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Goal: Coarse boundary aligned quad partitions




Contributions:

1. Extend MBO method for cross field design to curved
surfaces

2. Prove that near singularities, streamlines of a cross
field are hyperbolic under a conformal map.

3. Partition simplification algorithm to generate coarse
qguad layouts




Merriman-Bence-Osher
(MBO) Method for Cross
Field Design







MBO Method for Cross Fields
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The Representation Map




MBO Method for Cross Fields
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MBO Method for Cross Fields

min  F(u)
ueH;(D,C)

/ Vul*dA

u(z) =g(x) VredD

u(x)|=1 ae x €D




MBO Method for Cross Fields

Ginzburg-Landau Relaxation:

E(u)== |

lterative method to minimize cross field energy:

1. Until time T solve

ui(t,x) = Au(t, x) x €M
u(t,x) = g(x) x € oM
u(0, x) = uo(x) x €M

2. Renormalize




MBO Method
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MBO Method
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MBO on Surfaces

1. Until time T solve

u(t, x) @u (¢, x) xe M
u(t,x) = g(x) x € oM
u(0,x) = ug(x) x €M

2. Renormalize

u(T, x)

u(T,x) =

u(T, x)|]




Levi-Civita Connection

Knoppel et al. 2013
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Cross Field Design on Surfaces
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The Representation Map

Palacios et al. 2007
1 I



Cross Field Design on Surfaces
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Cross Field Design on Surfaces

= Qpq(v) = e'¥rev




Discrete Laplacian for Representation Vectors

U € Tz},)

v — Qpqu




Discrete Laplacian for Representation Vectors

v — Qpyul’




Discrete MBO on Surfaces

Algorithm 2 A diffusion generated method for de-
signing smooth cross fields

Let u° be the solution to Au = b.
Fix 7, 9, and set k£ = 0.
while |[u* —u*7|| > 4, do
Solve the discrete diffusion equation,

(I — 7AW" = + 7b (6)

for j € [0,n] do
ki1 G
Set Uj = W

J

end for

k+ +
end while
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Curved Surfaces




Cross Fields on Surfaces




Partition Simplification




Naive Partition




Naive Partition




Naive Partition




Limit Cycles Are Common
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Hyperbolic Trajectory of
Streamlines




Streamlines Near Singularities




Streamlines Near Singularities
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Streamlines Near Singularities




Partition Simplification




Chord Collapse




Chord Collapse




Chords of a T-layout




Patches of a Chord

H
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Collapsible Chords

1. No singularities are connected across any transverse rung of
the patch.




Collapsible Chords

2. No singularity is connected to a boundary across any
transverse rung of the patch.




Collapsible Chords

3. If the patch starts or ends at a T-junction:
(a) The node opposite the T-junction on the same transverse

rung is a singularity.

v’




Collapsible Chords

3. If the patch starts or ends at a T-junction:
(b) The node opposite the T-junction on the same transverse
rung is another T-junction with the same orientation.

v l e




Collapsible Chords

3. If the patch starts or ends at a T-junction:
(c) The node on the opposite corner of the patch from the T-
junction is a singularity.

|~ 7




Zip and Non-Zip Patches




Collapsible Chords




Collapse Operation
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Condition for Collapse

E =min b,
peC

Collapse if: £ > 0

Emazip =1




Collapse Algorithm

Algorithm 3 Partition Simplification

Let I be the set of collapsible chords of the partition
while [T'| > 0 do
if No chords meet the conditions for collapse then
Stop.
else
Collapse the chord with the smallest minimum width
Determine new set of collapsible chords I
end if
end while
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Collapse Algorithm
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Collapse Algorithm
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Collapse Algorithm

57



Collapse Algorithm




Partition Simplification on Surfaces




Partition Simplification on Surfaces
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Partition Simplification on Surfaces
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Partition Simplification on Surfaces
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Partition Simplification on Surfaces




Partition Simplification on Surfaces




Partition Simplification on Surfaces




Extra Slides




Hyperbolic Trajectory of
Streamlines




Streamlines Near Singularities




Streamlines Near Singularities

2kt

f(z) = ) 4 o(r)




Streamlines Near Singularities

2kt

f(z) — ei(%—FT) _|_0 r)




Streamlines Near Singularities

2kt

f(z) — ei(%—FT) _|_0 r)

Streamlines are given by Z/ — f(z)




Streamlines Near Singularities

2kt

f(Z) — ei(%—l—T) _|_0 r)

Streamlines are given by Z/ — f(z)

WLOG let k = 0, we are looking for the set

C = {z(t) € B(a,ro) |t € (ta, 1)}




Streamlines Near Singularities

Proposition:
C={(x+iy) @98 |xy = A, x € I}

For some constant A on some interval Ix

Proof:

Consider

(4-d)/8

g(z) =z




Streamlines Near Singularities

glsz)| |




Streamlines Near Singularities

w(t) = g(z(t))




Streamlines Near Singularities

w(t) = g(z(t))
w'(t) = &' (2(t))z ()




Streamlines Near Singularities

w(t) = g(z(t))
w'(t) = &' (z(t))z'(t)

9’ (z) #0in D

argw'(t) = arg (8'(z(t))z'(t))




Streamlines Near Singularities
w(t) = g(z(t))
w'(t) = g'(z(t))2'(t)
9’ (z) #0in D

argw'(t) = arg (8'(z(t))z'(t))
= arg g'(z(t)) +argz'(¢)




Streamlines Near Singularities

w(t) = g(z(t))
w'(t) = &' (z(t))z'(t)

9’ (z) #0in D

argw'(t) = arg (8'(z(t))z'(t))
= arg g'(z(t)) +argz'(¢)

_ (4 — 1) 0+ arg(Z (1))




Streamlines Near Singularities

argw' (t) = (4gd 1) 0 + arg(z'(t))




Streamlines Near Singularities
4 —d

argw' (t) = ( - 1) 0 + arg(z'(t))

do6 4 —d
(1),




Streamlines Near Singularities

argw' (t) = (4gd 1) 0 + arg(z'(t))

do 4—d
()

(4—d)0
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Streamlines Near Singularities

argw' (t) = (4gd 1) 0 + arg(z'(t))

do6 4 —d
(1),

(4—d)0
3

— ¢




Streamlines Near Singularities

—> w'(t) = a(t)e ¥




Streamlines Near Singularities

— w'(t) = a(t)e ¢
wl(t

(t) = x(t) +iy(t)
x'(t) = a(t) cos(g)
y'(t) = —a(t) sin(g)




Streamlines Near Singularities

— w'(t) = a(t)e ¢
w(t) = x(t) + iy(t)




Streamlines Near Singularities

w'(t) = a(t)e™'?
w(t) = x(t) + iy()

C={(x+iy) 4 D8|xy=A, x € I}

_———— .- e s ———a—-—————




Streamlines Near Singularities




Streamline Tracing




Streamline Tracing




Streamline Tracing




Connection to Ginzburg-
Landau Theory




Ginzburg-Landau Functional

Original problem:
min = E(u)
ueH}(D,C)

/ Vul|?dA

u(z) =g(z) VYaedD
|u(:1:)|:1 ae. reD

Relaxed problem:

i E
uEIgrglu(%,(C) E(U)

Bow) = 5 [ Vol + g5 [ (= 1?




Results of Ginzburg-Landau
Theory (Bethuel et al.) and
Applications to Cross Fields




Well Defined Limit of Relaxed Problem

Theorem 2.2.2 (Bethuel et al. [4]|). Let d = deg(g,0D). Given a sequence
en — 0 there exists a subsequence €,,, and exactly d points ay,as,...,aq in D C C

and a smooth harmonic map u,: D \ {a1,...,aq} — T with u, = g on 0D such
that

Ue

— u, |in CF (D \ U(a;)) Yk and in CY*(D \ U(a;)) Vo < 1

nq

In addition, if d # 0 each singularity of u, has index sgn(d) and, more precisely,
there are complex constants (o) with |a;| = 1 such that

< Clz —a;|* as z = a;, Vi

This gives us a generalized sense in which to understand the energy
minimization problem




Canonical Harmonic Map

 Harmonic vector field defined everywhere except a finite number of

points
* All vectors are unit vectors

* Unique for a given boundary condition and configuration of

singularities



Asymptotic Estimate
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Energy Argument for Local Minimizers

For a local minimizer of the Ginzburg-Landau
energy, the singularities are:

e |solated
* Simple
e Occur on the interior of the domain
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Streamlines and Asymptotic
Behavior of Cross Fields Near
Singularities




Separatrices

LEMMA 5.1. Let f be a boundary-aligned canonical harmonic cross field on D.
Let a be an interior singularity of f of index d/4 with d < 4. There are exactly 4 — d
separatrices meeting at a. These separatrices partition a neighborhood of a into 4 — d
even-angled sectors.




Boundary Singularities

LEMMA 5.4. Let ¢ be a boundary singularity of f of index d/4 with d < 2. There
are exactly 3 — d separatrices meeting at ¢ (including the boundaries themselves).
These separatrices partition a neighborhood of ¢ into 2 — d even-angled sectors.
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Partitioning Theorem




Partition into four-sided regions




Meshing
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Limit Cycles




Cross Fields can be Decomposed Locally

into 4 Orthogonal Vector Fields
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Riemann Surface and Streamlines




Proof

LEMMA 5.1. Let f be a boundary-aligned canonical harmonic cross field on D.
Let a be an interior singularity of f of index d/4 with d < 4. There are exactly 4 — d
separatrices meeting at a. These separatrices partition a neighborhood of a into 4 — d
even-angled sectors.

(4) uo(z)—ajm <C|z—aj| as z— a;

Proof. Let ugy be the representation vector field for f. Write z = a + re'?. The
estimate (4) gives

(8) uo(2) = ae'® + o(r) for 6 € [0, 27).

d6+9

Writing @ = €"/N | the Nth-roots of the ug(z) are then given by el 2+ for

ke Z.
We seek directions where the vector originating at @ and pointing towards z is

parallel to a vector originating at the origin and pointing towards any of the Nth-
roots. Thus we want to solve the equation

(9) el = TR — 9 =21k/(N —d) + 6y /(N — d)



Algorithm

Algorithm 1 Partitioning D into a quad layout with T-junctions.

Input: A domain D satisfying Assumption 3.1, and a boundary-aligned canonical
harmonic cross field f with singularities of index < 1/4.

Output: A set B containing limit cycles and separatrices that define a quad
layout with T junctions.

Let S be the set of separatrices that do not converge to a limit cycle. Let P be
the set of separatrices that do. Let £ be the set of limit cycles.

Initialize the set B = S.

for l € £ do
if no element of B intersects [ then
(i) Add [ to B.
(ii) By Corollary 5.8, there is an element of P that intersects I. Let p’ be
the portion of that separatrix beginning at the singularity and ending in a
T-junction with [.
(iii) Add p’ to B.
(iv) remove p from P.
end if
end for
for p € P do
Let p' be the curve segment of p beginning at the singularity and continuing
until it intersects an clement of B. Add p’ to B.
end for




Chord Collapse
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Chord Collapse




Chord Collapse




Chord Collapse




Chord Collapse




Chord Collapse




Singularities of Fractional Index

11

Ray et al. 2006
119



Brouwer Degree

* Let 9(z) be the boundary condition on the domain G.
e Let d =deg(g,0G) be the Brouwer degree.




Explicit Formula to Design Field with Fixed
Singularities

|z — by |* |z — by|*2 |2 — by |*m

eol2) = ¢(z .
9(2) (z — b)) (2 — by)e2 (2 — by )on

Ap=0in D
© = g on 0D

ug = €¢(?) (2 = b1)*" (2 — bp)™ . (2= bn)
|z — b1|*1 |z — by|*2 z — by, |
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Boundary Singularities

dev(c;) — zlarg R(f(v(s))) —arg R(f(y(1 = s)))]

lim

sl0 2T




Boundary Singularities
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Singularity Indices
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