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Goal: Coarse boundary aligned quad partitions



Contributions:

1. Extend MBO method for cross field design to curved
surfaces

2. Prove that near singularities, streamlines of a cross
field are hyperbolic under a conformal map.

3. Partition simplification algorithm to generate coarse
quad layouts



Merriman-Bence-Osher

(MBO) Method for Cross

Field Design



Why MBO?

• Easy to implement
• Fast
• Good singularity placement
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MBO Method for Cross Fields



MBO Method for Cross Fields
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The Representation Map



MBO Method for Cross Fields
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MBO Method for Cross Fields
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MBO Method for Cross Fields

min E(u)
uEN (D,C)

1 f
E(u) = 2 jr) Tial2dA

u(x) = g(x) Vx G OD

l u(x) I= 1 a.e. x C D



MBO Method for Cross Fields
Ginzburg-Landau Relaxation:

F,E(u)
1

4 e2
(1u12 2

Iterative method to minimize cross field energy:

1. Until time T solve

ut(t, x) Au(t, x) x E M

u(t, x) g(x) x

u(O, x) = uo(x) x E M

2. Renormalize

14(T, ) 

1 1 u(T, x)11







MBO on Surfaces

1. Until time T solve

ut(t, x) u(t, x) x c M

u(t, x) — g(x) x c am

to, x) = tio(x) x. c M

2. Renormalize

11(T, x) -
u(T, x)

11(T, x)



Levi-Civita Connection

Knoppel et al. 2013



Cross Field Design on Surfaces



Cross Field Design on Surfaces
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Cross Field Design on Surfaces



The Representation Map

i
Palacios et al. 2007
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Cross Field Design on Surfaces



Cross Field Design on Surfaces
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Discrete Laplacian for Representation Vectors
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Discrete Laplacian for Representation Vectors

v E

Ao(d)
1

Al(ni

TP1

(14i - Qi1(14i))



Discrete MBO on Surfaces

Algorithm 2 A diffusion generated method for de-
signing smooth cross fields

Let u° be the solution to Au = b.
Fix 71 6, and set k = O.
while Ift,tk — uk-1 11 > 6, do

Solve the discrete diffusion equation,

(I rA)uk-F1 uk + rb

for j E [0, n] do

Set Uk- +1 u1;+1
luil+1 1

end for
k + +

end while

(6)



Cross Fields on Surfaces
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Curved Surfaces
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Cross Fields on Surfaces
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Partition Simplification



Naive Partition



Naive Partition



Naive Partition



Limit Cycles Are Common
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Hyperbolic Trajectory of
Streamlines



Streamlines Near Singularities

f (z) eel) +21,47- , ) + o(t.



Streamlines Near Singularities

g(z) z(4-d)/8



Streamlines Near Singularities



Partition Simplification



Chord Collapse



Chord Collapse
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Chords of a T-layout



Patches of a Chord

1



Collapsible Chords

1. No singularities are connected across any transverse rung of
the patch.



Collapsible Chords

2. No singularity is connected to a boundary across any
transverse rung of the patch.



Collapsible Chords

3. If the patch starts or ends at a T-junction:
(a) The node opposite the T-junction on the same transverse

rung is a singularity.



Collapsible Chords

3. If the patch starts or ends at a T-junction:
(b) The node opposite the T-junction on the same transverse

rung is another T-junction with the same orientation.



Collapsible Chords

3. If the patch starts or ends at a T-junction:
(c) The node on the opposite corner of the patch from the T-

junction is a singularity.



Zip and Non-Zip Patches



Collapsible Chords

r



Collapse Operation



Condition for Collapse

Collapse if: F; >

t an

pEC

Enozzp



Collapse Algorithm

Algorithm 3 Partition Simplification

Let F be the set of collapsible chords of the partition
while > 0 do

if No chords meet the conditions for collapse then
Stop.

else
Collapse the chord with the srnallest minimum width
Determine new set of collapsible chords F

end if
end while
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Collapse Algorithm

L J



Collapse Algorithm



Collapse Algorithm



Collapse Algorithm



Partition Simplification on Surfaces



Partition Simplification on Surfaces



Partition Simplification on Surfaces



Partition Simplification on Surfaces



Partition Simplification on Surfaces



Partition Simplification on Surfaces



Partition Simplification on Surfaces



Partition Simplification on Surfaces



Extra Slides



Hyperbolic Trajectory of
Streamlines



Streamlines Near Singularities

f (z) eel) +21,47- , ) + o(t.



Streamlines Near Singularities

f (z) eel) ±2k4TE ) + o(r)



Streamlines Near Singularities

f(z) ei(d40±2k4„) +0
)



Streamlines Near Singularities

Streamlines are given by 1z f(z)

72



Streamlines Near Singularities

f (z)
• do _27T)

e 4 I 4 ) +yr)

Streamlines are given by zi _ f(Z)

WLOG let k = 0, we are looking for the set

C = {z(t) c B(a,ro) t c (taftb)1



Streamlines Near Singularities

Proposition:

t(x iy)-(4-d)/8 I xy = A, x E 1,1
For some constant A on some interval IX

Proof:

Consider

g(z) = 
z(4-do



Streamlines Near Singularities

g(z) z(4-d)/8



Streamlines Near Singularities

w (t) - g (z (t))



Streamlines Near Singularities

w(t) = g(z(t))

w' (t) gl (z(t))zi (t)



Streamlines Near Singularities

w (t) = g (z (t))

w' (t) = g' (z(t))z' (t)

g' (z) / 0 in D

arg wi (t) = arg (gi (z(t))zt (t))



Streamlines Near Singularities

w (t) = g (z (t))

w' (t) = gif (z(t))z' (t)

gl(z) / 0 in D

arg wi ( t ) = arg (gi (z ( t ) ) z' ( t ) )

arggl(z(t)) + argzi(t)



Streamlines Near Singularities

w (t) = g (z (t))

w' (t) = gif (z(t))z' (t)

gl(z) / 0 in D

arg wi ( t ) = arg (gi (z ( t) )zt ( t ) )

arggl(z(t)) + argzi(t)

4 d 
1) 0 ± arg(zt (t))

8



Streamlines Near Singularities

arg w'(t) =
(

4 d

8
— i) 9 ± arg(zi(t))



Streamlines Near Singularities

arg u/ (t)
(4

8

d
— i) 9 ± arg(zi(t))

4

dO ± (4 
8
d 1)

0



Streamlines Near Singularities

arg a (t) (4 d 
— 

i
i 08 ) ± arg(zi(t))

dO ± (4 

8

d 1) 0

4 

(4 — d)O

8



Streamlines Near Singularities

arguAt) = (4 
8 
d 1) 0 ± arg(zi(t))

dO ± (4 d 
4 8

(4 — d)O

8

P

1)0



Streamlines Near Singularities

w' (t) a(t)e



Streamlines Near Singularities

w' (t) = a(t)e 1C°

w(t) = x(t) iy (t)

x' (t) = a(t) cos(co)

y' (t) a(t) sin(p)



Streamlines Near Singularities

w' (t) = a(t)e 1C°

w(t) = x(t) iy (t)

x' (t) = a(t) cos(co)

y' (t) a(t) sin(p)

dy
tanko)

dx



Streamlines Near Singularities

dy

dx

ul (t) = a(t)e iP

w(t) = x(t) + iy(t)

x' (t) — a (t) cos(p)

y' (t) = —a(t) sin(p)

tanko) 
y
x  > y

A

x

c — f (x ± iy) -(4— d) / 8 1 xy = A, x E Ix}



Streamlines Near Singularities



Streamline Tracing



Streamline Tracing



Streamline Tracing
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Connection to Ginzburg-
Landau Theory



Ginzburg-Landau Functional

Original problem:

Relaxed problem:

min E(u)
uEI-4 (D,(C)

(U) 1,,,,12dA
u(x) = g(x) Vx E OD

u(x) 1 = 1 a.e. x E D

(u)

min /-/),(u)
uEH1 (D,(C)



Results of Ginzburg-Landau
Theory (Bethuel et al.) and
Applications to Cross Fields



Well Defined Limit of Relaxed Problem
Theorem 2.2.2 (Bethuel et al. [4]). Let d = deg(g, aD). Given a sequence
En —} 0 there exists a subsequence En, and exactly d points al,a2,..., ad in D C
and a smooth harmonic map u*: D\ {ai,..., ad} —> T with u* = g on OD such
that

in CDOC(D\ U(ai)) Vk and in Cl'a(D\ y(ai)) < 1

In addition, if d 0 each singularity of u* has index sgn(d) and, more precisely,
there are complex constants (ai) with lad = 1 such that

u,(z) — ai
z — ai

z—ai
< — ai 2 as z ai, Vi

This gives us a generalized sense in which to understand the energy
minimization problem



m 
ip
 
.
 m
 

m
 

0
 j 

a

N
CI



Asymptotic Estimate

uo(z)
(z a •3

a •3

)d

< as z ai



Energy Argument for Local Minimizers

For a local minimizer of the Ginzburg-Landau
energy, the singularities are:

• Isolated
• Simple
• Occur on the interior of the domain



EL

o
o
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Streamlines and Asymptotic
Behavior of Cross Fields Near

Singularities



Separatrices

LEMMA 5.1. Let f be a boundary-aligned canonical harTnonic cross field on D.
Let a be an interior singularity of f of index d 14 with d < 4. There are exactly 4 — d
separatrices meeting at a. These separatrices partition a neighborhood of a into 4 — d
even-angled sectors.
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Boundary Singularities

s . 

-+
&V .. ::+____+

LEMMA 5.4. Let c be a boundary singularity of f of index d 14 with d < 2. There
are exactly 3 — d separatrices meeting at c (including the boundaries themselves).
These separatrices partition a neighborhood of c into 2 — d even-angled sectors.



Partitioning Theorem
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Meshing
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Limit Cycles
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Cross Fields can be Decomposed Locally
into 4 Orthogonal Vector Fields
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Riemann Surface and Streamlines
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Proof

LEMMA 5.1. Let f be a boundary-aligned canonical harmonic cross field on D.
Let a be an interior singularity of f of index d 14 with d < 4. There are exactly 4 — d
separatrices meeting at a. These separatrices partition a neighborhood of a into 4 — d
even-angled sectors.

(4) uo(z) — aj
(z — aj)di

—
< — ajl as z aj

Proof Let uo be the representation vector field for f. Write z = a + rei°. The
estimate (4) gives

(8) u0(z) = Cteid9 o(r) for 0 E [O, 27).

Writing a = ei°D/N, the Nth-roots of the uo(z) are then given by ei( '-11-r19 +2÷k) for
k E Z.

We seek directions where the vector originating at a and pointing towards z is
parallel to a vector originating at the origin and pointing towards any of the Nth-
roots. Thus we want to solve the equation

(9)
27L-k

ea) = N N 0 = 27rk — d) + 00/(N d)



Algorithm
Algorithm 1 Partitioning D into a quad layout with T-juiictions.

Input: A domain D satisfying Assumption 3.1, and a boundary-aligned canonical
harmonic cross field f with singularities of index < 1/4.

Output: A set B containing limit cycles and separatrices that define a quad
layout with T junctions.

Let S be the set of separatrices that do not converge to a limit cycle. Let P be
the set of separatrices that do. Let L be the set of limit cycles.

Initialize the set B = S.

for 1 E L do
if no element of B intersects / then

(i) Add / to B.
(ii) By Corollary 5.8, there is an element of P that intersects l. Let p' be
thc portion of that scparatrix bcginning at thc singularity and ending in a
T-junction with l.
(iii) Add p' to B.
(iv) remove p from P.

end if
end for
for p E P do

Let p' be the curve segment of p beginning at the singularity and continuing
until it intersects an element of B. Add p' to B.

end for
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Singularities of Fractional index

Ray et al. 2006



Brouwer Degree

• Let g(x) be the boundary condition on the domain G.
• Let d — deg(g,OG) be the Brouwer degree.

d = 2
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Explicit Formula to Design Field with Fixed

Singularities

ei(Po(z) g Gz)  1 z b1r1 1 z b21a2 1 z bnlŒn

u0 = C

z bil 1(11 I z b2 (12 . . . 1 z — bn Ian

(z b1)°1 (z — b2)(12 . . . (z — bnY In

1Ocp=OinD

t (i° = coo on OD

ic i ow (z — b1)"1 (z b2)°2 (z bn)
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Boundary Singularities

dev(ci) 171 [arg R(f (ey(s))) arg R(f (ey(1 — s)))]
lim
s4,0 27

, 1/4

+1/4



Boundary Singularities
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Singularity Indices
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