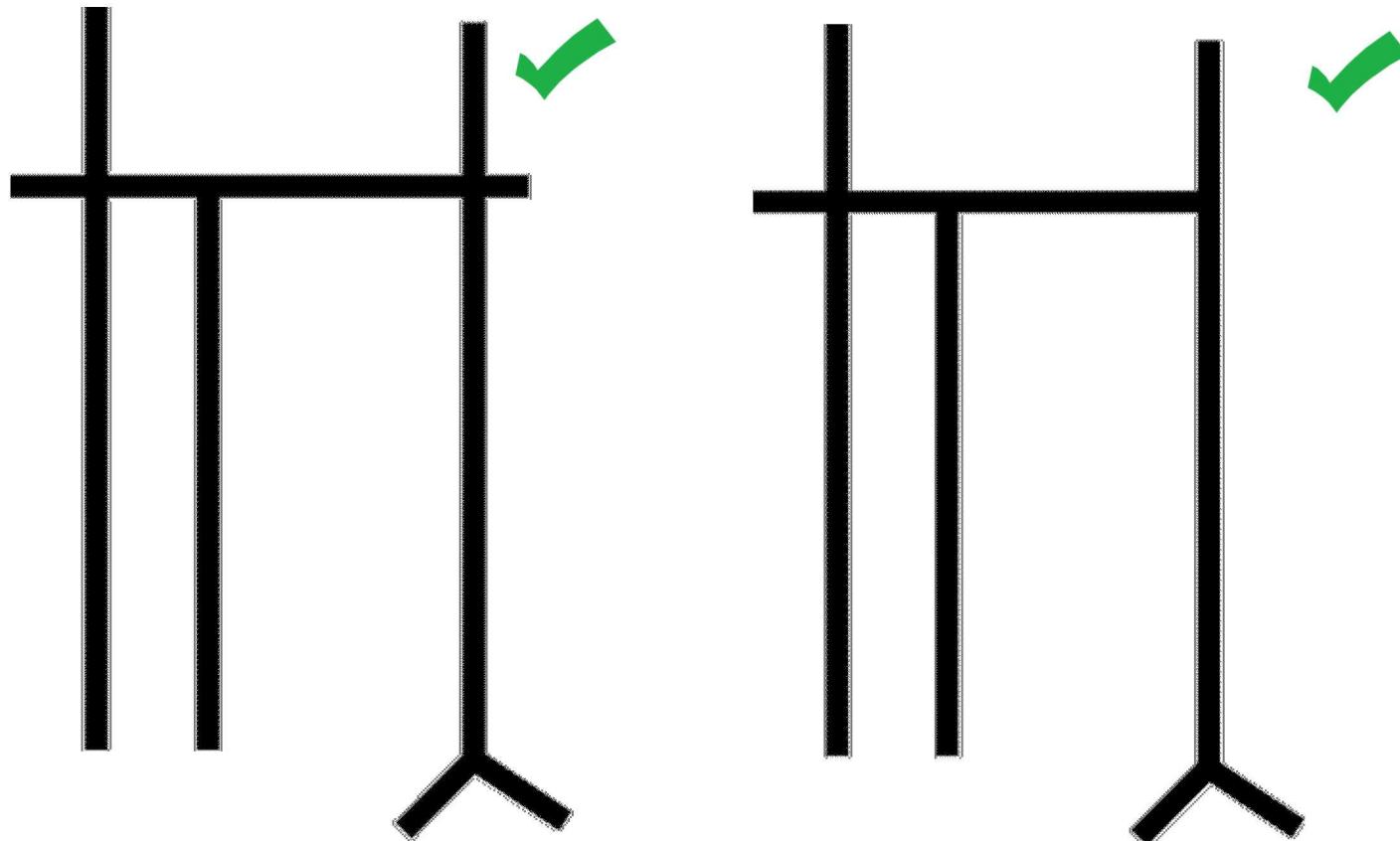
(b) The node opposite the T-junction on the same transverse rung is another T-junction with the same orientation.



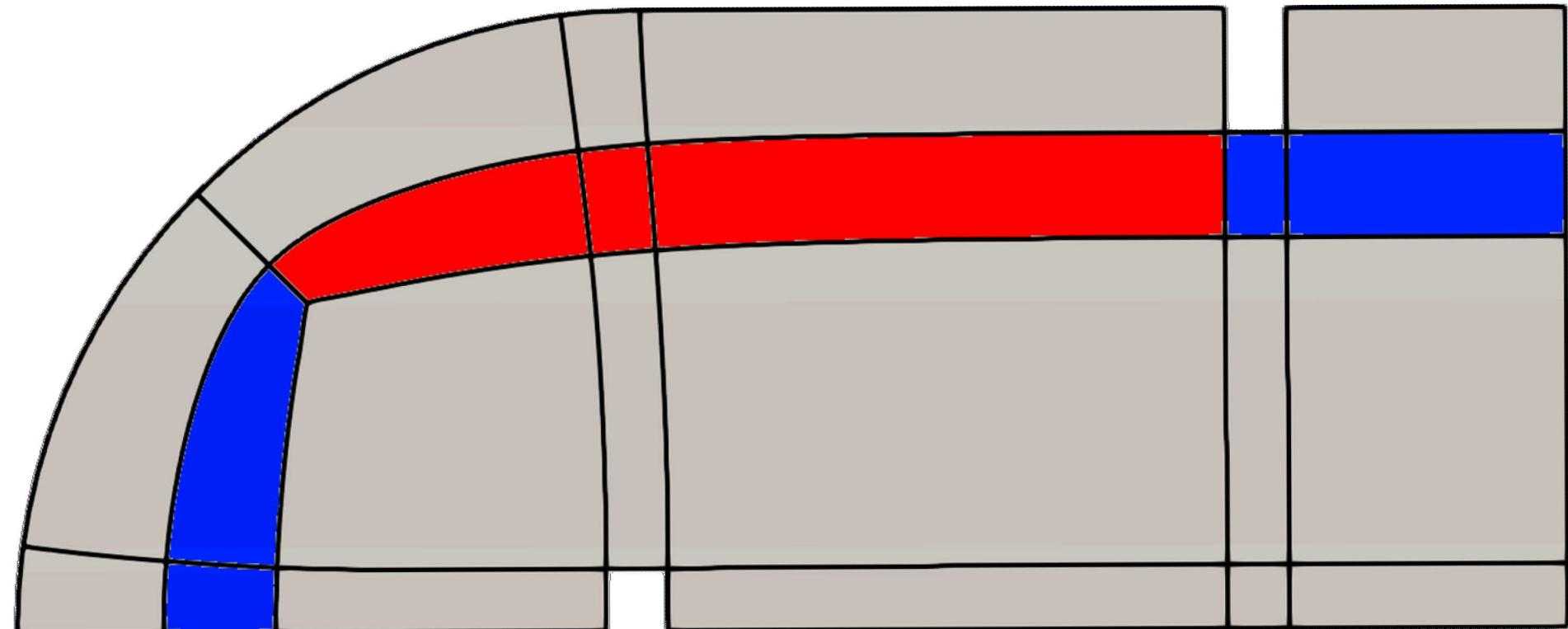
Collapsible Chords

3. If the patch starts or ends at a T-junction:

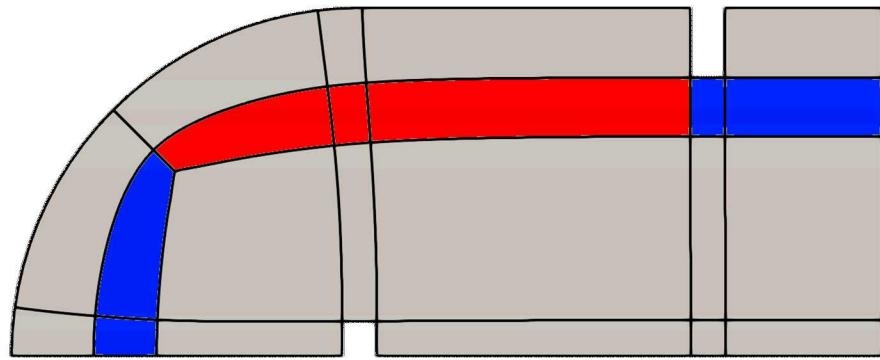
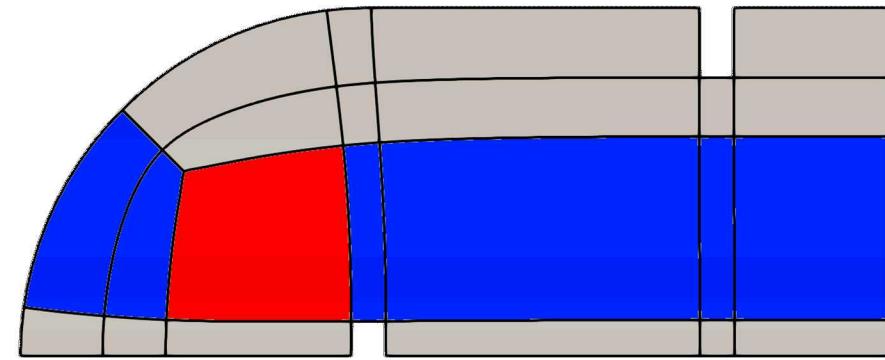
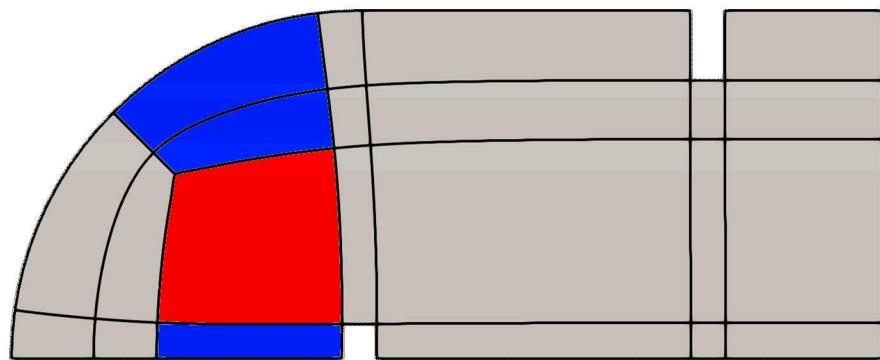
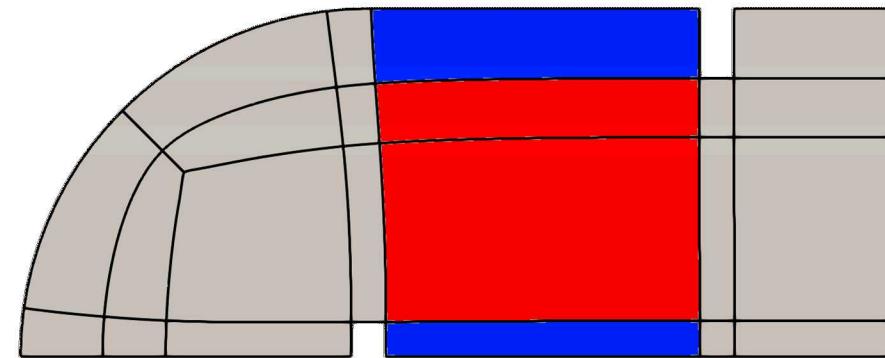
(c) The node on the opposite corner of the patch from the T-junction is a singularity.



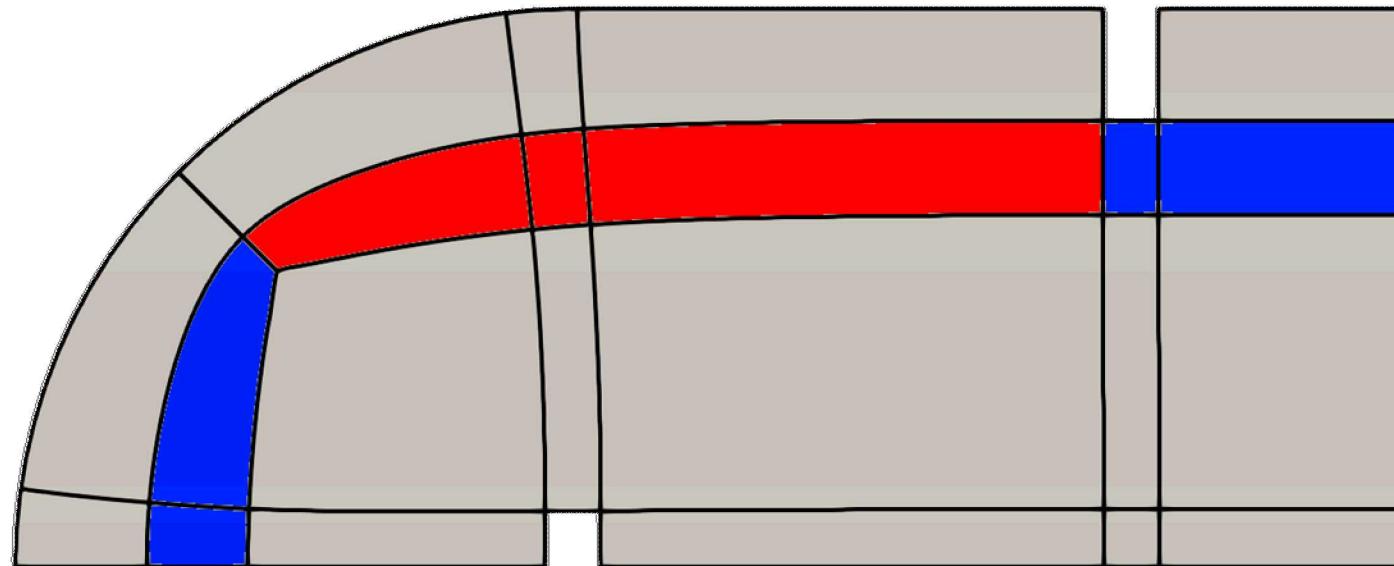
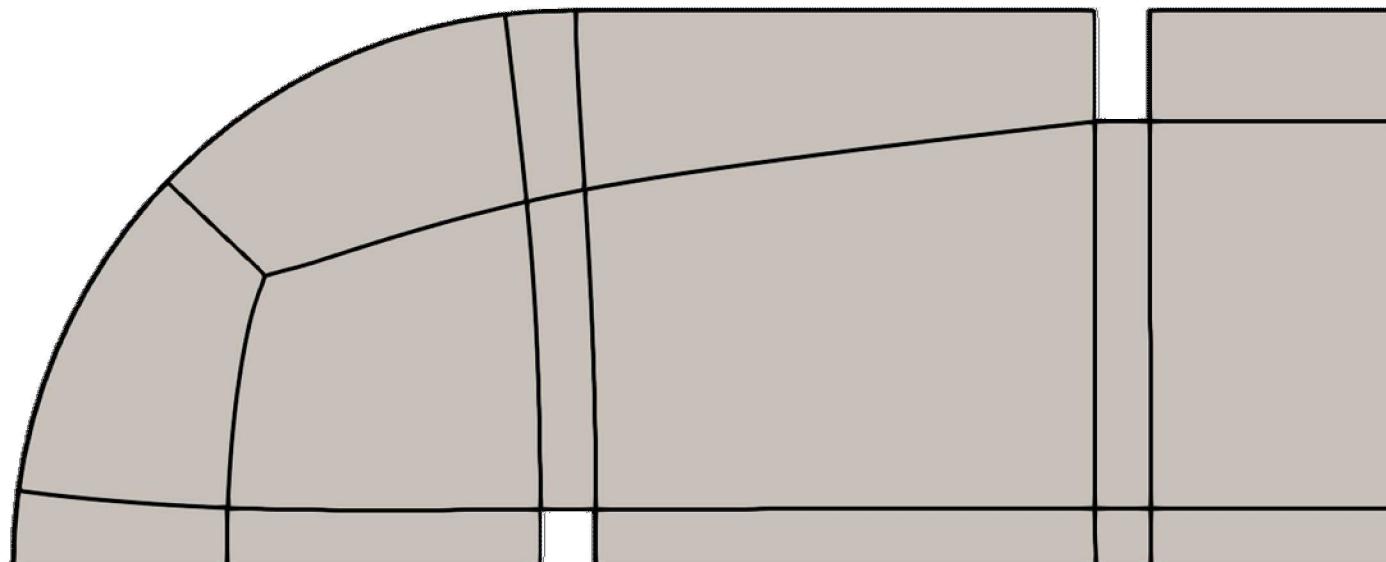
Zip and Non-Zip Patches



Collapsible Chords



Collapse Operation



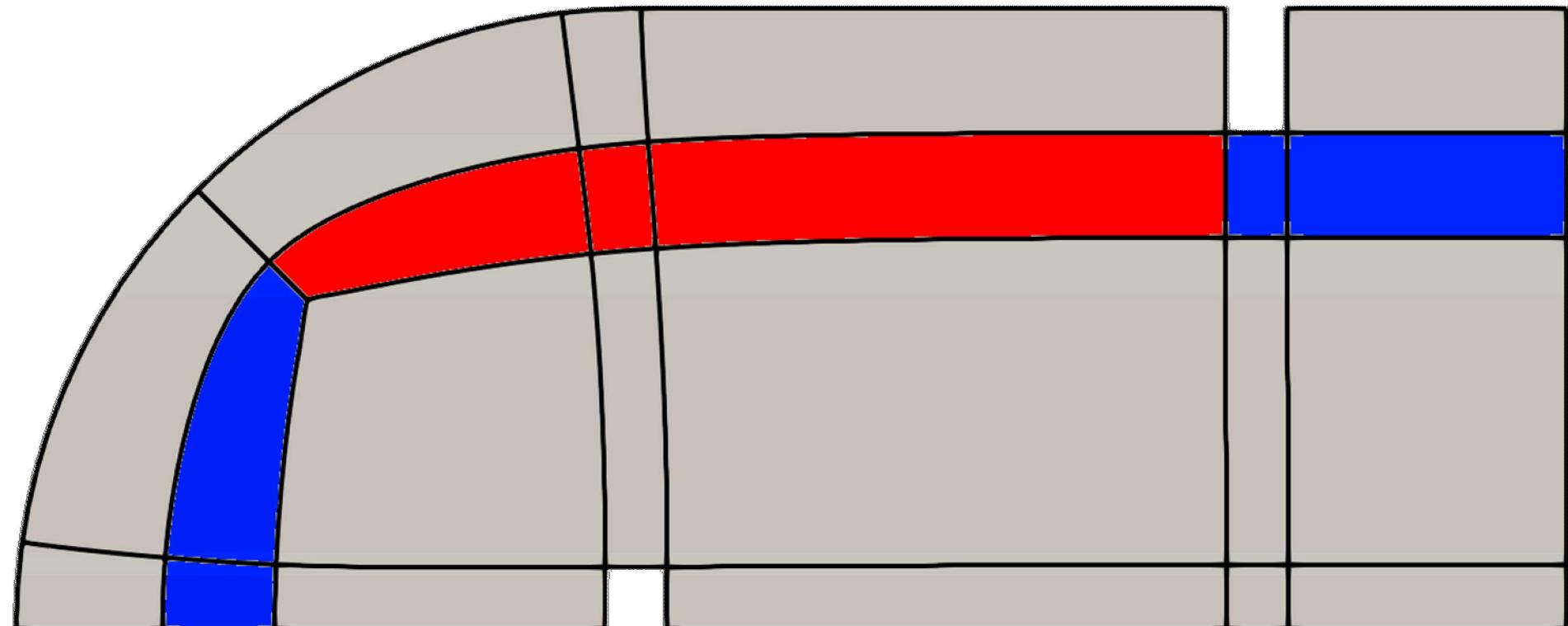
Condition for Collapse

Collapse if: $E > 0$

$$E = \min_{p \in C} E_p$$

$$E_{zip} = \frac{\pi}{8} - \tan^{-1} \frac{w}{l}$$

$$E_{nozip} = 1$$



Collapse Algorithm

Algorithm 3 Partition Simplification

Let Γ be the set of collapsible chords of the partition

while $|\Gamma| > 0$ **do**

if No chords meet the conditions for collapse **then**

Stop.

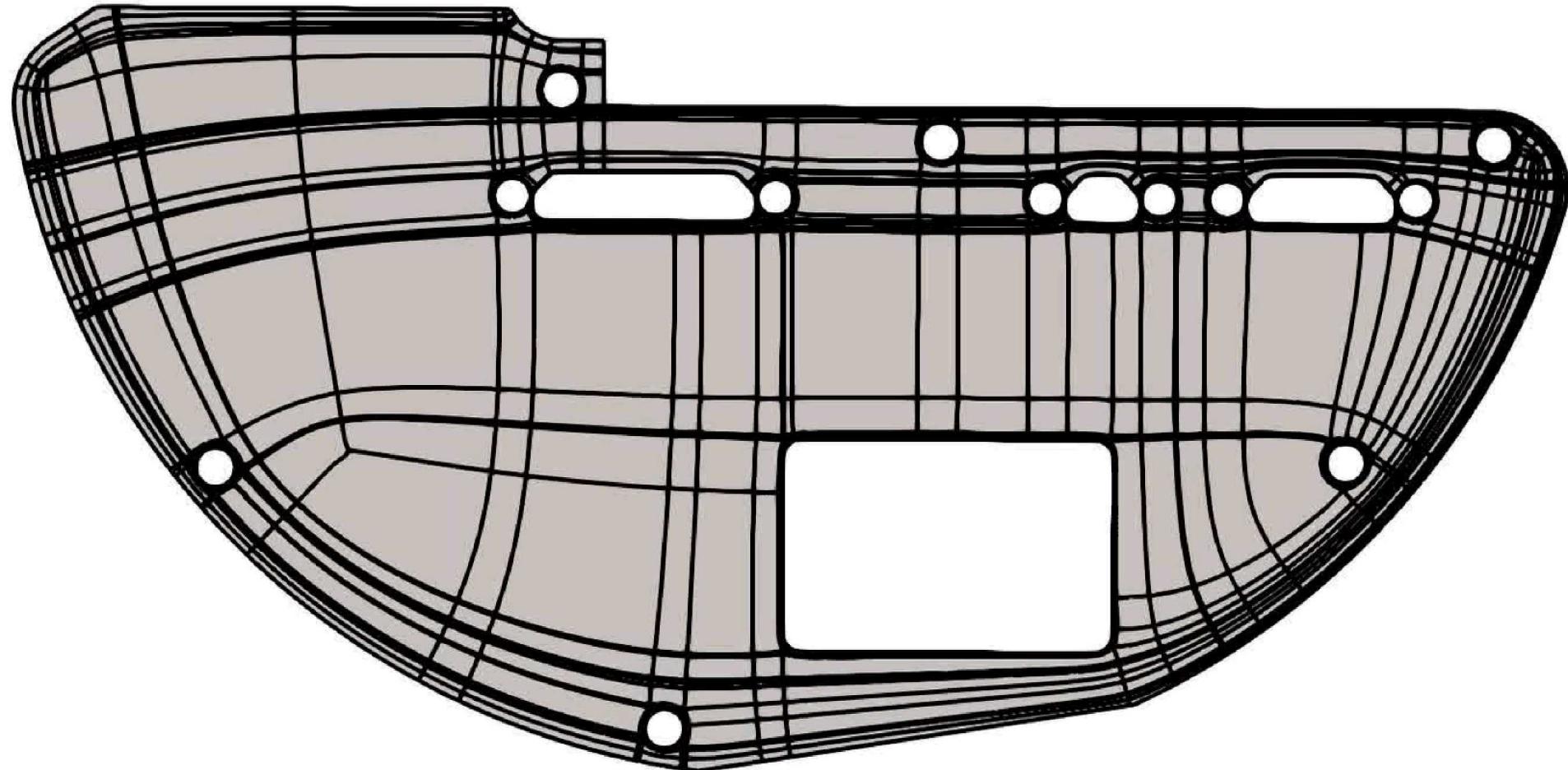
else

 Collapse the chord with the smallest minimum width

 Determine new set of collapsible chords Γ

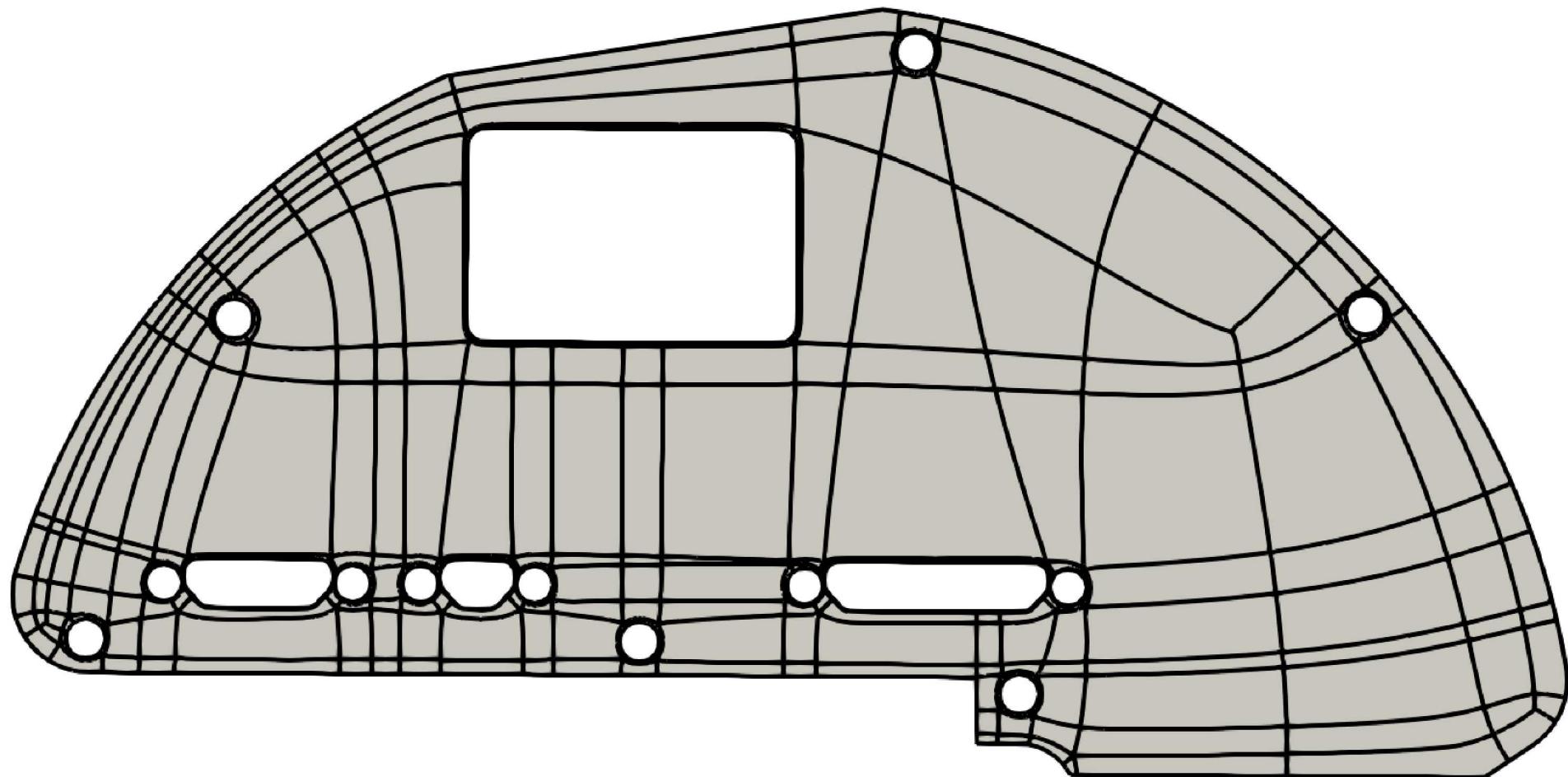
end if

end while

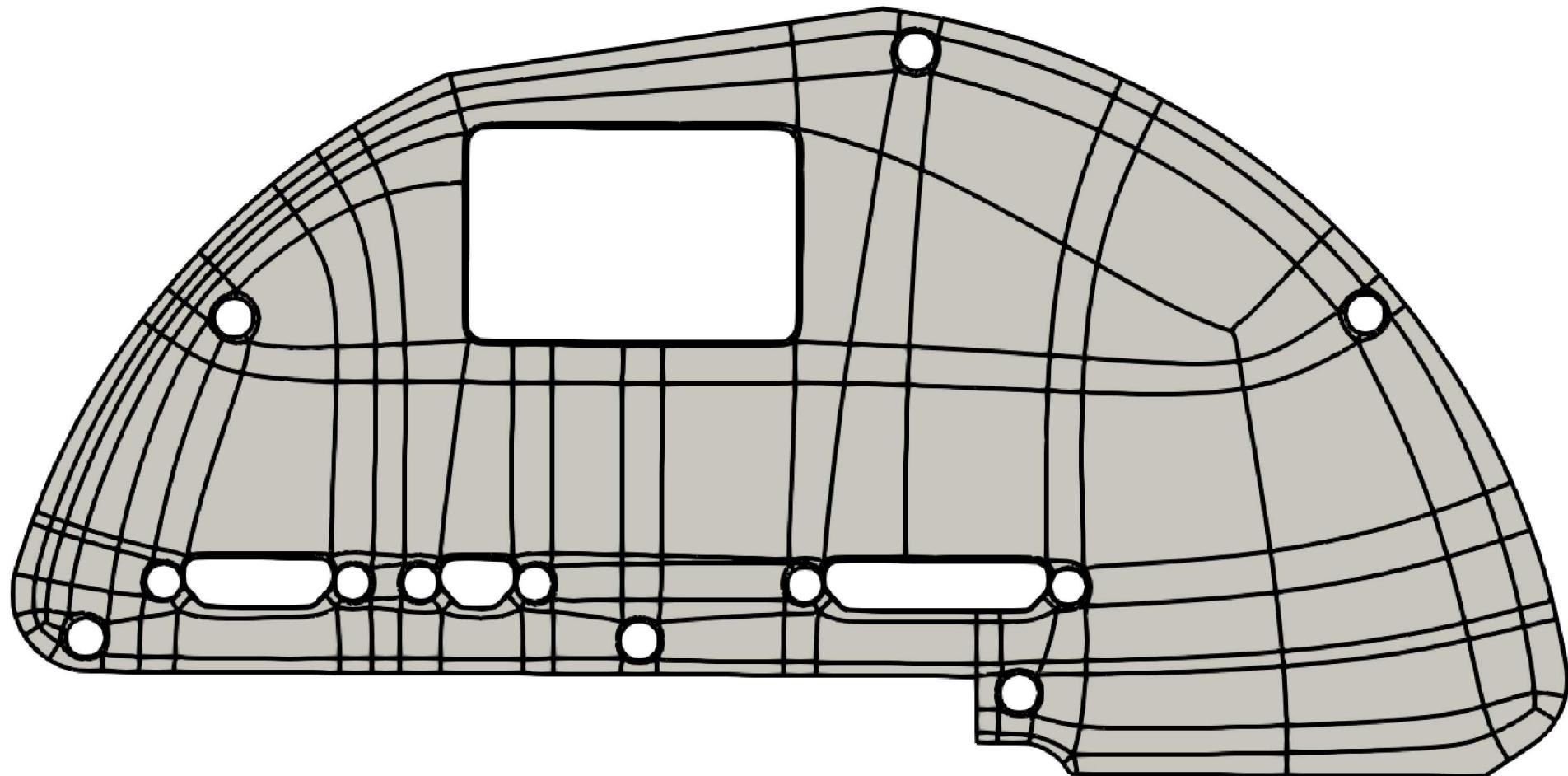


Collapse Algorithm

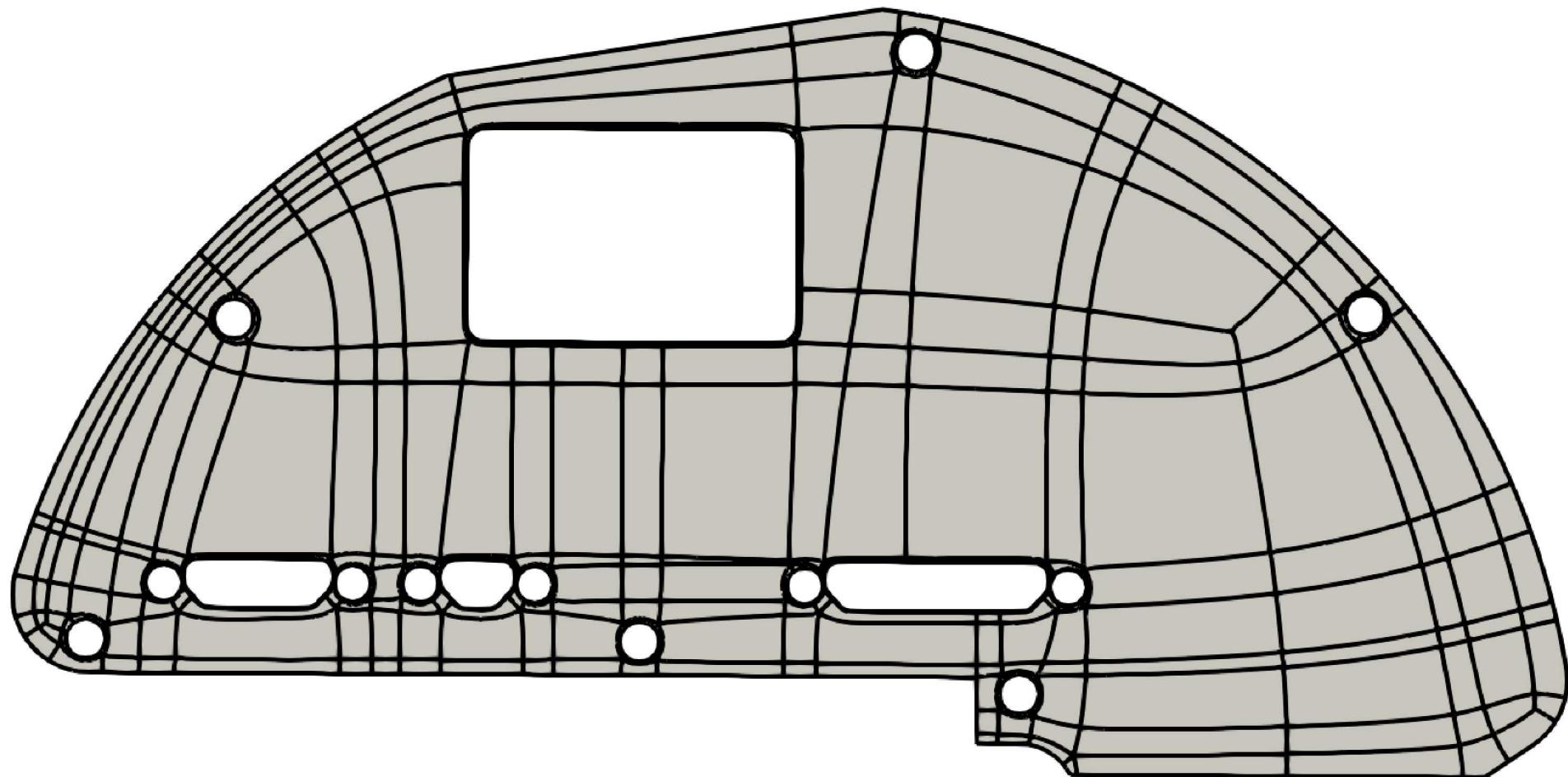
Collapse Algorithm



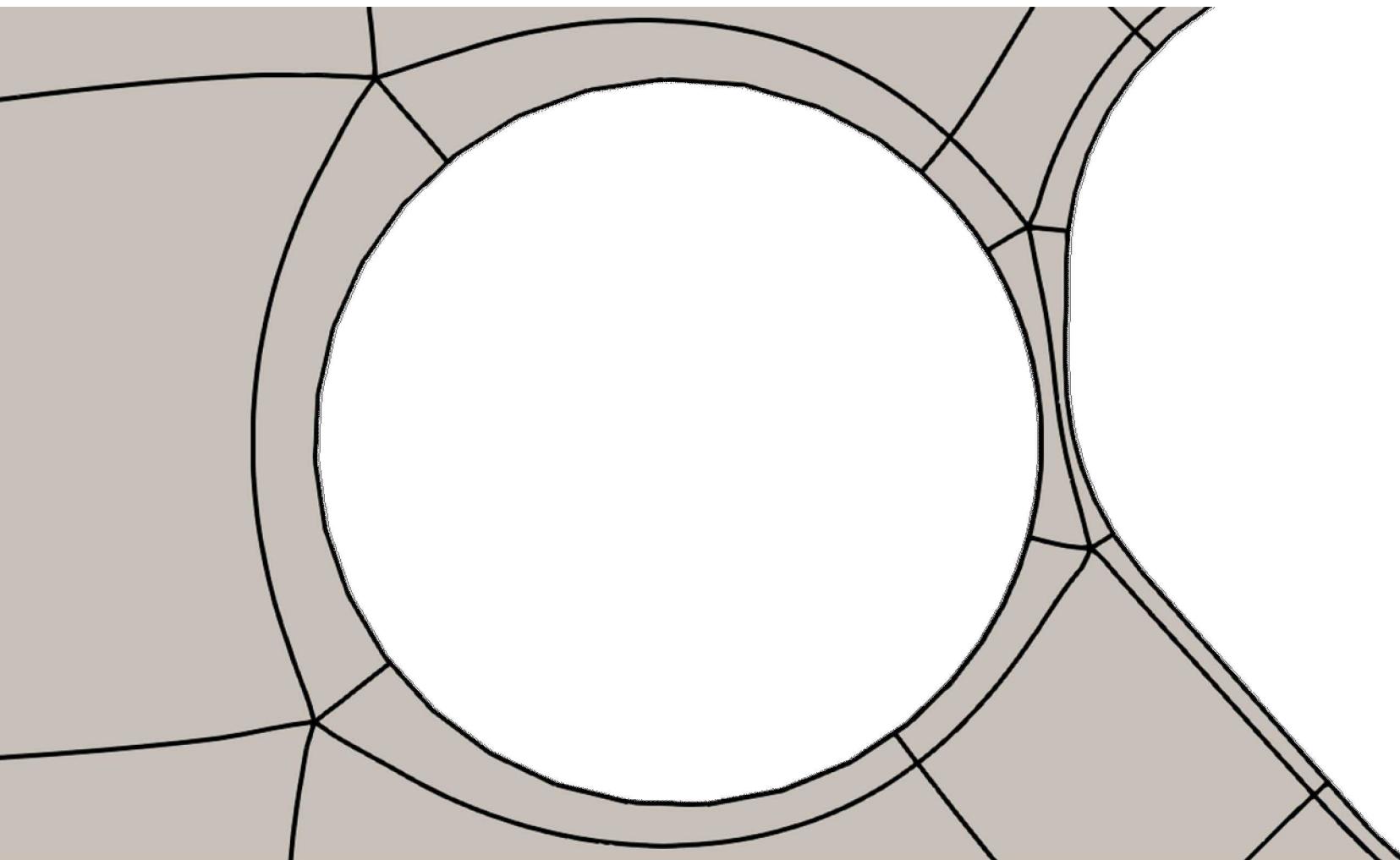
Collapse Algorithm



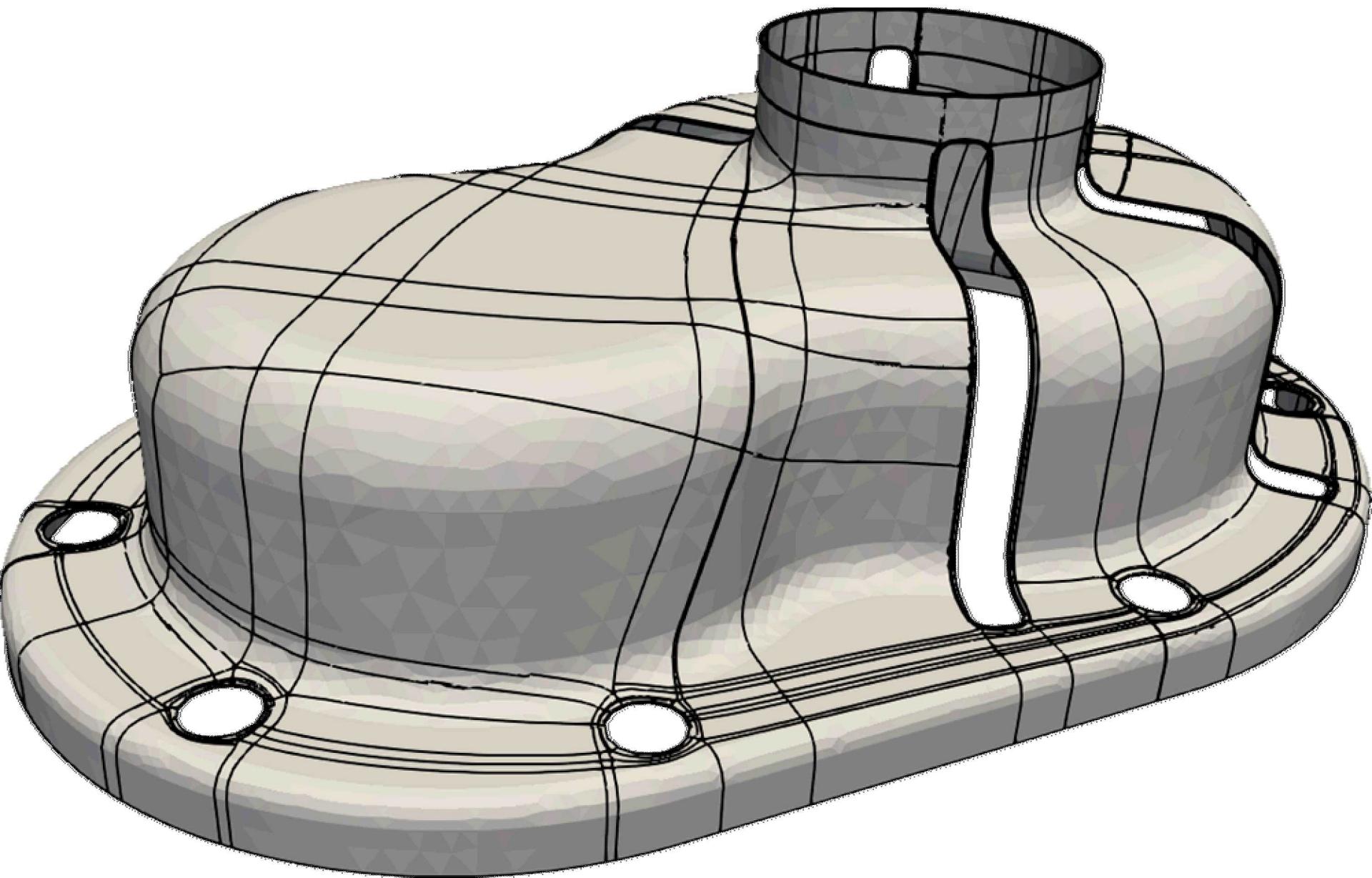
Collapse Algorithm



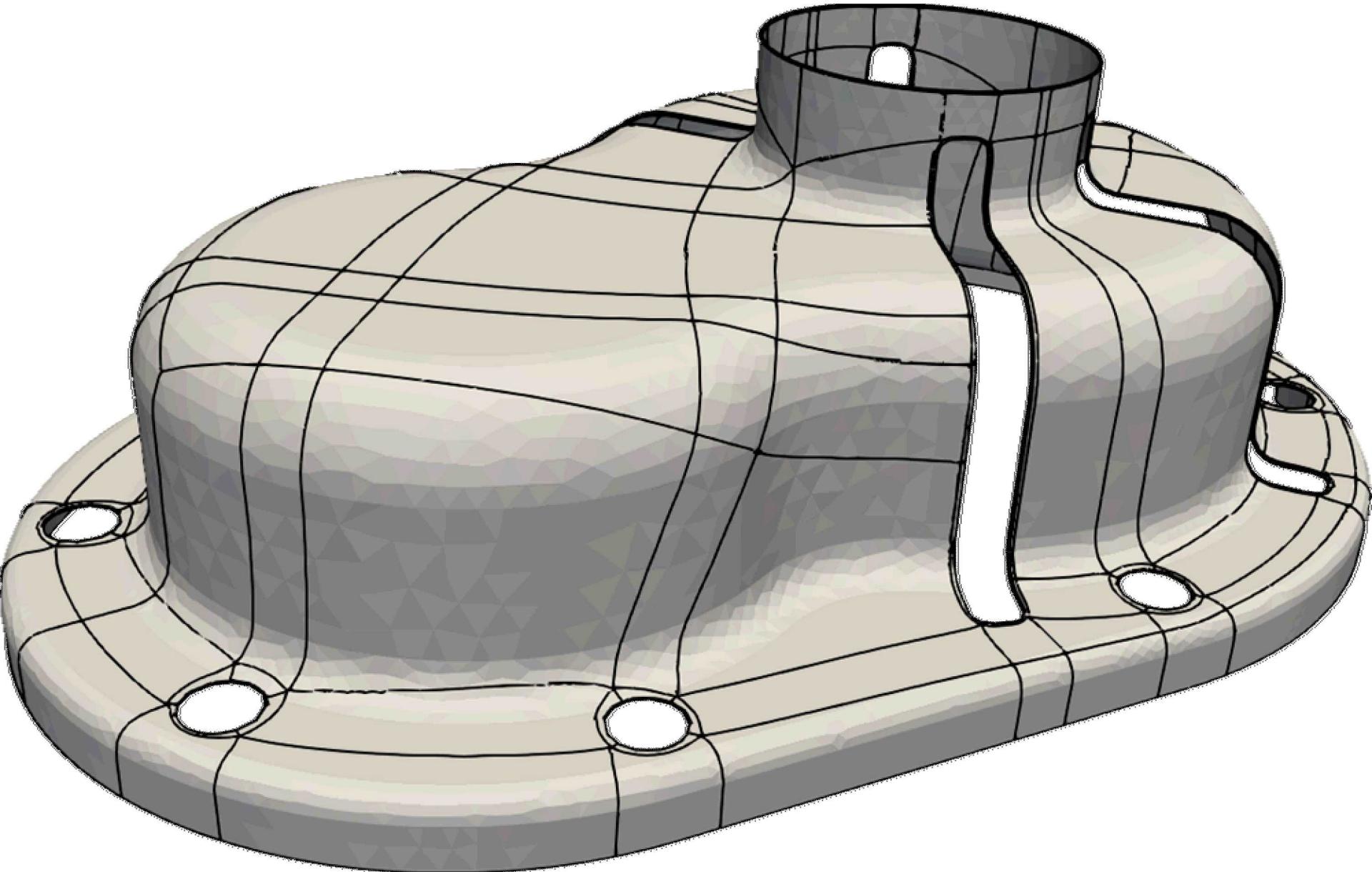
Collapse Algorithm



Partition Simplification on Surfaces

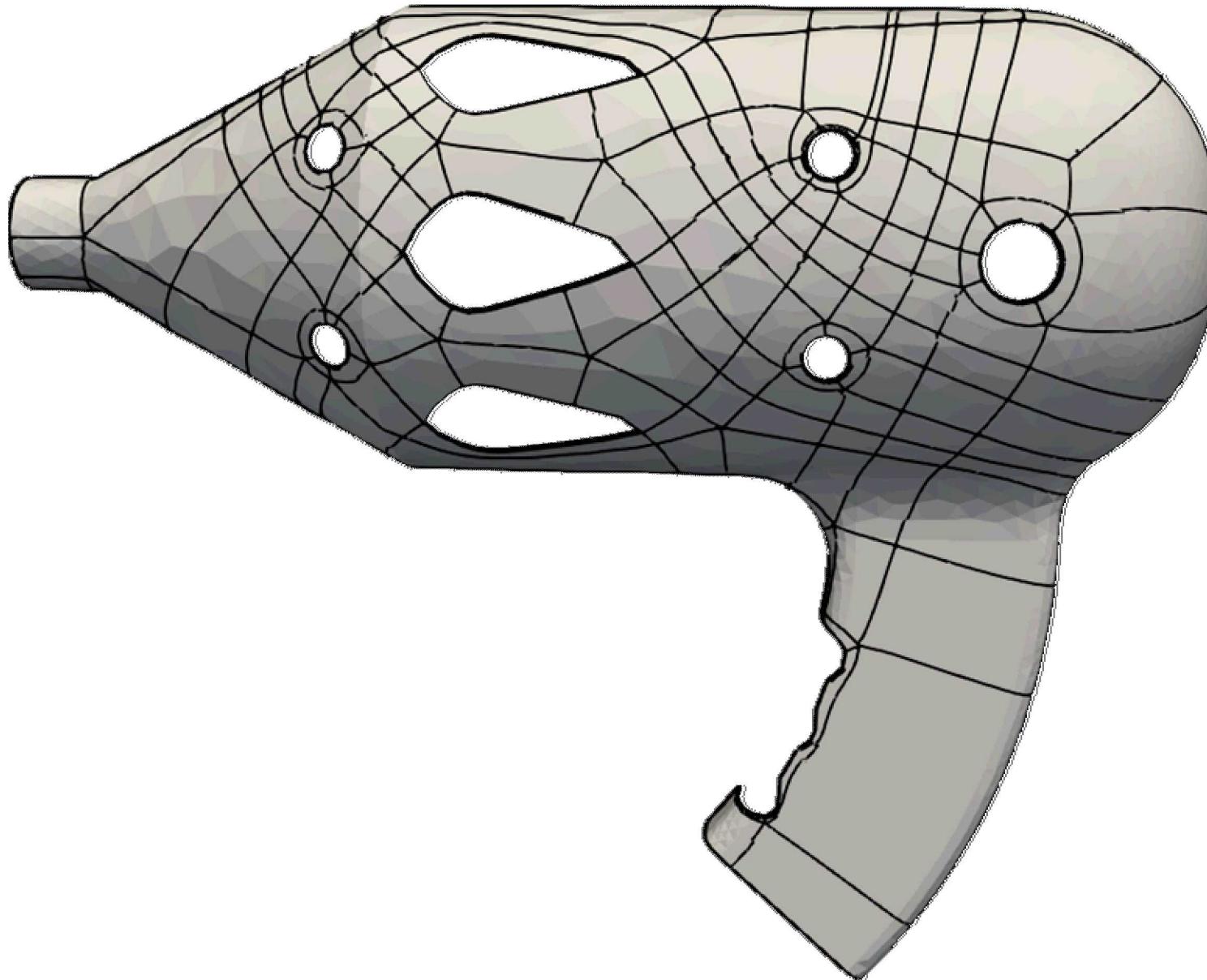


Partition Simplification on Surfaces

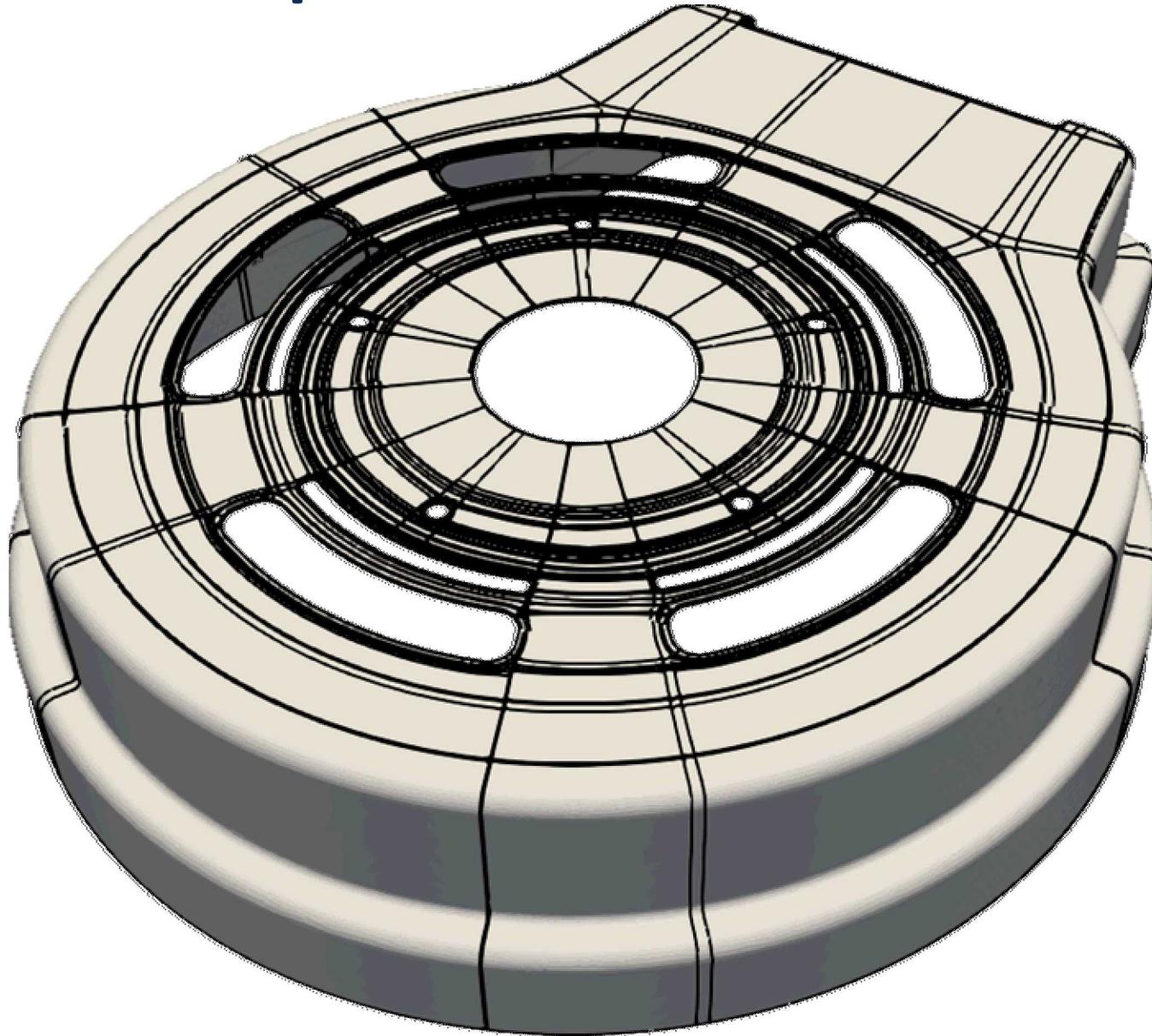


Partition Simplification on Surfaces

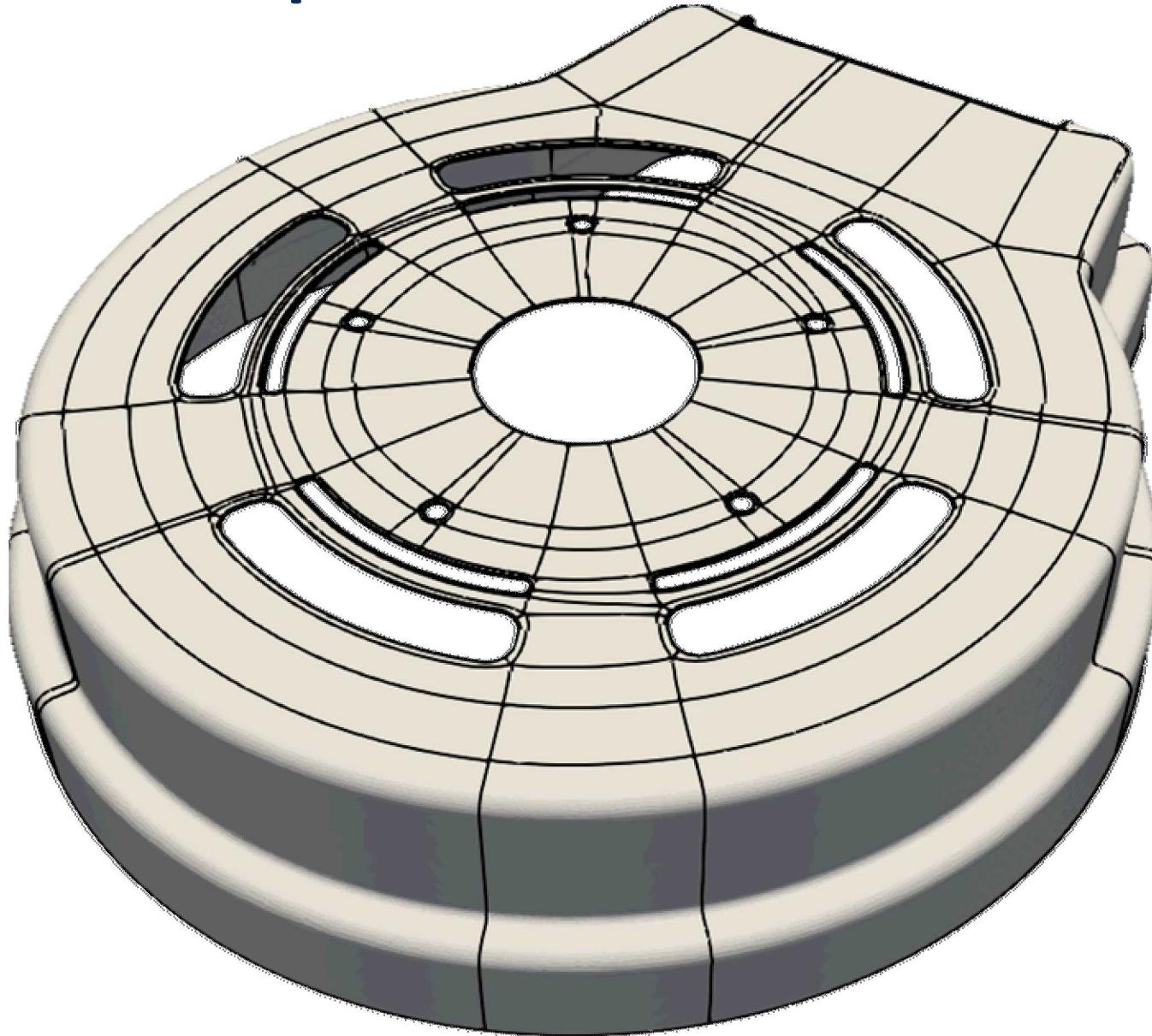
Partition Simplification on Surfaces



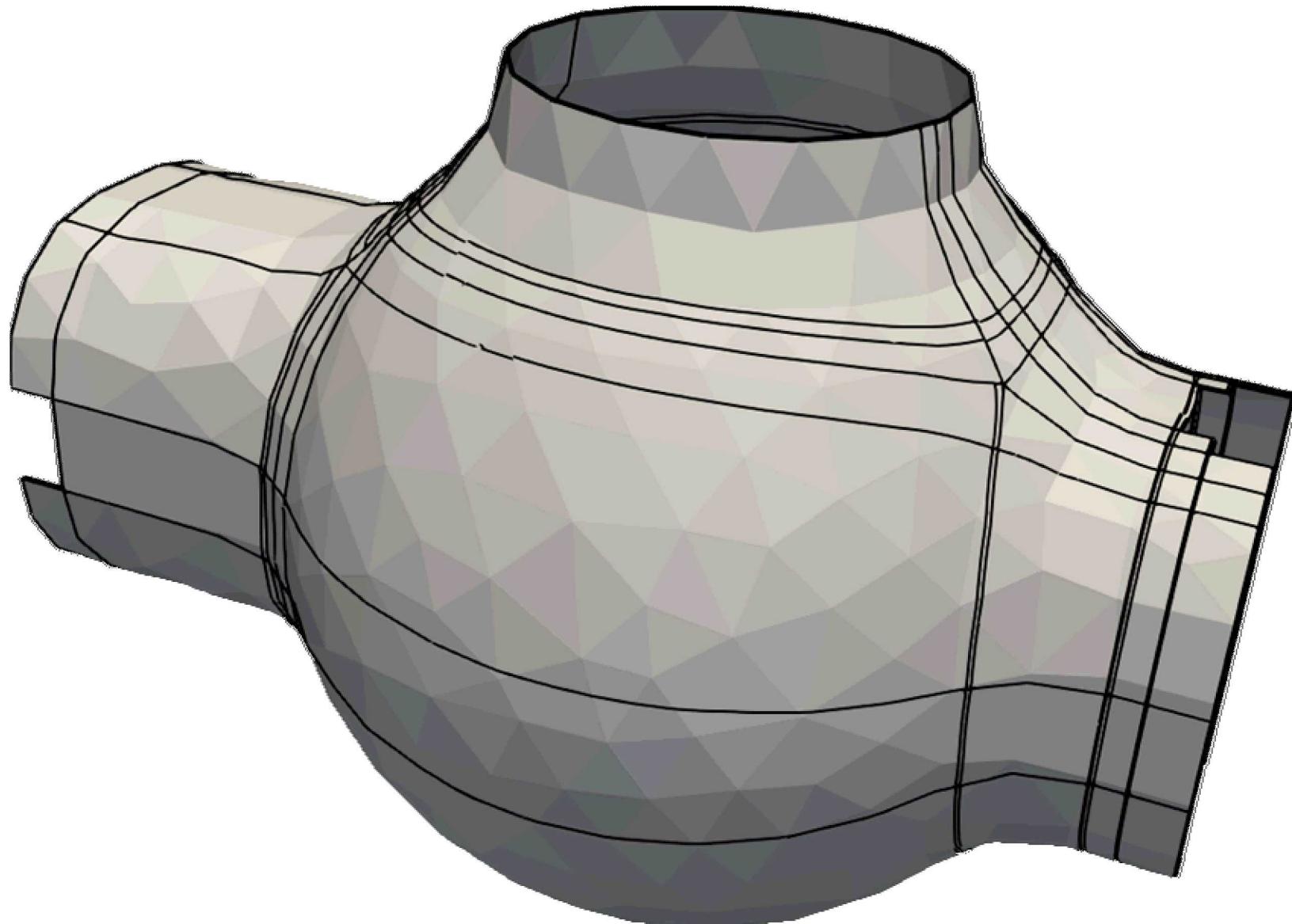
Partition Simplification on Surfaces



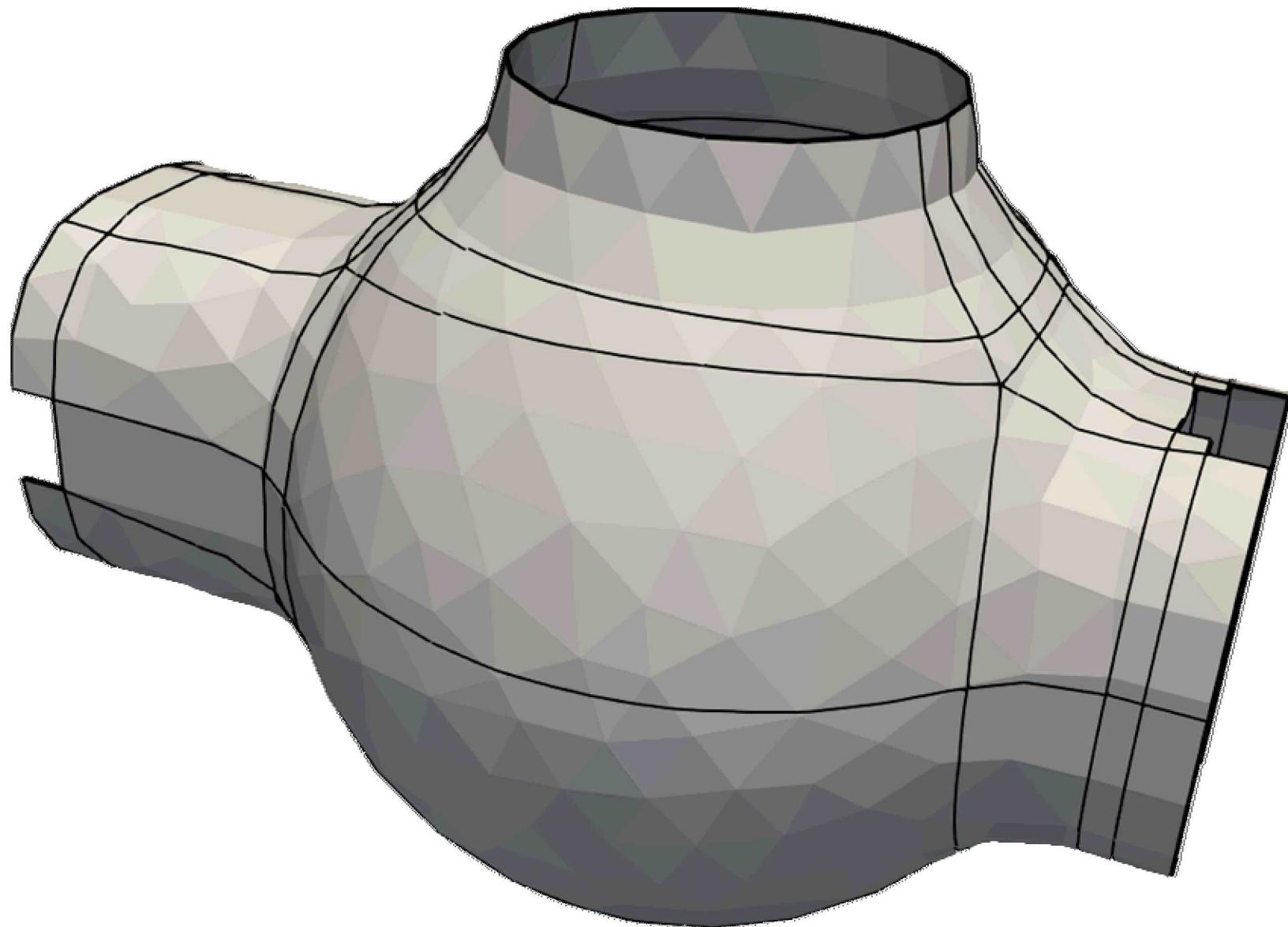
Partition Simplification on Surfaces



Partition Simplification on Surfaces



Partition Simplification on Surfaces

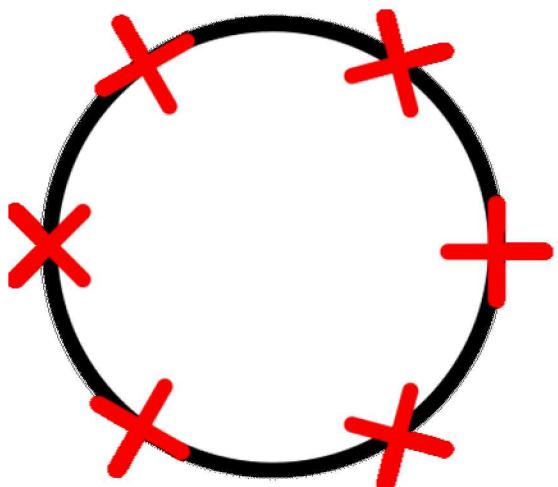
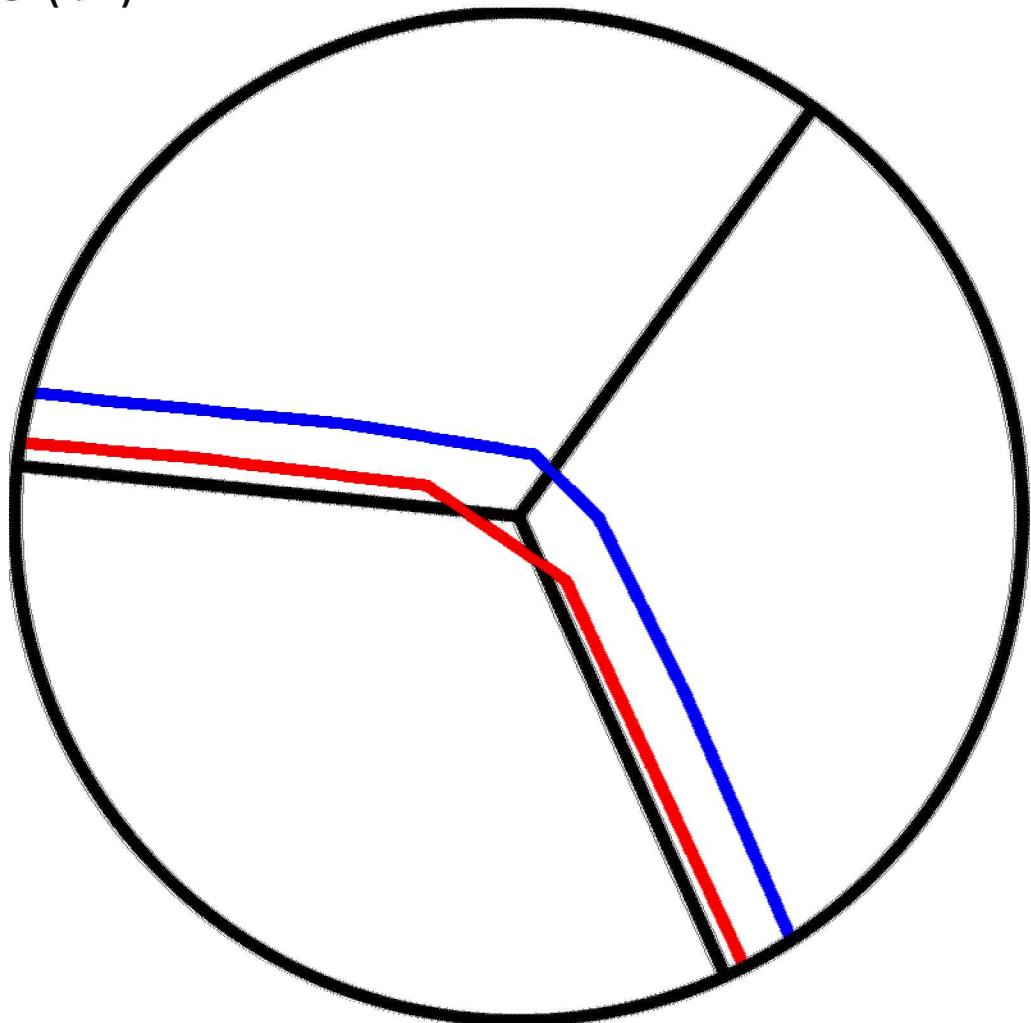


Extra Slides

Hyperbolic Trajectory of Streamlines

Streamlines Near Singularities

$$f(z) = e^{i(\frac{d\theta}{4} + \frac{2k\pi}{4})} + o(r)$$



Streamlines Near Singularities

$$f(z) = e^{i(\frac{d\theta}{4} + \frac{2k\pi}{4})} + o(r)$$

Streamlines Near Singularities

$$f(z) = e^{i(\frac{d\theta}{4} + \frac{2k\pi}{4})} + \cancel{o(r)}$$

Streamlines Near Singularities

$$f(z) = e^{i(\frac{d\theta}{4} + \frac{2k\pi}{4})} + \cancel{o(r)}$$

Streamlines are given by $z' = f(z)$

Streamlines Near Singularities

$$f(z) = e^{i(\frac{d\theta}{4} + \frac{2k\pi}{4})} + o(\cancel{r})$$

Streamlines are given by $z' = f(z)$

WLOG let $k = 0$, we are looking for the set

$$C = \{z(t) \in B(a, r_0) \mid t \in (t_a, t_b)\}$$

Streamlines Near Singularities

Proposition:

$$C = \{(x + iy)^{-(4-d)/8} \mid xy = A, x \in I_x\}$$

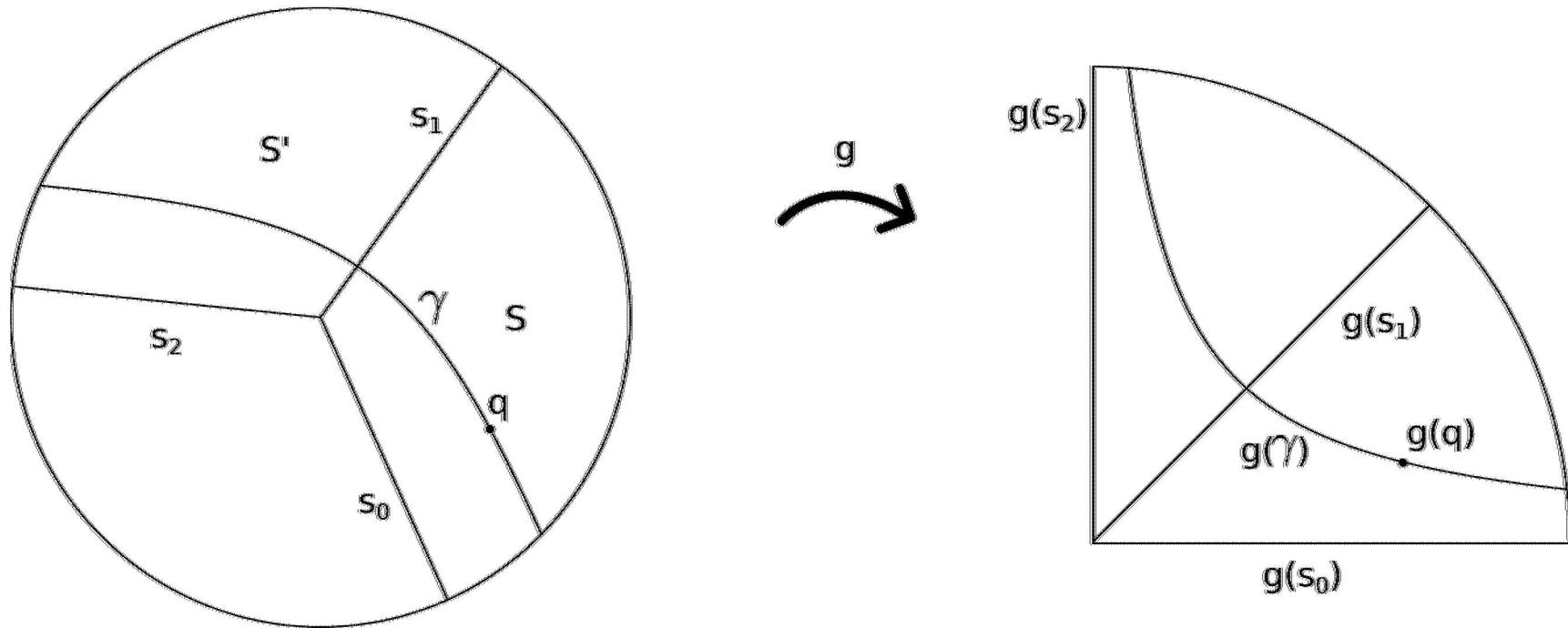
For some constant A on some interval I_x

Proof:

Consider

$$g(z) = z^{(4-d)/8}$$

Streamlines Near Singularities



$$g(z) = z^{(4-d)/8}$$

Streamlines Near Singularities

$$w(t) = g(z(t))$$

Streamlines Near Singularities

$$w(t) = g(z(t))$$

$$w'(t) = g'(z(t))z'(t)$$

Streamlines Near Singularities

$$w(t) = g(z(t))$$

$$w'(t) = g'(z(t))z'(t)$$

$$g'(z) \neq 0 \text{ in } D$$

$$\arg w'(t) = \arg (g'(z(t))z'(t))$$

Streamlines Near Singularities

$$w(t) = g(z(t))$$

$$w'(t) = g'(z(t))z'(t)$$

$$g'(z) \neq 0 \text{ in } D$$

$$\begin{aligned}\arg w'(t) &= \arg (g'(z(t))z'(t)) \\ &= \arg g'(z(t)) + \arg z'(t)\end{aligned}$$

Streamlines Near Singularities

$$w(t) = g(z(t))$$

$$w'(t) = g'(z(t))z'(t)$$

$$g'(z) \neq 0 \text{ in } D$$

$$\begin{aligned}\arg w'(t) &= \arg (g'(z(t))z'(t)) \\ &= \arg g'(z(t)) + \arg z'(t) \\ &= \left(\frac{4-d}{8} - 1 \right) \theta + \arg(z'(t))\end{aligned}$$

Streamlines Near Singularities

$$\arg w'(t) = \left(\frac{4-d}{8} - 1 \right) \theta + \arg(z'(t))$$

Streamlines Near Singularities

$$\begin{aligned}\arg w'(t) &= \left(\frac{4-d}{8} - 1 \right) \theta + \arg(z'(t)) \\ &= \frac{d\theta}{4} + \left(\frac{4-d}{8} - 1 \right) \theta\end{aligned}$$

Streamlines Near Singularities

$$\begin{aligned}\arg w'(t) &= \left(\frac{4-d}{8} - 1 \right) \theta + \arg(z'(t)) \\ &= \frac{d\theta}{4} + \left(\frac{4-d}{8} - 1 \right) \theta \\ &= -\frac{(4-d)\theta}{8}\end{aligned}$$

Streamlines Near Singularities

$$\begin{aligned}\arg w'(t) &= \left(\frac{4-d}{8} - 1 \right) \theta + \arg(z'(t)) \\ &= \frac{d\theta}{4} + \left(\frac{4-d}{8} - 1 \right) \theta \\ &= -\frac{(4-d)\theta}{8} \\ &= -\varphi\end{aligned}$$

Streamlines Near Singularities

$$\implies w'(t) = \alpha(t)e^{-i\varphi}$$

Streamlines Near Singularities

$$\implies w'(t) = \alpha(t)e^{-i\varphi}$$

$$w(t) = x(t) + iy(t)$$

$$x'(t) = \alpha(t) \cos(\varphi)$$

$$y'(t) = -\alpha(t) \sin(\varphi)$$

Streamlines Near Singularities

$$\implies w'(t) = \alpha(t)e^{-i\varphi}$$

$$w(t) = x(t) + iy(t)$$

$$x'(t) = \alpha(t) \cos(\varphi)$$

$$y'(t) = -\alpha(t) \sin(\varphi)$$

$$\frac{dy}{dx} = -\tan(\varphi) = -\frac{y}{x} \implies y = \frac{A}{x}$$

Streamlines Near Singularities

$$\implies w'(t) = \alpha(t)e^{-i\varphi}$$

$$w(t) = x(t) + iy(t)$$

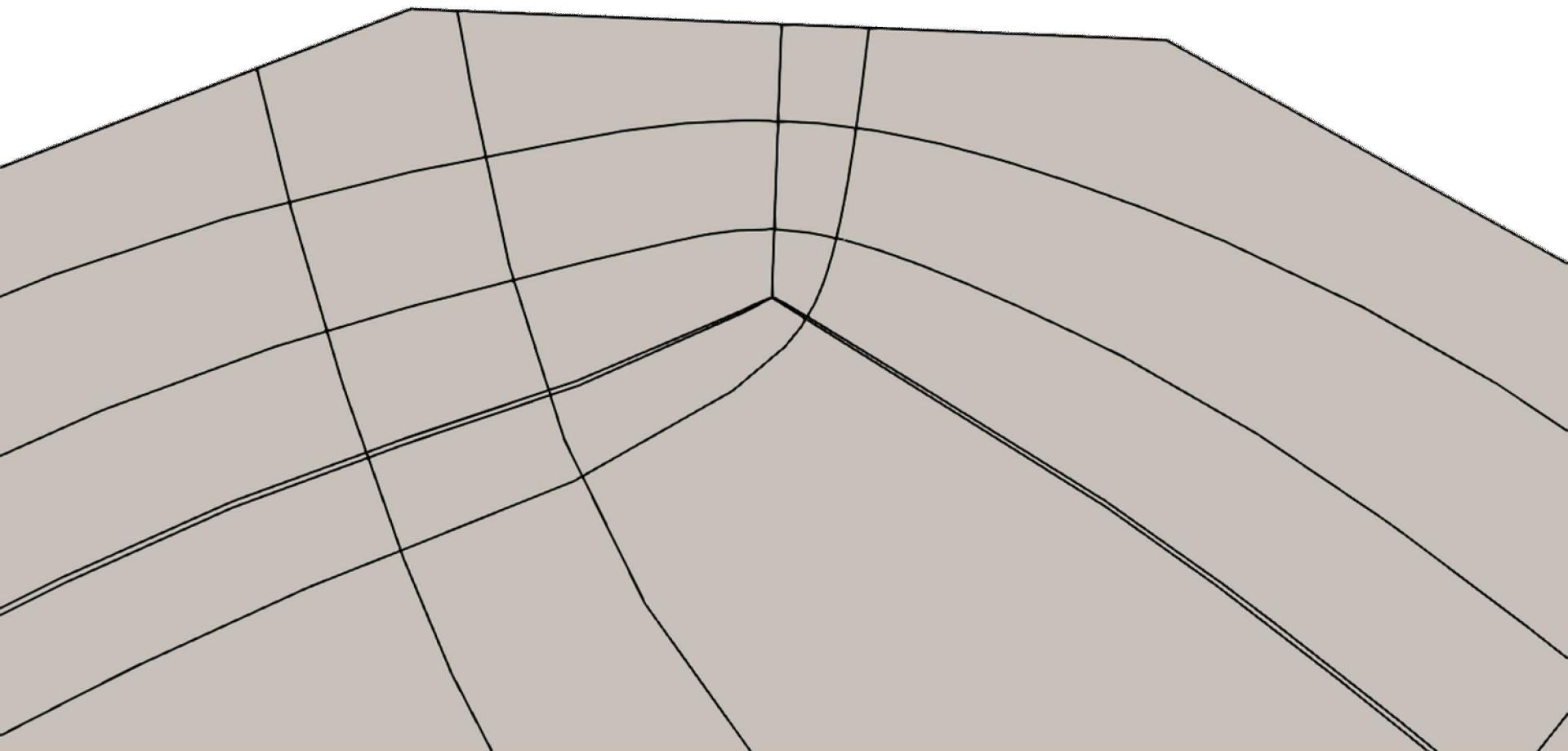
$$x'(t) = \alpha(t) \cos(\varphi)$$

$$y'(t) = -\alpha(t) \sin(\varphi)$$

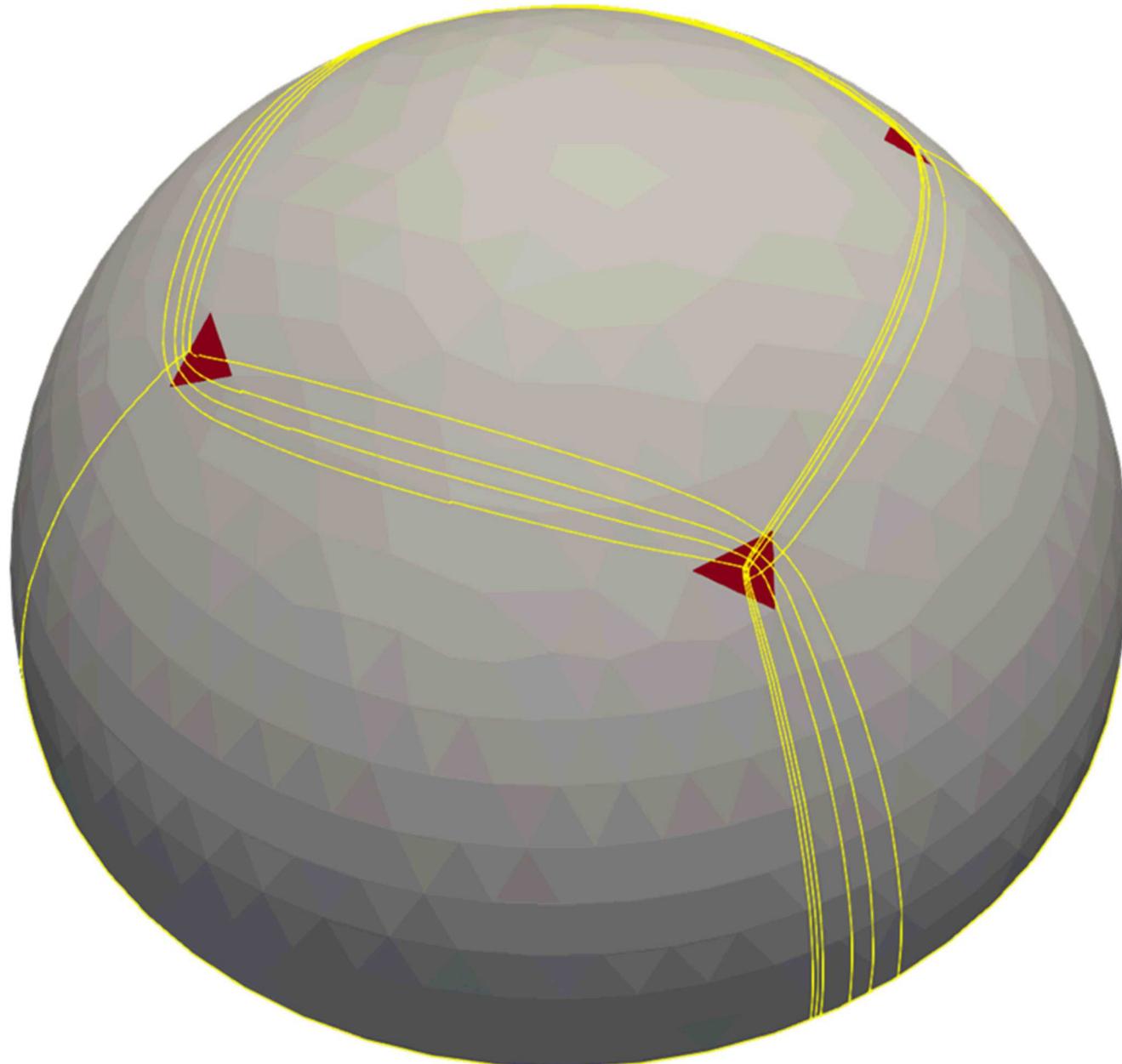
$$\frac{dy}{dx} = -\tan(\varphi) = -\frac{y}{x} \implies y = \frac{A}{x}$$

$$C = \{(x + iy)^{-(4-d)/8} \mid xy = A, x \in I_x\}$$

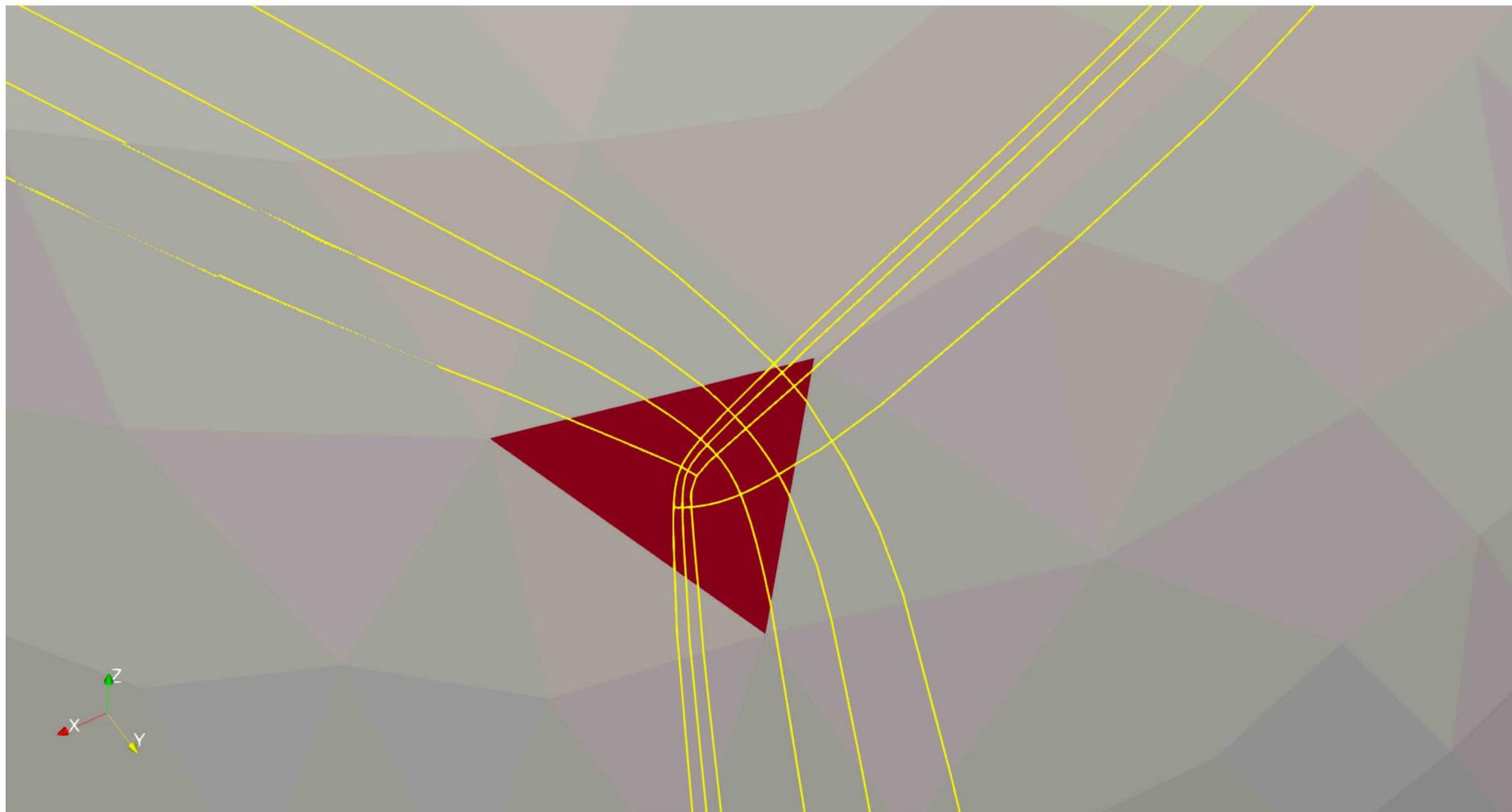
Streamlines Near Singularities



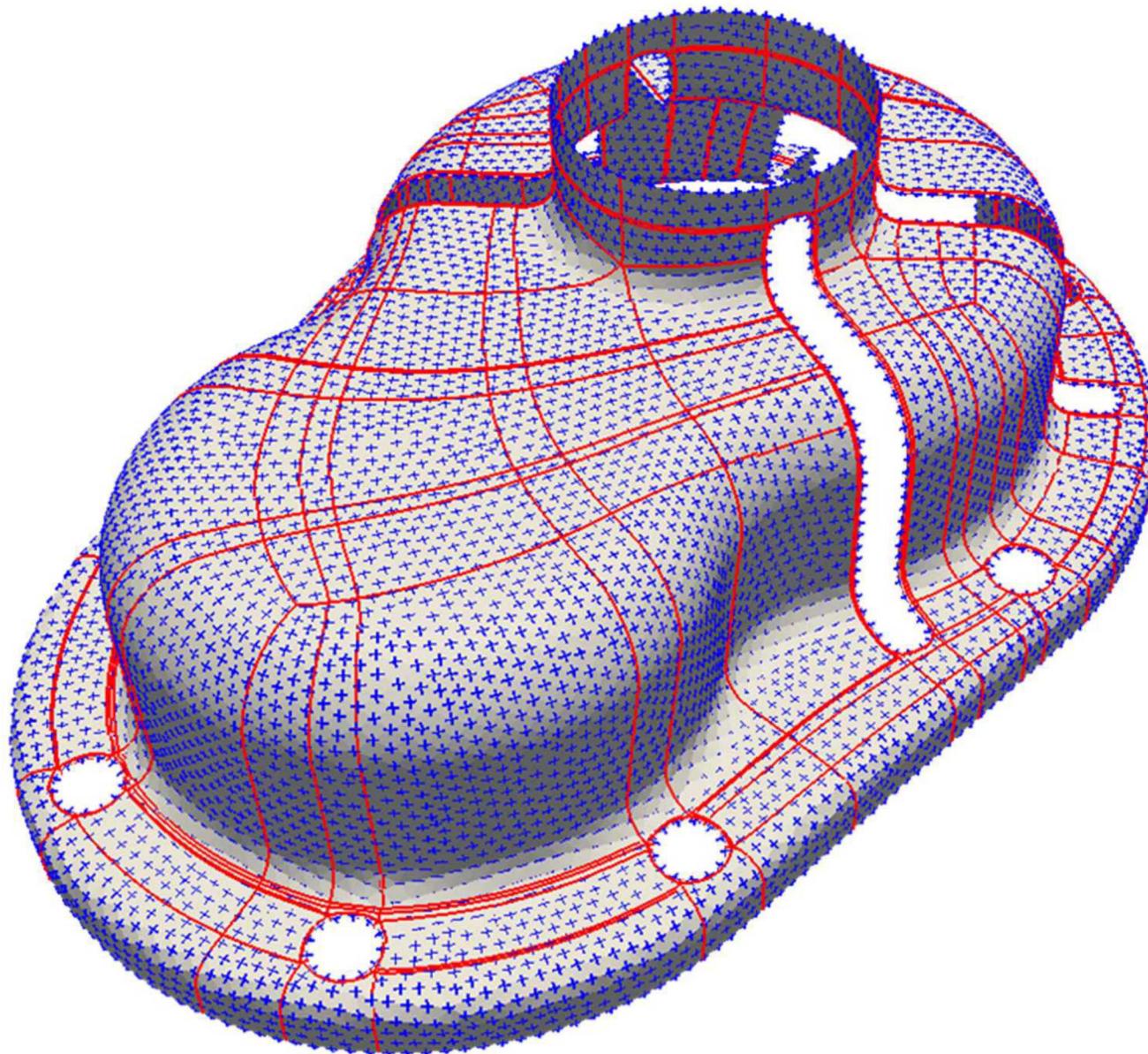
Streamline Tracing



Streamline Tracing



Streamline Tracing



Connection to Ginzburg- Landau Theory

Ginzburg-Landau Functional

Original problem:

$$\min_{u \in H_g^1(D, \mathbb{C})} E(u)$$

$$E(u) = \frac{1}{2} \int_D |\nabla u|^2 dA$$

$$u(x) = g(x) \quad \forall x \in \partial D$$

$$|u(x)| = 1 \quad \text{a.e. } x \in D$$

Relaxed problem:

$$\min_{u \in H_g^1(D, \mathbb{C})} E_\epsilon(u)$$

$$E_\epsilon(u) = \frac{1}{2} \int_G |\nabla u|^2 + \frac{1}{4\epsilon^2} \int_G (|u|^2 - 1)^2$$

Results of Ginzburg-Landau Theory (Bethuel et al.) and Applications to Cross Fields

Well Defined Limit of Relaxed Problem

Theorem 2.2.2 (Bethuel et al. [4]). *Let $d = \deg(g, \partial D)$. Given a sequence $\varepsilon_n \rightarrow 0$ there exists a subsequence ε_{n_i} and exactly d points a_1, a_2, \dots, a_d in $D \subset \mathbb{C}$ and a smooth harmonic map $u_*: D \setminus \{a_1, \dots, a_d\} \rightarrow \mathbb{T}$ with $u_* = g$ on ∂D such that*

$$u_{\varepsilon_{n_i}} \rightarrow u_* \text{ in } C_{loc}^k(D \setminus \bigcup_i (a_i)) \quad \forall k \text{ and in } C^{1,\alpha}(\bar{D} \setminus \bigcup_i (a_i)) \quad \forall \alpha < 1$$

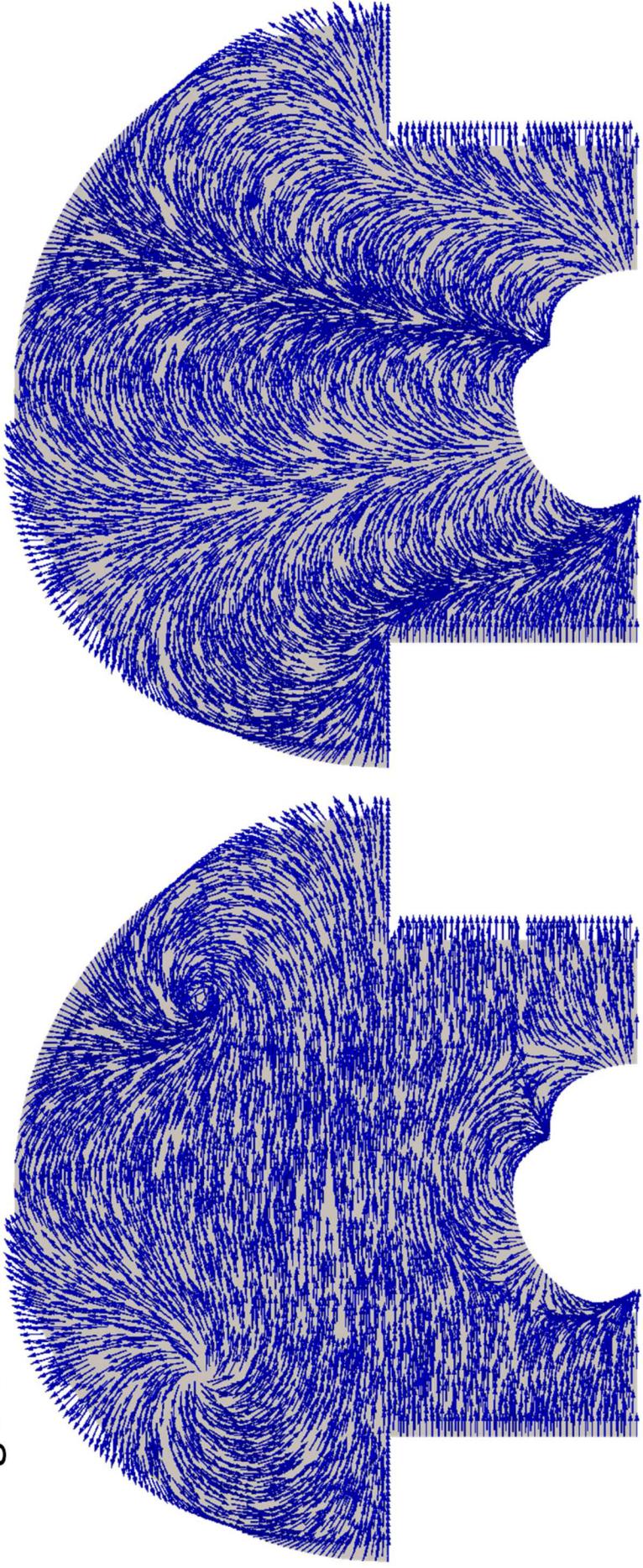
In addition, if $d \neq 0$ each singularity of u_ has index $\text{sgn}(d)$ and, more precisely, there are complex constants (α_i) with $|\alpha_i| = 1$ such that*

$$\left| u_*(z) - \alpha_i \frac{z - a_i}{|z - a_i|} \right| \leq C|z - a_i|^2 \text{ as } z \rightarrow a_i, \quad \forall i$$

This gives us a generalized sense in which to understand the energy minimization problem

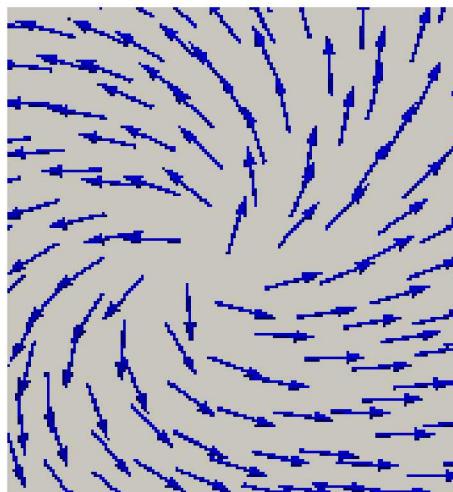
Canonical Harmonic Map

- Harmonic vector field defined everywhere except a finite number of points
- All vectors are unit vectors
- Unique for a given boundary condition and configuration of singularities



Asymptotic Estimate

$$\left| u_0(z) - \alpha_j \frac{(z - a_j)^{d_j}}{|z - a_j|^{d_j}} \right| \leq C|z - a_j| \quad \text{as } z \rightarrow a_j$$

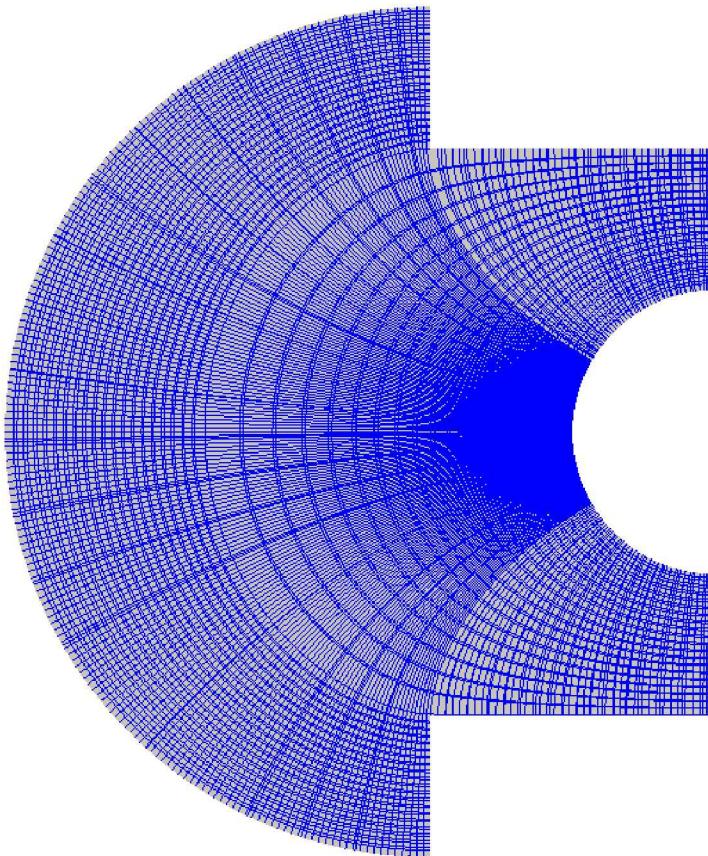
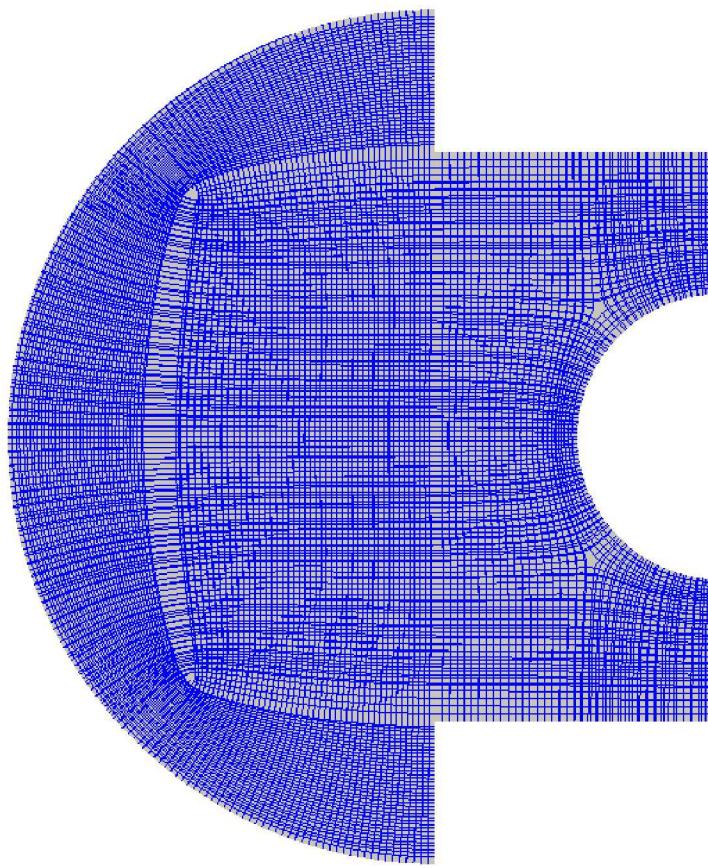


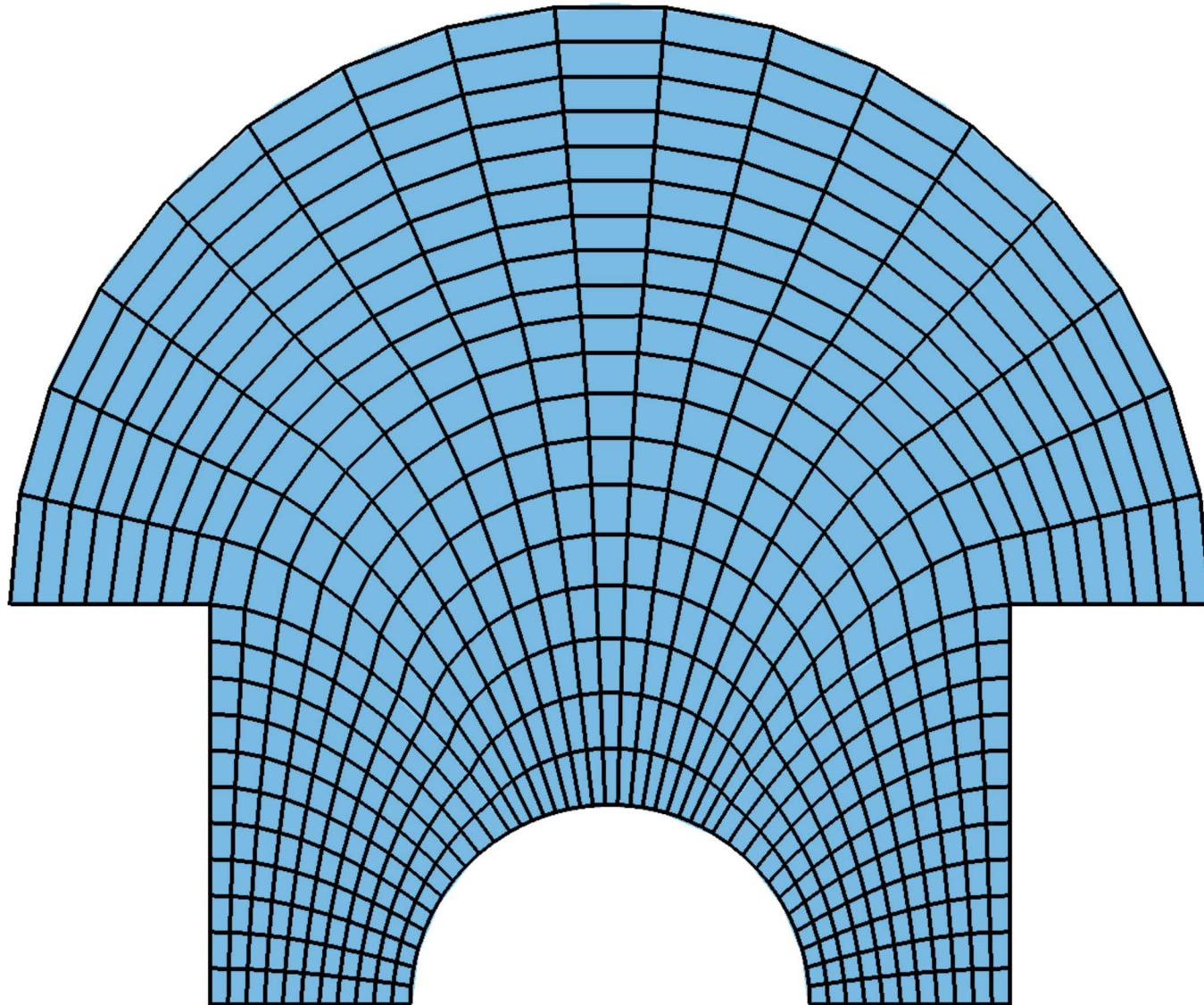
Energy Argument for Local Minimizers

For a local minimizer of the Ginzburg-Landau energy, the singularities are:

- Isolated
- Simple
- Occur on the interior of the domain

Implication for Cross Fields: Strange Minimizer

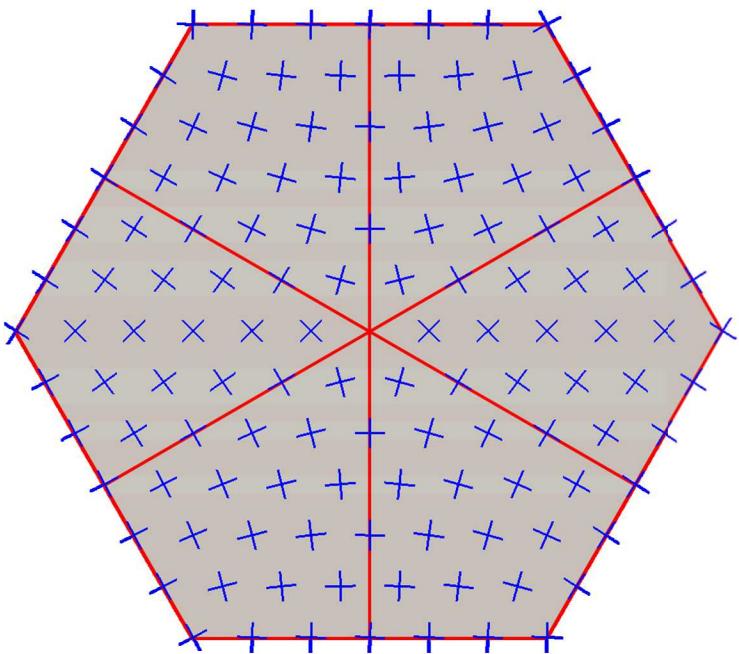
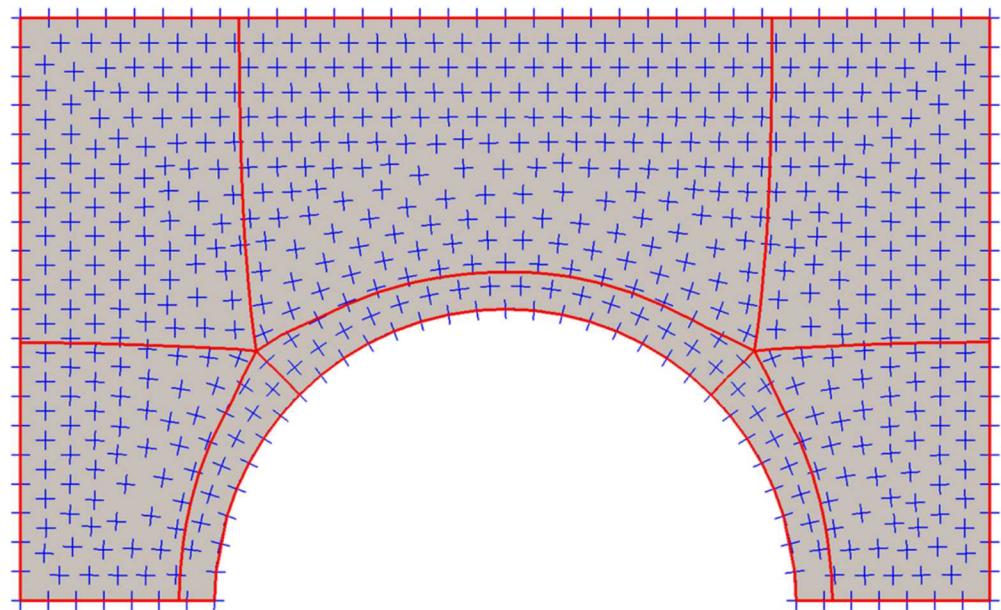




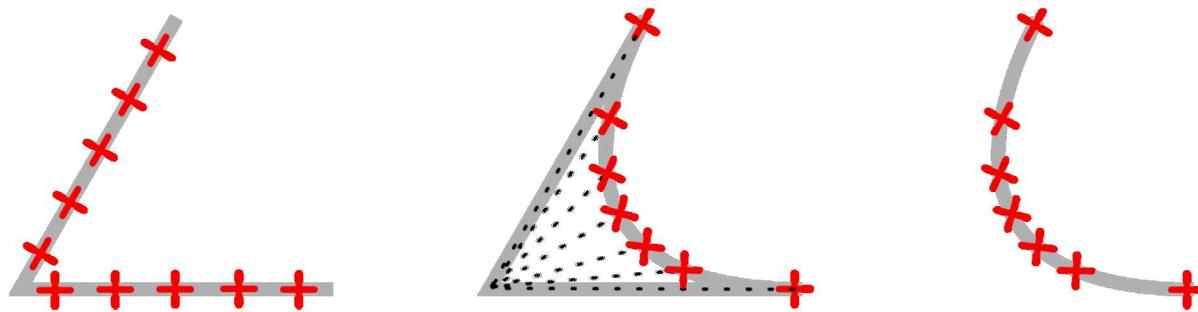
Streamlines and Asymptotic Behavior of Cross Fields Near Singularities

Separatrices

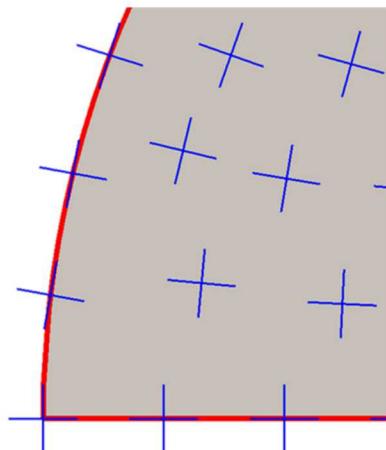
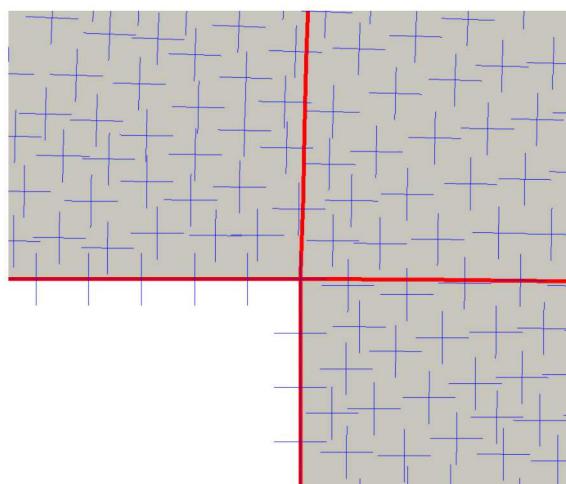
LEMMA 5.1. *Let f be a boundary-aligned canonical harmonic cross field on D . Let a be an interior singularity of f of index $d/4$ with $d < 4$. There are exactly $4 - d$ separatrices meeting at a . These separatrices partition a neighborhood of a into $4 - d$ even-angled sectors.*



Boundary Singularities

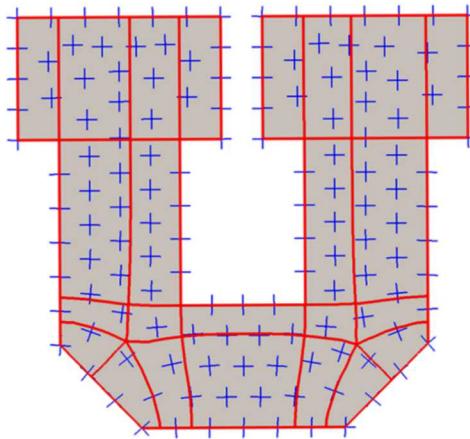
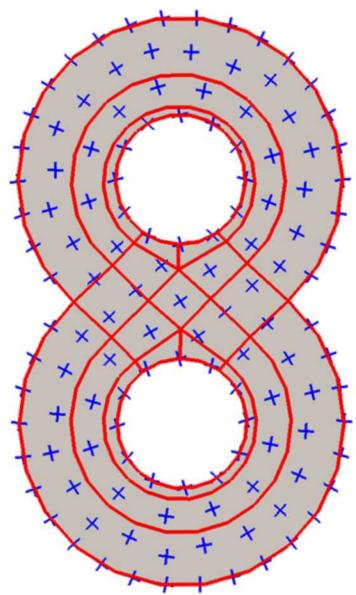
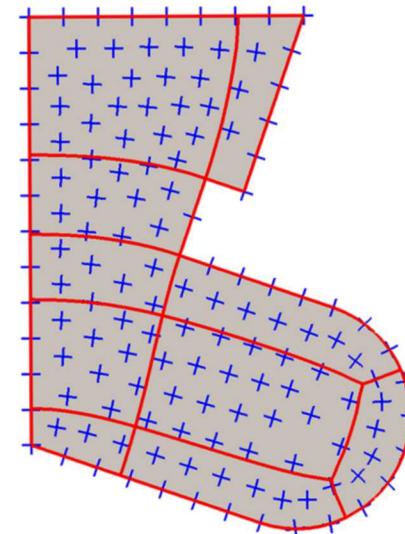
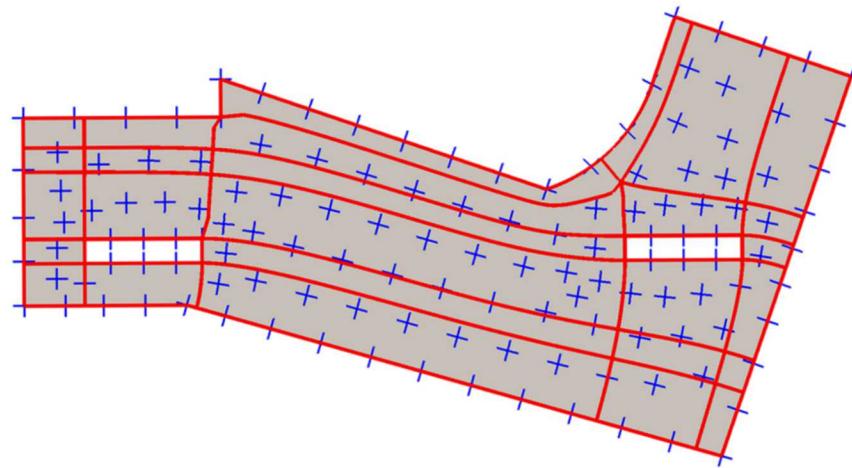


LEMMA 5.4. Let c be a boundary singularity of f of index $d/4$ with $d < 2$. There are exactly $3 - d$ separatrices meeting at c (including the boundaries themselves). These separatrices partition a neighborhood of c into $2 - d$ even-angled sectors.

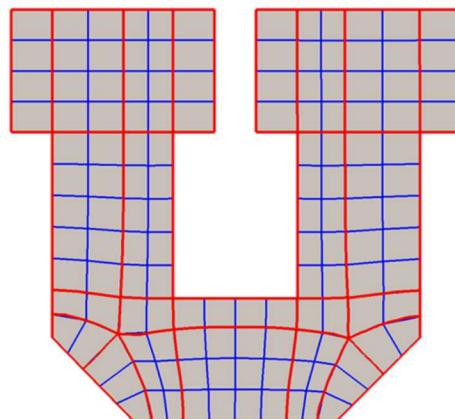
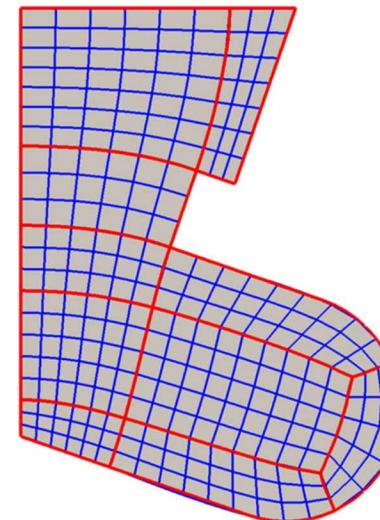
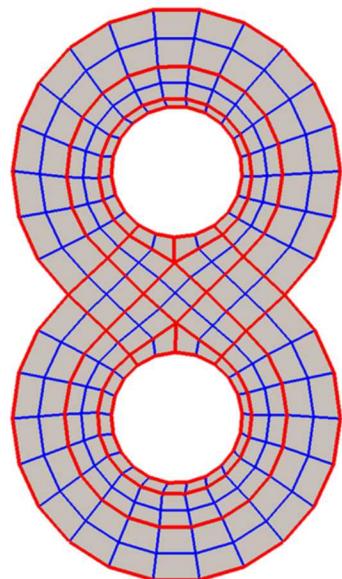
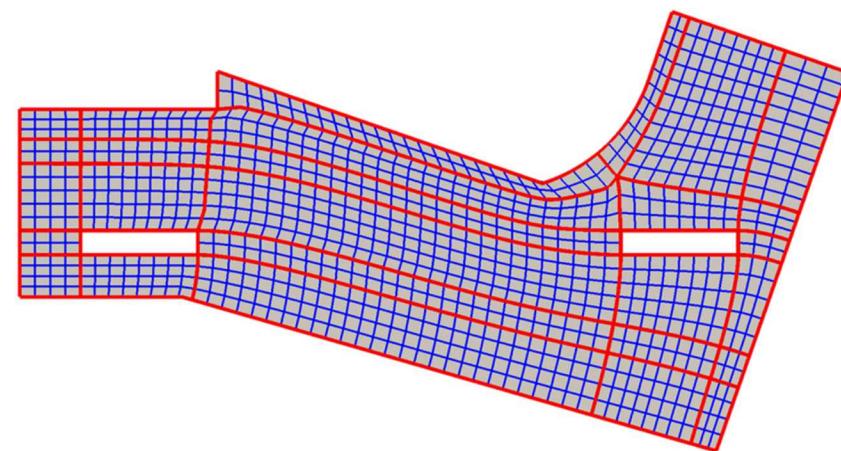


Partitioning Theorem

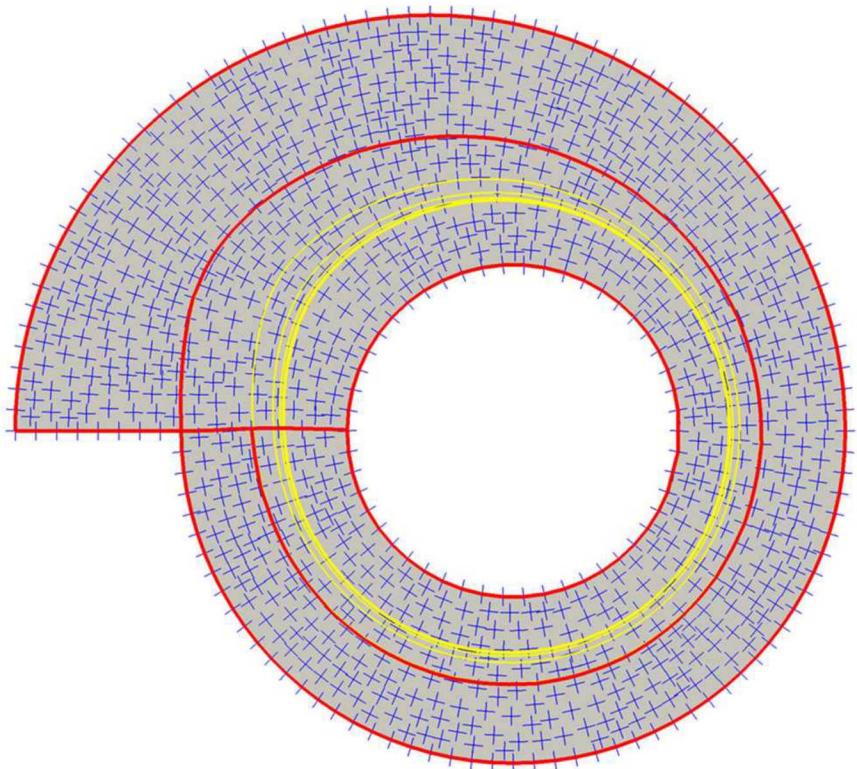
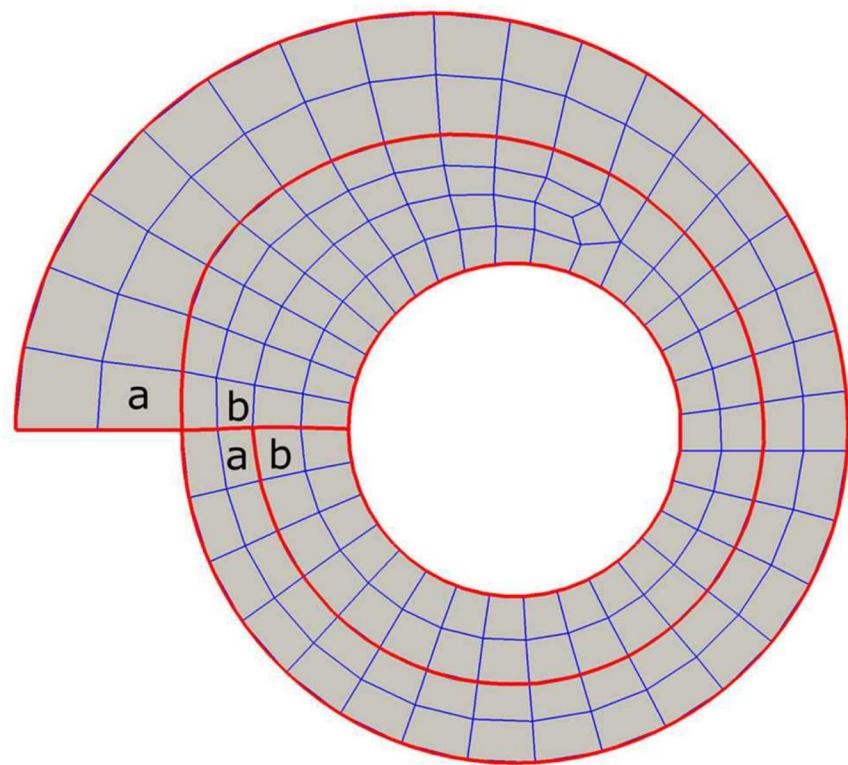
Partition into four-sided regions



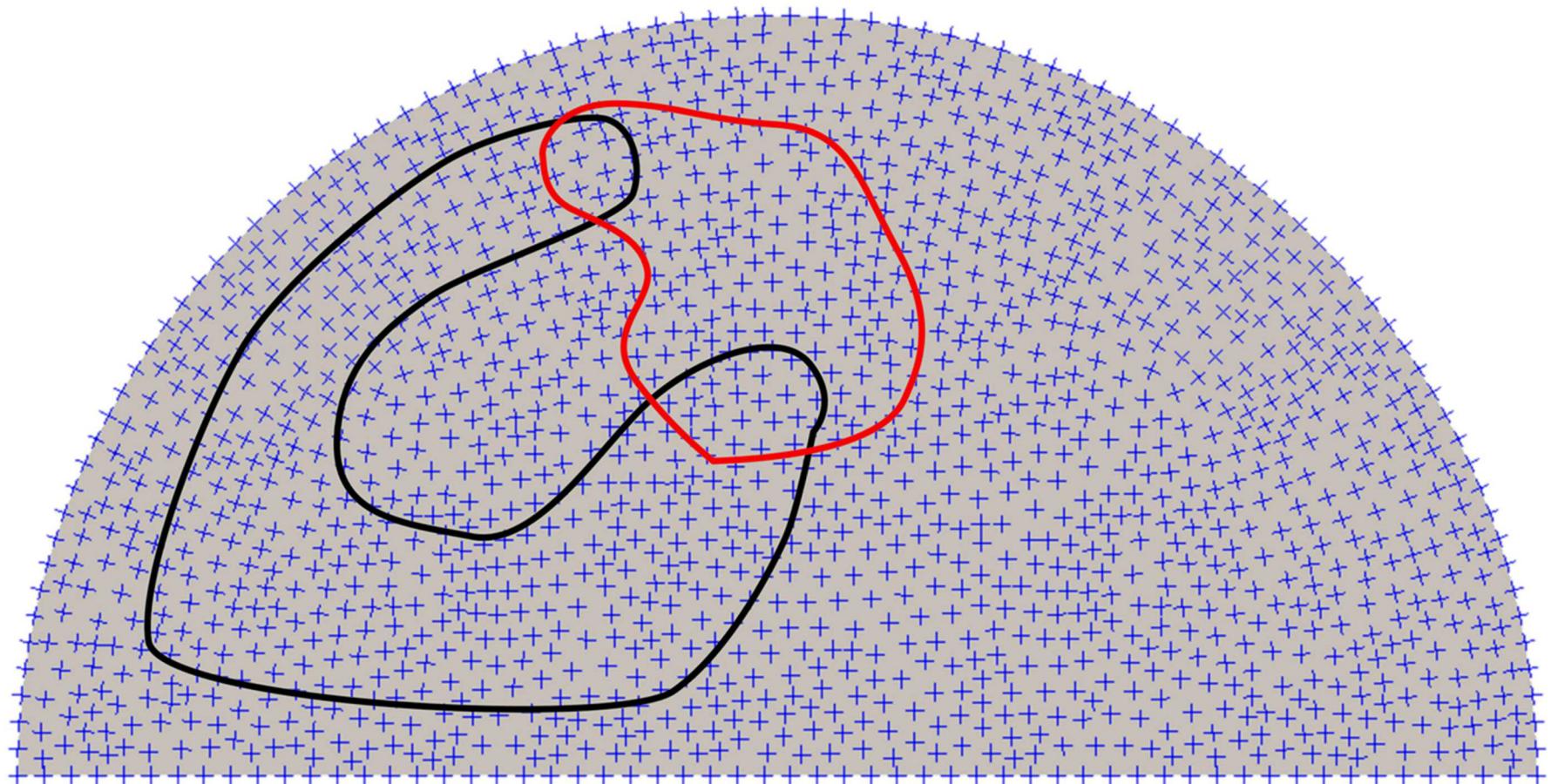
Meshing



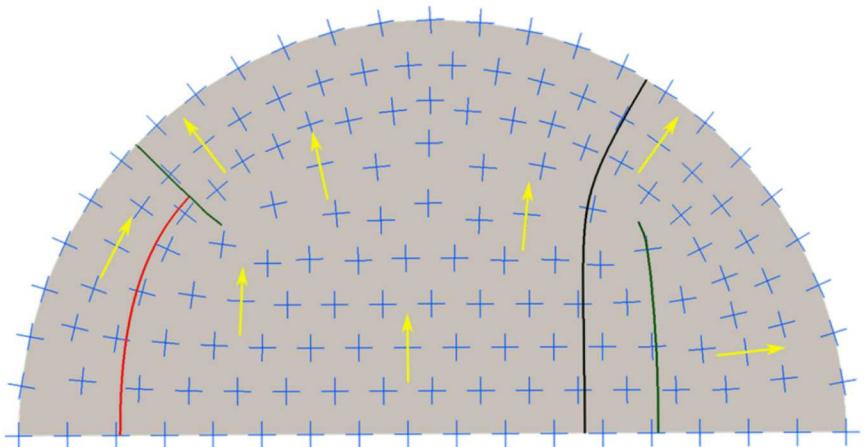
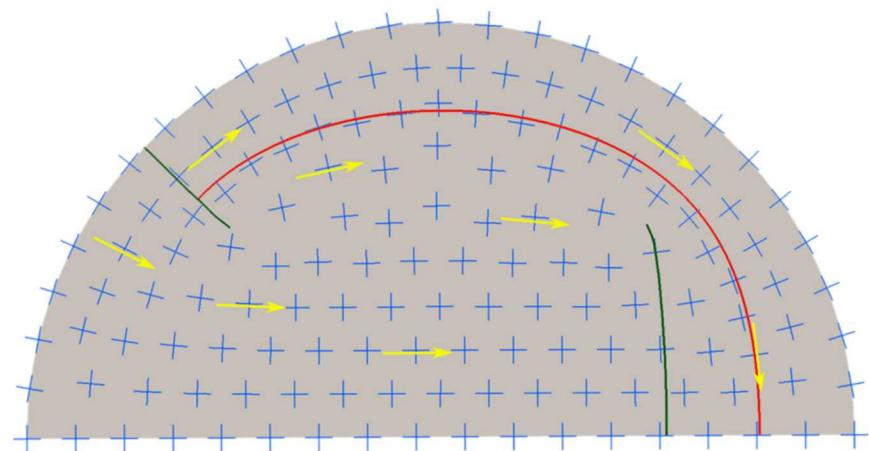
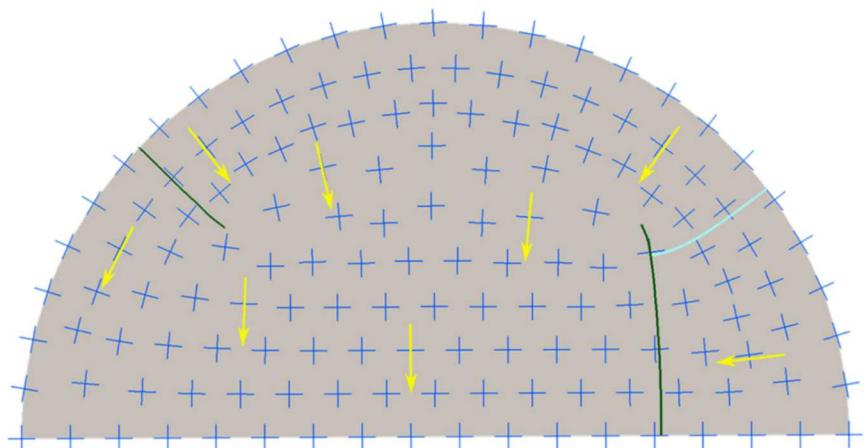
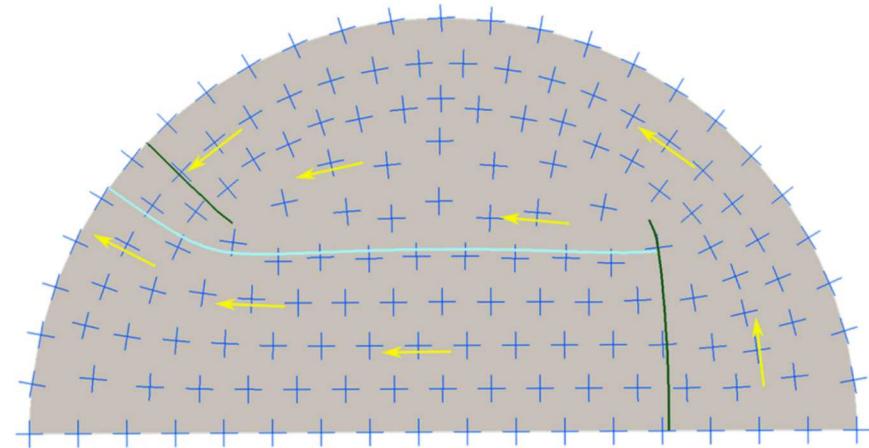
Limit Cycles



Cross Fields can be Decomposed Locally into 4 Orthogonal Vector Fields



Riemann Surface and Streamlines



Proof

LEMMA 5.1. *Let f be a boundary-aligned canonical harmonic cross field on D . Let a be an interior singularity of f of index $d/4$ with $d < 4$. There are exactly $4 - d$ separatrices meeting at a . These separatrices partition a neighborhood of a into $4 - d$ even-angled sectors.*

$$(4) \quad \left| u_0(z) - \alpha_j \frac{(z - a_j)^{d_j}}{|z - a_j|^{d_j}} \right| \leq C|z - a_j| \quad \text{as } z \rightarrow a_j$$

Proof. Let u_0 be the representation vector field for f . Write $z = a + re^{i\theta}$. The estimate (4) gives

$$(8) \quad u_0(z) = \alpha e^{id\theta} + o(r) \quad \text{for } \theta \in [0, 2\pi).$$

Writing $\alpha = e^{i\theta_0/N}$, the N th-roots of the $u_0(z)$ are then given by $e^{i(\frac{d\theta+\theta_0}{N} + \frac{2\pi k}{N})}$ for $k \in \mathbb{Z}$.

We seek directions where the vector originating at a and pointing towards z is parallel to a vector originating at the origin and pointing towards any of the N th-roots. Thus we want to solve the equation

$$(9) \quad e^{i\theta} = e^{i(\frac{d\theta+\theta_0}{N} + \frac{2\pi k}{N})} \quad \Rightarrow \quad \theta = 2\pi k/(N - d) + \theta_0/(N - d)$$

Algorithm

Algorithm 1 Partitioning D into a quad layout with T-junctions.

Input: A domain D satisfying [Assumption 3.1](#), and a boundary-aligned canonical harmonic cross field f with singularities of index $\leq 1/4$.

Output: A set \mathcal{B} containing limit cycles and separatrices that define a quad layout with T junctions.

Let \mathcal{S} be the set of separatrices that do not converge to a limit cycle. Let \mathcal{P} be the set of separatrices that do. Let \mathcal{L} be the set of limit cycles.

Initialize the set $\mathcal{B} = \mathcal{S}$.

for $l \in \mathcal{L}$ **do**

if no element of \mathcal{B} intersects l **then**

 (i) Add l to \mathcal{B} .

 (ii) By [Corollary 5.8](#), there is an element of \mathcal{P} that intersects l . Let ρ' be the portion of that separatrix beginning at the singularity and ending in a T-junction with l .

 (iii) Add ρ' to \mathcal{B} .

 (iv) remove ρ from \mathcal{P} .

end if

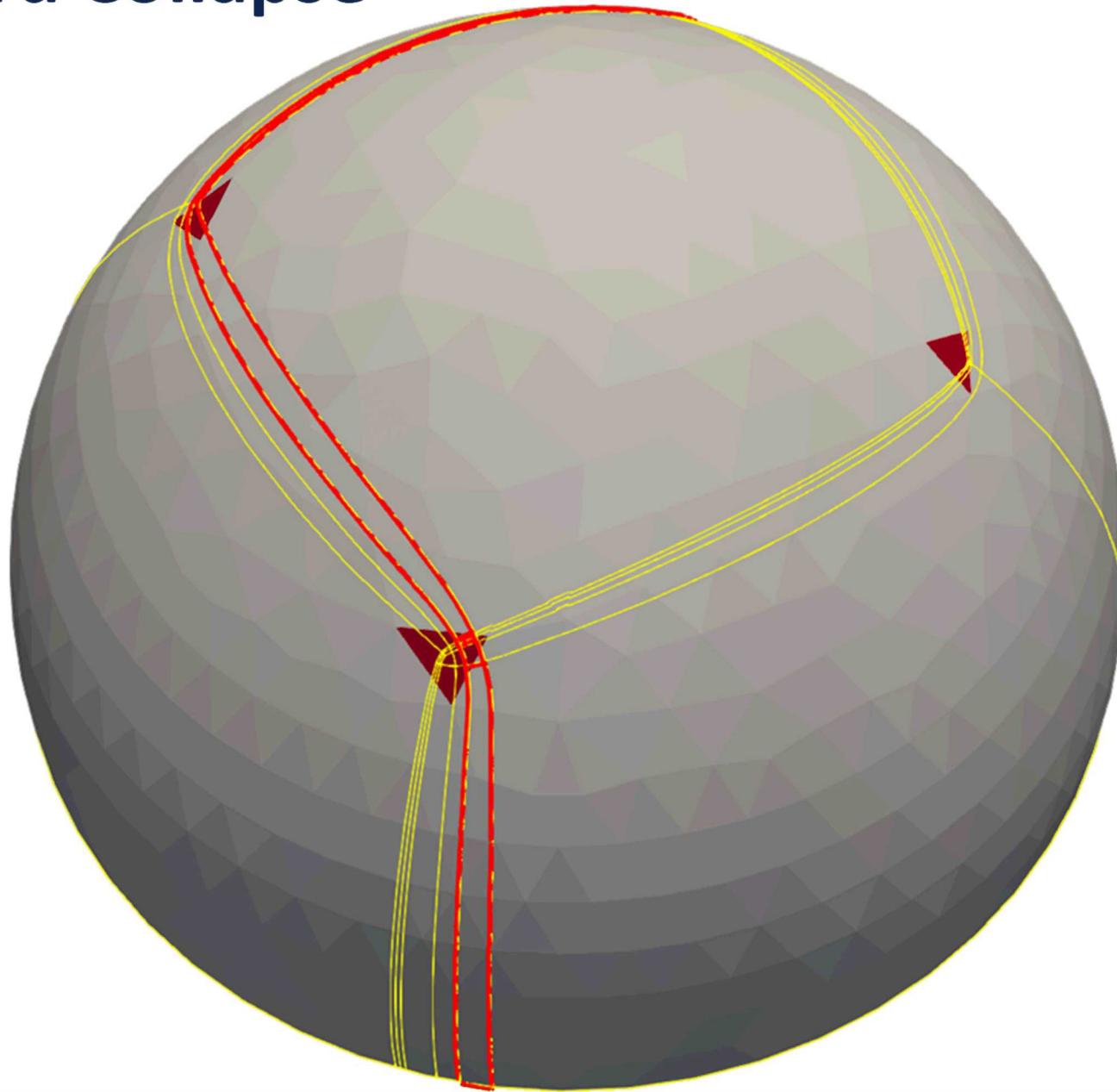
end for

for $\rho \in \mathcal{P}$ **do**

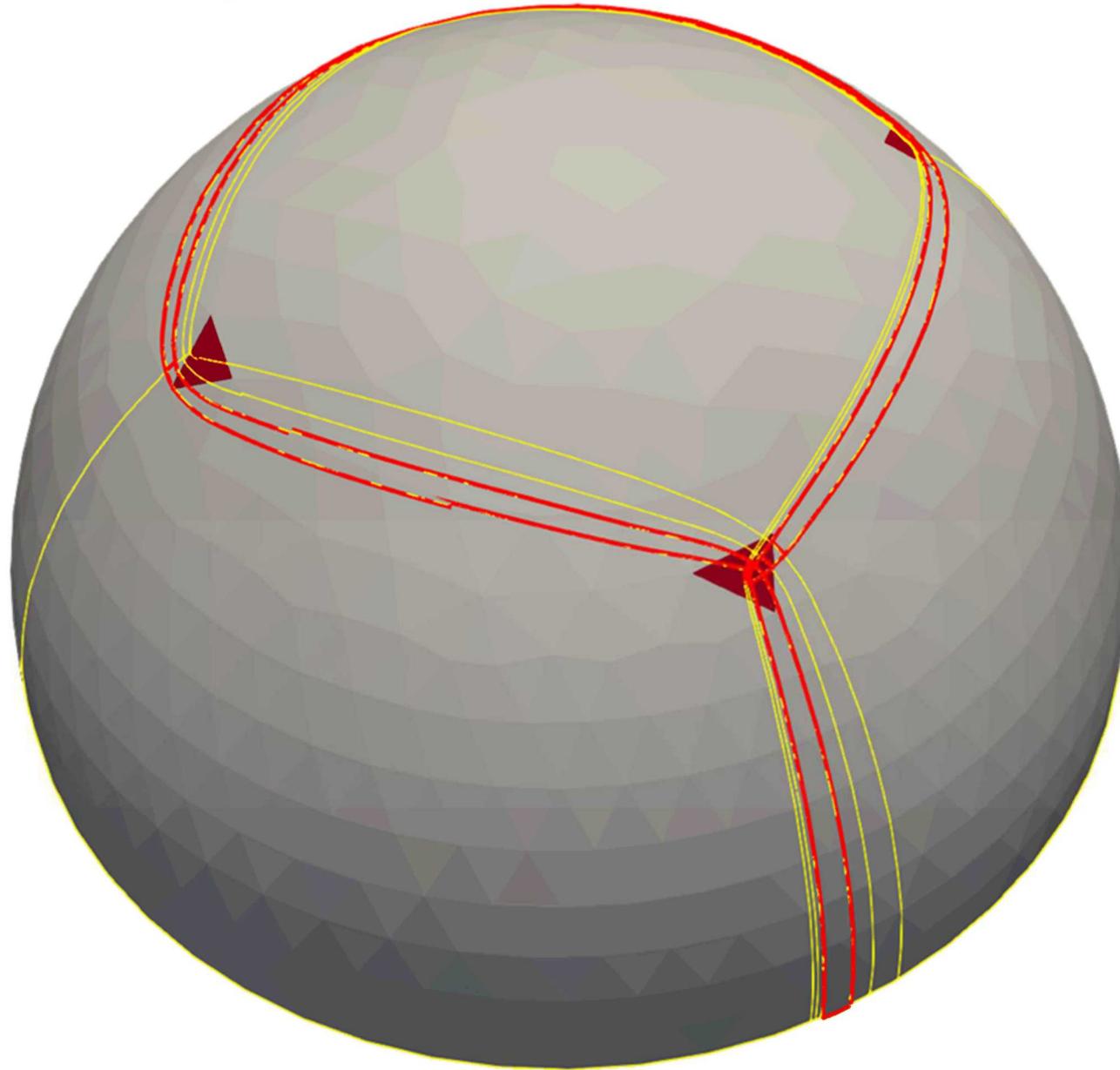
 Let ρ' be the curve segment of ρ beginning at the singularity and continuing until it intersects an element of \mathcal{B} . Add ρ' to \mathcal{B} .

end for

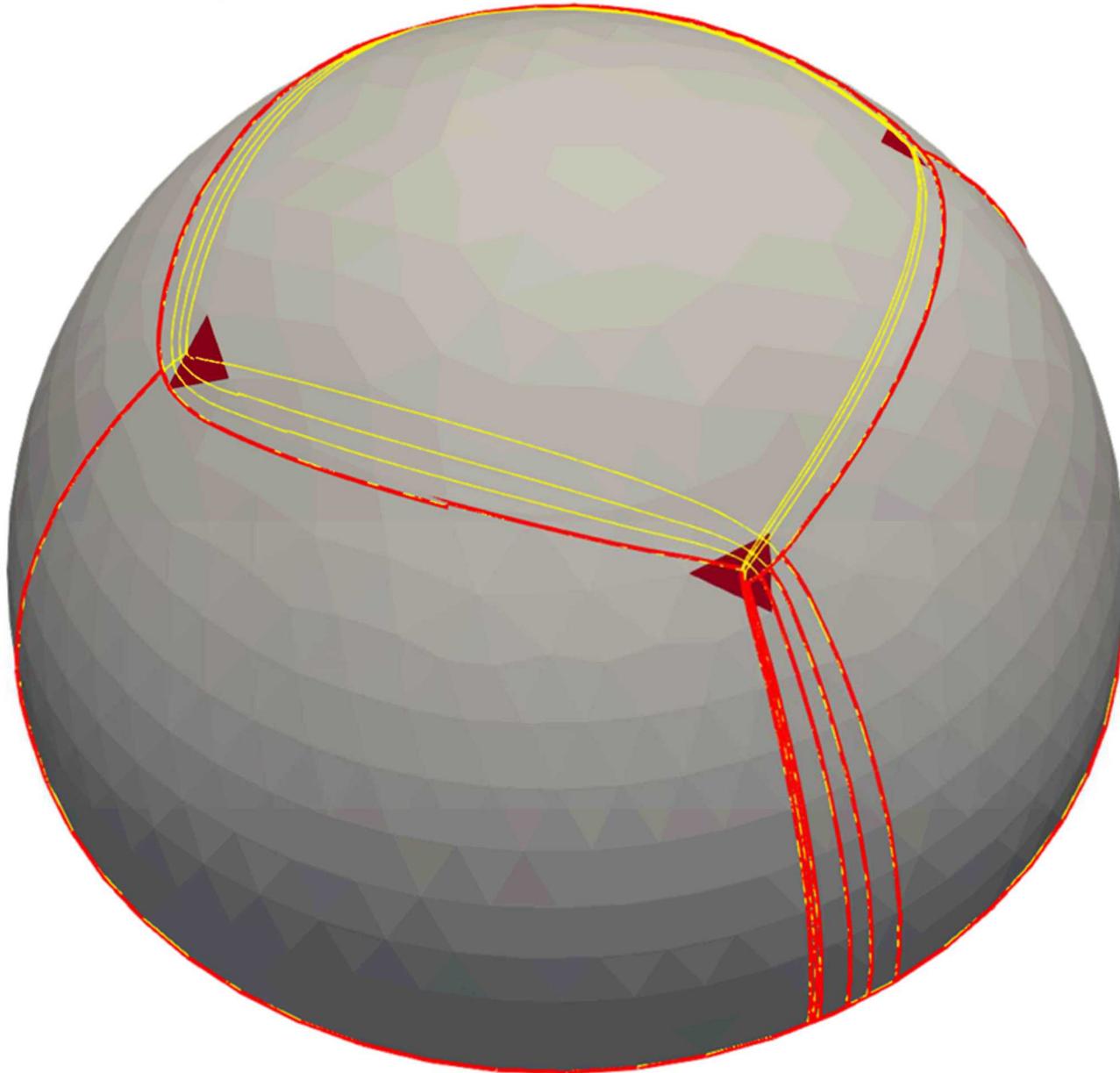
Chord Collapse



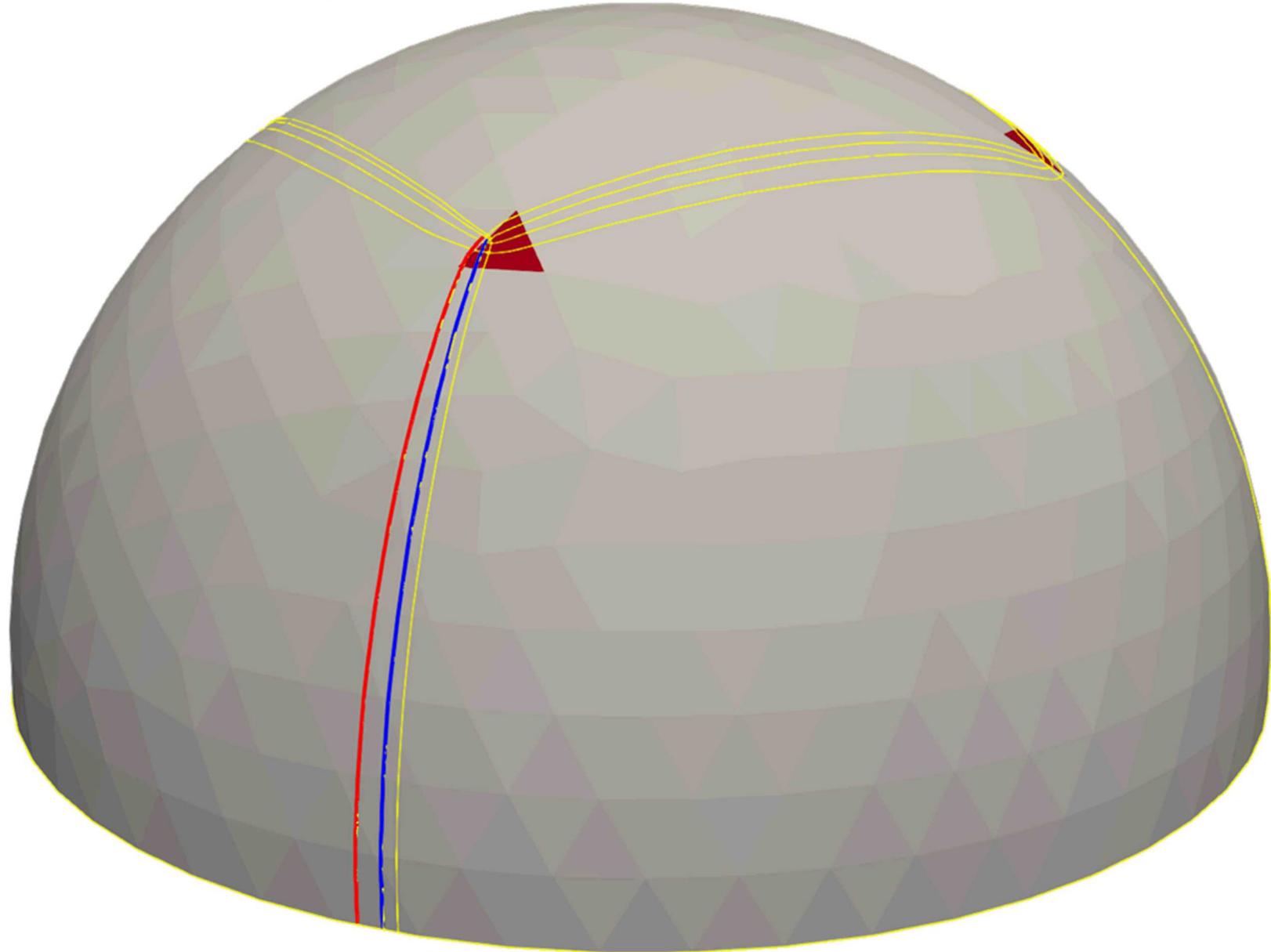
Chord Collapse



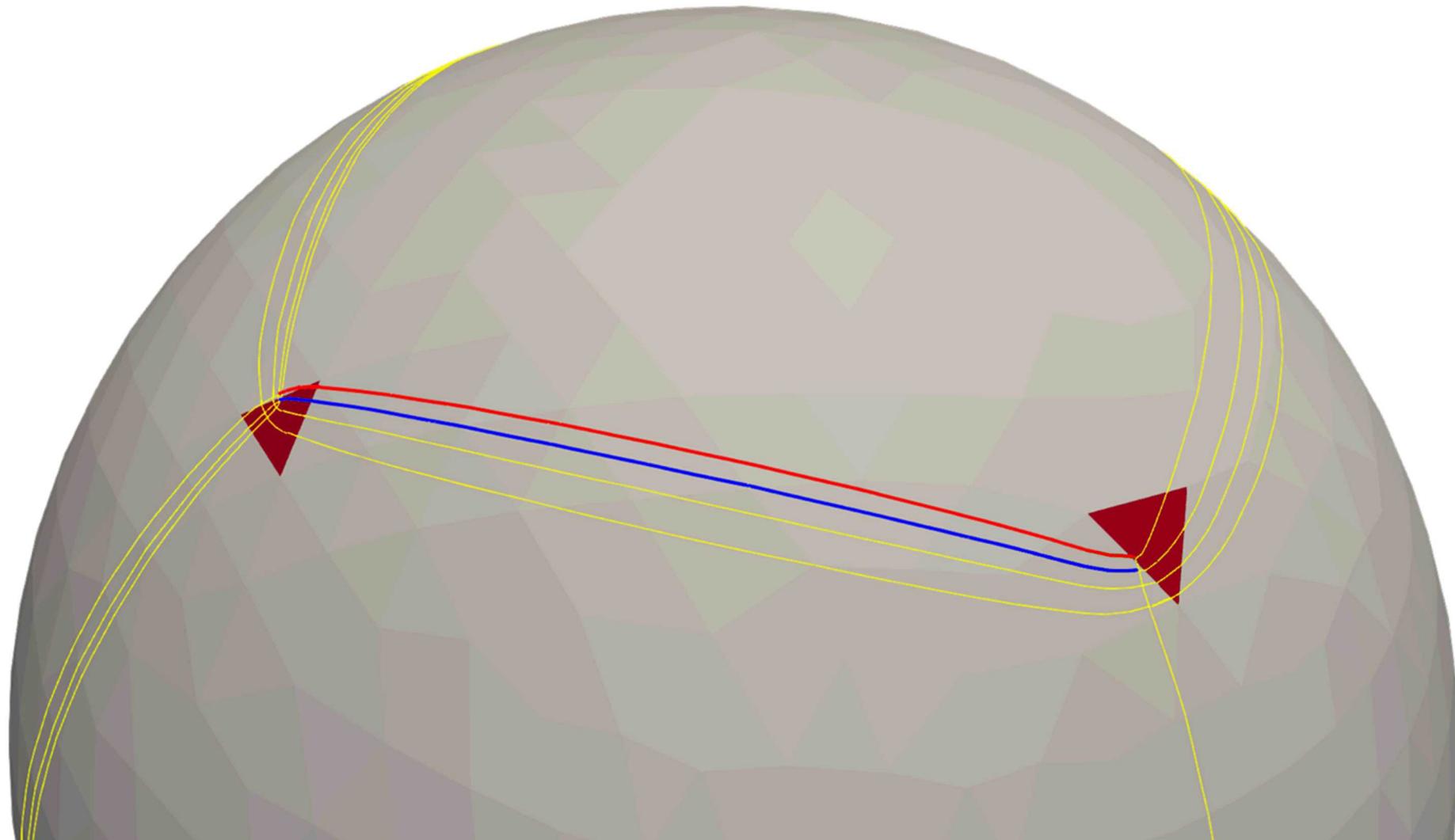
Chord Collapse



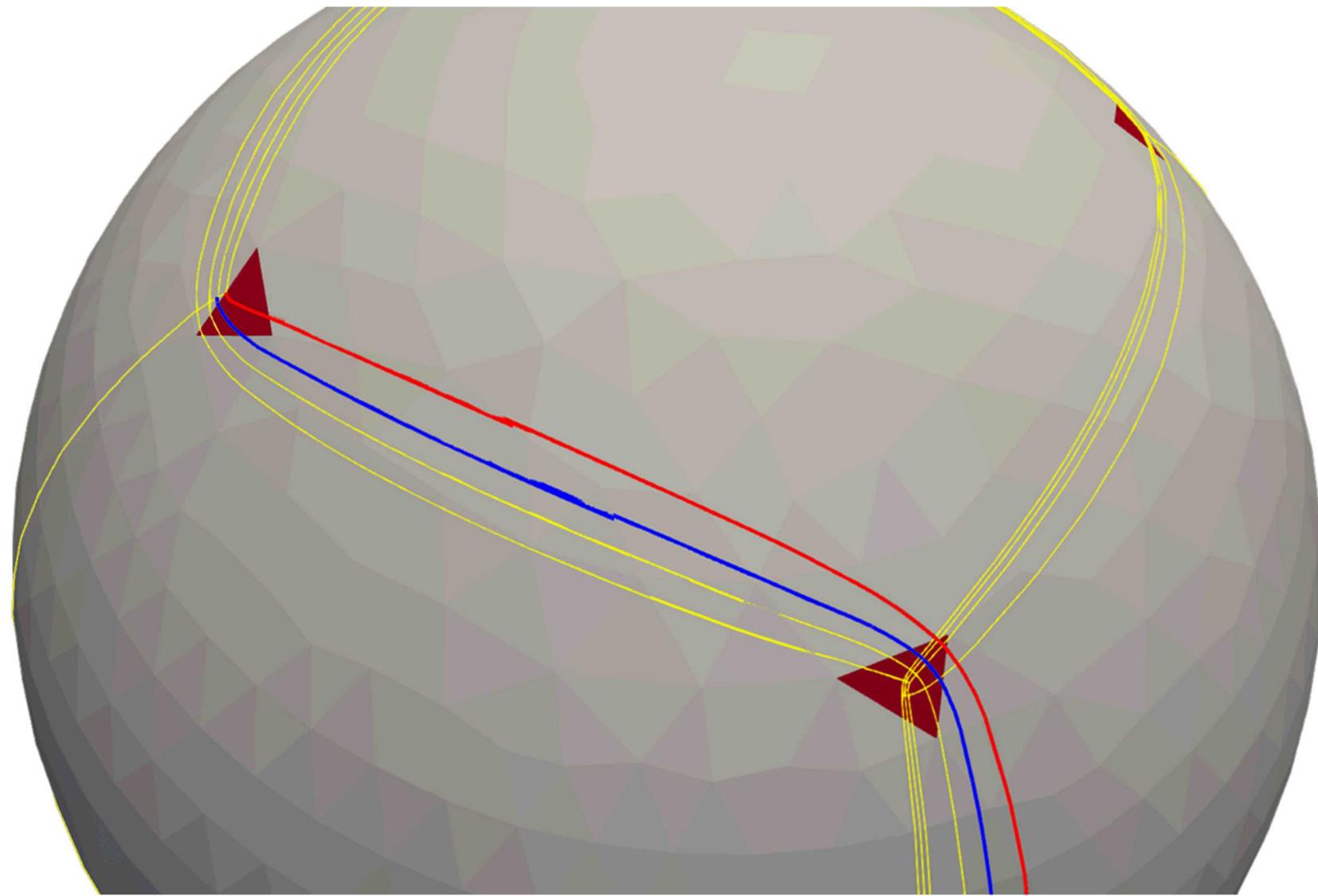
Chord Collapse



Chord Collapse

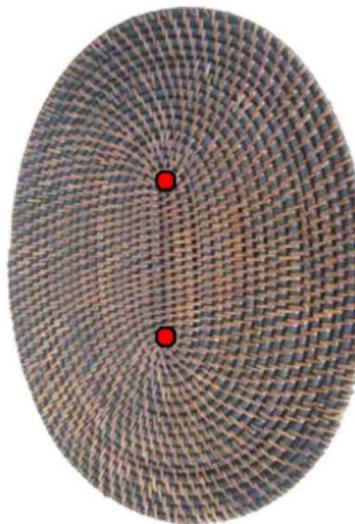


Chord Collapse

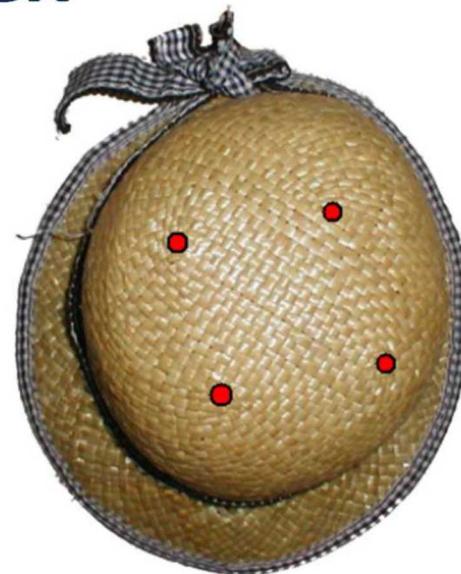


Singularities of Fractional Index

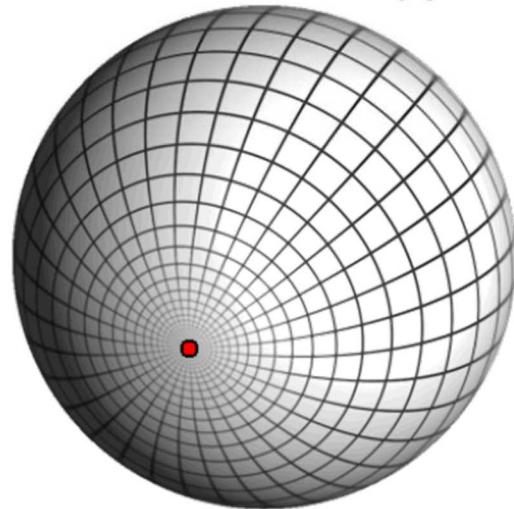
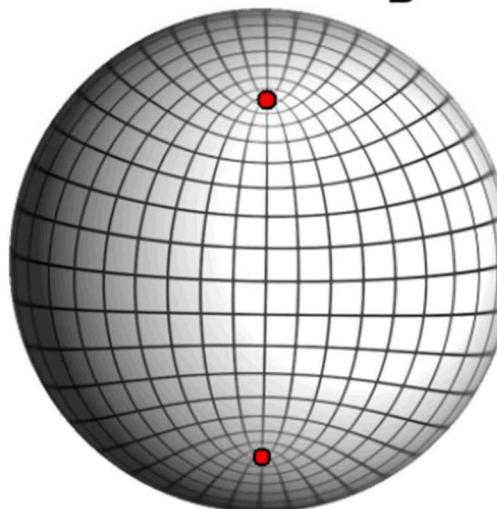
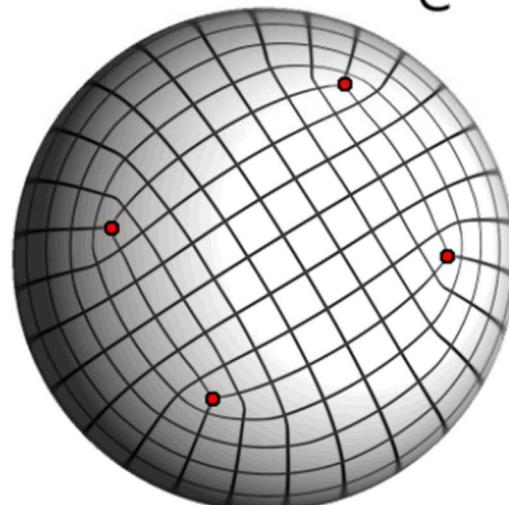
A



B

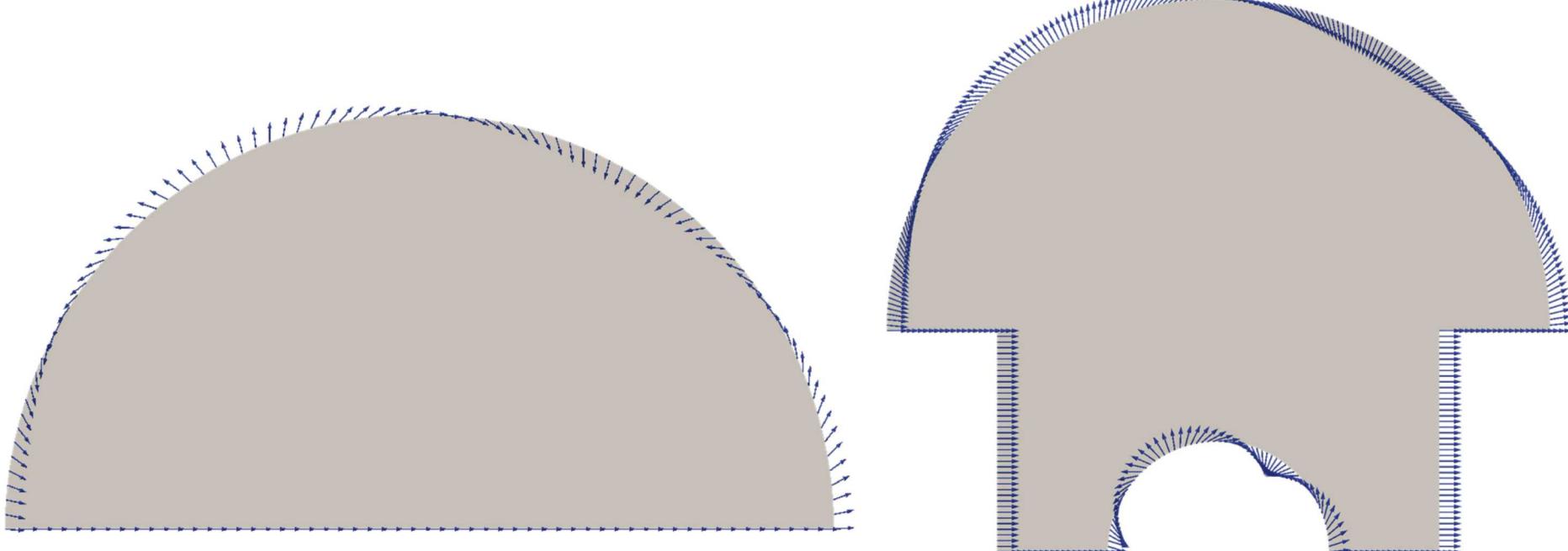


C



Brouwer Degree

- Let $g(x)$ be the boundary condition on the domain G .
- Let $d = \deg(g, \partial G)$ be the Brouwer degree.



$d = 2$

$d = 0$

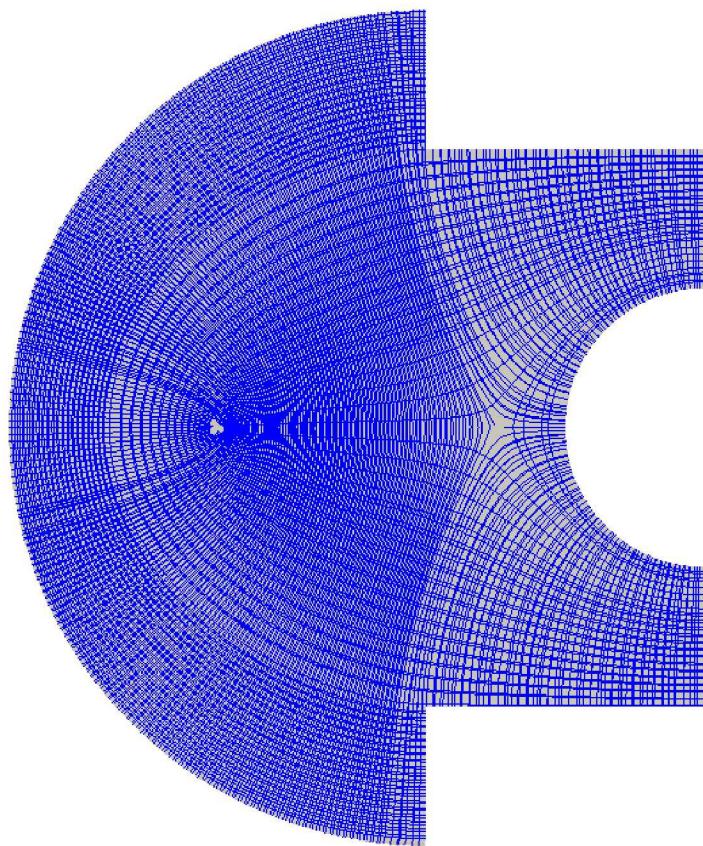
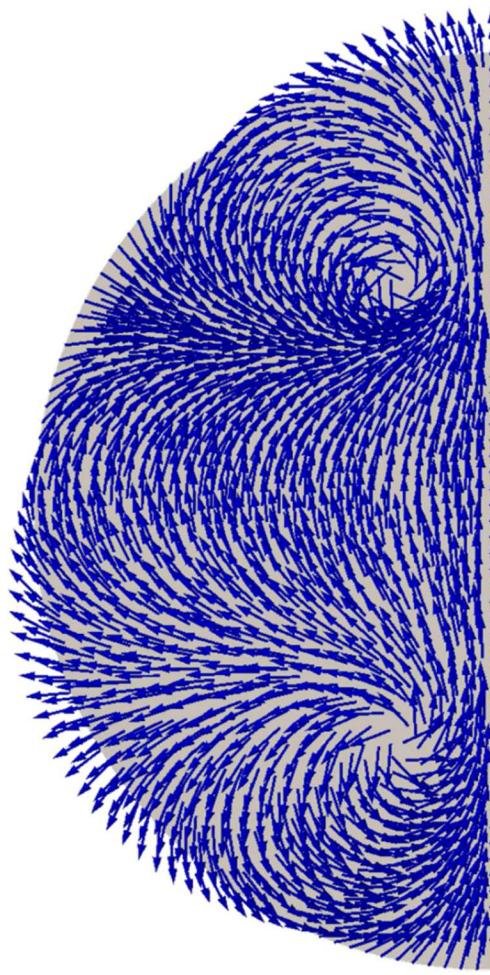
Explicit Formula to Design Field with Fixed Singularities

$$e^{i\varphi_0(z)} = g(z) \frac{|z - b_1|^{\alpha_1}}{(z - b_1)^{\alpha_1}} \frac{|z - b_2|^{\alpha_2}}{(z - b_2)^{\alpha_2}} \cdots \frac{|z - b_n|^{\alpha_n}}{(z - b_n)^{\alpha_n}}$$

$$\begin{cases} \Delta\varphi = 0 \text{ in } D \\ \varphi = \varphi_0 \text{ on } \partial D \end{cases}$$

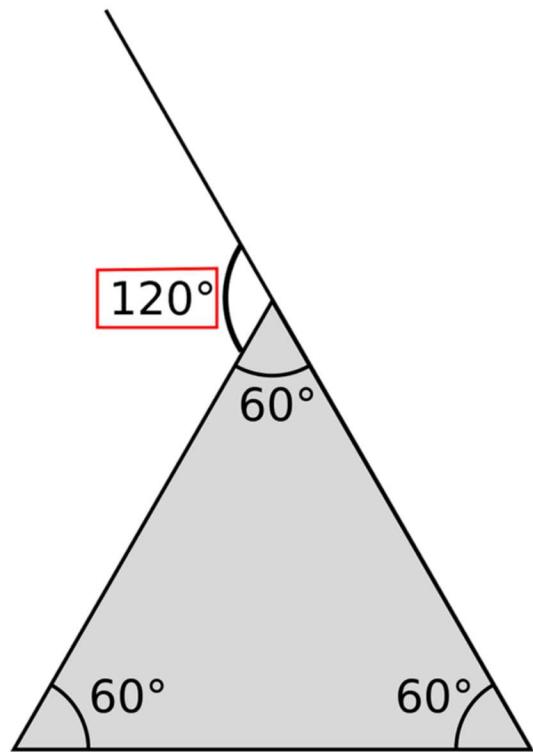
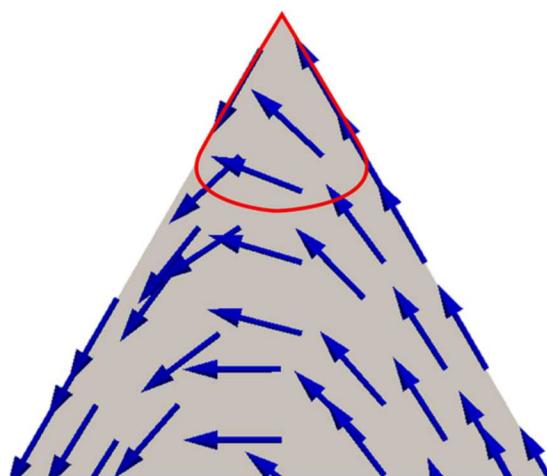
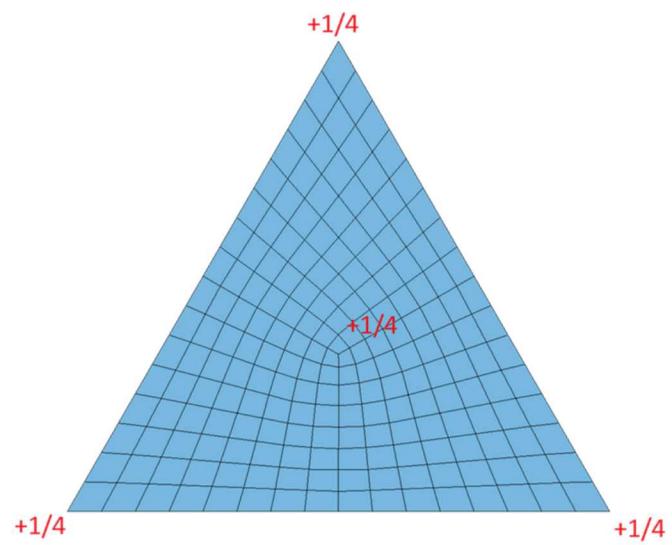
$$u_0 = e^{i\varphi(z)} \frac{(z - b_1)^{\alpha_1}}{|z - b_1|^{\alpha_1}} \frac{(z - b_2)^{\alpha_2}}{|z - b_2|^{\alpha_2}} \cdots \frac{(z - b_n)}{|z - b_n|^{\alpha_n}}$$

Application: New Cross Field Design Method

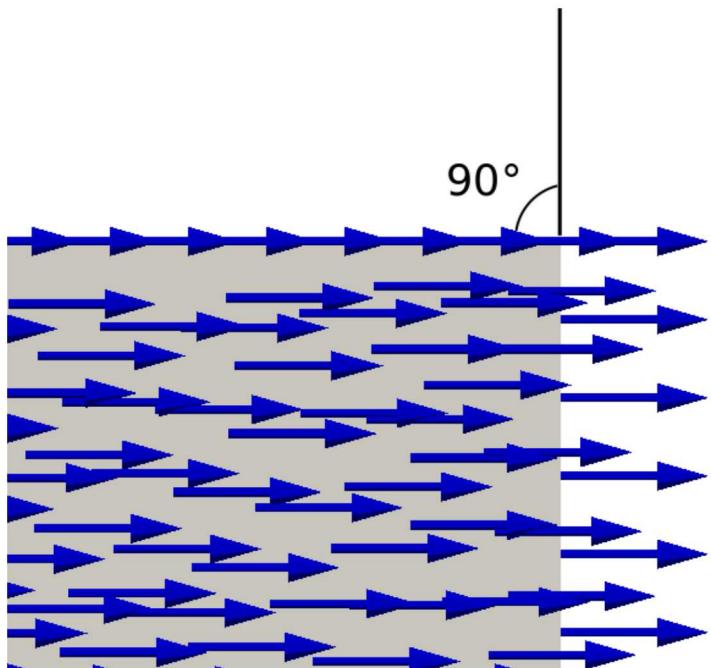
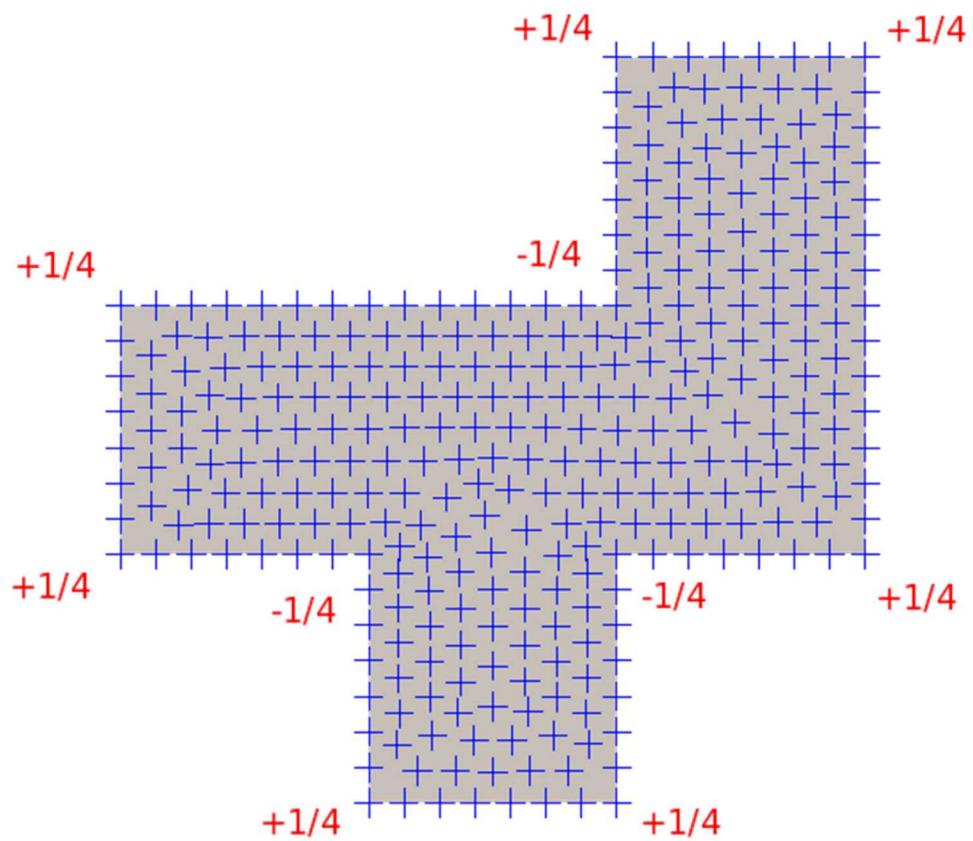


Boundary Singularities

$$\lim_{s \downarrow 0} \frac{\operatorname{dev}(c_i) - \frac{1}{4}[\arg R(f(\gamma(s))) - \arg R(f(\gamma(1-s)))]}{2\pi}$$



Boundary Singularities



Singularity Indices

