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Non-adiabatic flamelet chemistry tabulation with LES/RANS enables simulation
of sooting, turbulent fires at engineering scales of interest

• Tabulation techniques aid in making fire simulations computationally feasible

• We were seeing over-predictions in soot and unstable simulations in some cases...

• Want to explore different ways of constructing/accessing chemistry tables

How chemistry tabulation works: 

Get data
• DNS
• ODT
• Flamelet
• Experiments

/4"..***8841411114%.\\14.

Tabulate properties
(temperature, fluid properties,

soot source terms...)

over reduced set of coordinates

Fuego (CFD):
transport reduced

coordinates

Options for the reduced set of coordinates: (for strongly sooting and radiating fires)

1 dimension: mixture fraction (z)
Equilibrium, Burke-Schumann

composition

composition, strain

2 dimensions: z, scalar dissipation rate (x
Steady Laminar Flamelet Model (SLFM)

composition, strain, heat loss

3 dimensions: z, x, enthalpy (h) or enthalpy deficit (y = h - had)
Non-adiabatic Flamelet Model

SIERRA/Fuego

SNUs Thermal
Test Complex

Gli



Non-adiabatic flamelet chemistry tabulation with LES/RANS enables simulation
of sooting, turbulent fires at engineering scales of interest

Options for the reduced set of coordinates: 

1 dimension: mixture fraction (z)
Equilibrium, Burke-Schumann

(for strongly sooting and radiating fires)

composition

2 dimensions: z, scalar dissipation rate (x
Steady Laminar Flamelet Model (SLFM)

3 dimensions: z, x, enthalpy deficit (y
Non-adiabatic Flamelet Model
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Unstructured non-adiabatic

flamelet data over (z, x, y)

Different ranges in y for each Xst

y(MJ/kg) —data is unstructured
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There are challenges in constructing and accessing tabulated/modeled chemistry

Unstructured non-adiabatic

flamelet data over (z, x, y)

Regression

Machine learning model

(z, X, If)

Interpolation onto structured grid (for speed)

x ,y depend on z

—can't build a table over (z, x, y) directly

Structured Table Use reference (stoichiometric) values

(z, xst, yst)

I 

t 

 Fuego (CFD):

Convert (z, X/ If)

into (z, Xst, yst)
transports z, X/ Y ( h, had) ,.......

Advantages:

• Simulation variables are the model inputs

• Smaller memory requirements

• Higher dimensional models

Disadvantages:

• Challenges associated with finding "optimal" networks

• Difficult to determine error bounds

• More expensive to query a neural network than interpolant



There are challenges in constructing and accessing tabulated/modeled chemistry

Unstructured non-adiabatic

flamelet data over (z, x, y)

Regression

Machine learning model

(z, PI)

Fuego (CFD):

transports z, X/ Y( h, had)

Consistent Enthalpy 
Reconstruction (CER) 

• Find the correct ryst in the table using

a (Newton-based) root finding method

Ytable(Z, Zst( Yst) = YCFD

• Requires have y in the property table

• More accurate
• More expensive

Y
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Interpolation onto structured grid (for speed)

x ,y depend on z

—can't build a table over (z, x, Py) directly

Structured Table

(z, Xst, yst)

Convert (z, X/ If)

into (z, Xst, yst)
???

Fz(Z)

xFx(Z,

Presumed form for x
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There are challenges in constructing and accessing tabulated/modeled chemistry

Unstructured non-adiabatic

flamelet data over (z, x, y)

Regression

Machine learning model

(z, PI)

Fuego (CFD):

transports z, X/ Y h, had)

Consistent Enthalpy 
Reconstruction (CER) 

• Find the correct ryst in the table using

a (Newton-based) root finding method

Ytable(Z, Zst( Yst) = YCFD

Y
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• More accurate
• More expensive
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The AER methods lead to substantial errors in scenarios with high heat loss

Ethylene laminar coflow, sooting jet steady state
11 mm diameter (D) jet

Simple radiation model (4uTitf)

2-equation soot model

• Non-linear trend in temperature errors moving up centerline
• Largest errors in rich regions near inlet, 0(100 K)

• Persistent errors (errors remain in steady state)

• 10% over-prediction in soot for T-AER than CER
• Emitting more smoke
• 2% over-prediction in soot for A-AER than CER

• Overall less error in A-AER method compared to T-AER

• Little to no errors in pure streams and near adiabatic

• Observed similar trends in the errors for heptane
and for a participating media radiation model

temperature (K) 
CER
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-2

• The CER simulation was 2x slower than the T-AER simulation

• Currently performing Newton solve for every property table

• Optimal redesign should result in only 5-10% more time for CER
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Machine learning is a promising alternative to structured chemistry tabulation

Machine learning model

(z, xl h) 
1 

ANN1: trained on whole
unstructured flamelet dataset

ANN2: trained on every
other point in dataset

Temperature parity plot (ANN2)
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(z, xst ,Yst)

Temperature (K) reconstructions for Xst = 11 s-1 (selected profiles)
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• The ANNs have more error than CER, but less error than AER methods
• ANNs trained on coarsened datasets show good accuracy

• ANNs are only 1 MB compared to 28 MB for a structured table build using (T, p, y)

0.2 0.4 0.6

• Structured tables can reach around a few GB large for actual turbulent simulations

0.8 1.0



Conclusions

• AER methods lead to substantial errors in scenarios with high heat loss
• Up to 10% over-prediction in steady state soot mass fraction for C-AER

compared to CER for the laminar sooting ethylene jet flame studied here

• Improved approximations can be constructed (A-AER),

but are not generally accurate

• The CER method offers more accuracy for high heat loss scenarios
Should only be 5-10% more expensive than AER when optimized

• Replacing structured tabulation with ANNs shows promise
May dramatically reduce memory -30x

• May enable higher dimensional models

• Shows accuracy between AER and CER

Future Work

• Explore optimal ANNs and run in situ for flame calculations

• Study optimized interpolants to improve CER

• Perform more detailed cost analysis between CER and ANN approaches

• Test in turbulent simulations at scale
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A transient non-adiabatic flametet approach enables a large enough range of statti
accessed in sooting, turbulent fire simulations

dt 2 dZ2
+
 p

dT x d2T 1

dt 2 dZ2 pc
p i

adiabatic formulation

n

1

provide cooling for flames
with higher mixing rates

LT1
11Xmax 1 Zst

loci, Zst Tmax T00

more uniform heat loss during
transient heat-loss driven extinction

--------A.-----
T Too

related to heat released,

non-adiabatic formulation hydrocarbons 0(107J/m3)

*........_____.....,.,....v'"-•--------

linear background
temperature

avoid increase in stoichiometric
enthalpy from reactant mixing

Integrate equations until T comes within 5% of max(T.)

Solved using Spitfire
(soon to be open-sourced)

0.0

-0.5

Y (MJ/kg) _10

Xst = 10-3 s-1

more curved profiles

Xst = 10.8 s-1

more linear profiles
, ,
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Z
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Z
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Steady state profiles for an
ethylene laminar coflow, sooting jet
with 11 mm diameter (D)

Simple radiation (4uTitf)

• Largest qualitative difference in
soot mass fraction

• T-AER has the largest areas of heat
loss for a given contour

Qualitative differences are observed between the methods
for a steady laminar ethylene sooting jet flame

mixture fraction 
CER A-AER T-AER

8
o

6

2

0
-2

14 -

12 -

10 -

8
0

6

4

2

0 1
-2 0

r/D

0
r/D

CER

1

2 -2 0 2 -2 0

r/D r/D

temperature (K) 
A-AER T-AER

1 —1 1

2

1

A 14

- 0.9474

- 0.8421

- 0.7368

- 0.6316

- 0.5263

- 0.4211

- 0.3158

- 0.2105

- 0.1053

 0.0000

A
- 2100

- 1900

- 1700

- 1500

- 1300

- 1099

- 899

I 699

499

299

enthalpy deficit (MJ/kg) 
CER A-AER T-AER

12 -

10 -

8
o

6

o

4

2

0 1

-2 0
r/D

2 -2 0
r/D

2 -2 0
r/D

soot mass fraction 
CER A-AER T-AER

Gli

0.0

- -0.2

- -0.4

- - 1.0

v- -1.2

2

0 0

00
0 0

0 0

1

0.15

0.13

0.11

0.09

0.07

0.05

0.03

0.01

2 -2 0

r/D

2 -2 0

r/D

2 0

r/D

2 2 0

r/D

2 2 0

r/D

2



AER methods have less error in scenarios with less heat loss
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Qualitative differences are observed between the methods
for a steady laminar ethylene sooting jet flame

Steady state profiles for an
ethylene laminar coflow, sooting jet
with 11 mm diameter (D)

Simple radiation (4uTitf)

• A-AER results are closer to CER
than T-AER results

• AER methods show a non-linear pattern of over-
under-predictions in temperature moving up the
domain at the centerline

temperature (K) at different heights in the flame
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We can explain errors in the steady state profiles through a priori error analysis

Under-predicting temperature around zst
Smaller magnitude of error in this region compared to rich regions at 0.58 s-1

y (MJ/kg)
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The analysis remains applicable for radiation modeled with PMR
participating media radiation (PMR) - simple radiation for CER

o
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• Near the inlet, the temperature is higher for PMR than SR, which corresponds to a larger soot mass fraction

• At most a 5% difference in temperature, but an 11% higher maximum observed soot mass fraction for PMR

compared to simple radiation

• any differences in temperature can be amplified in the soot production due to sensitivities

• soot production more coupled to PMR

• PMR changed the overall quantities of the steady state properties compared to simple radiation,

but did not change the relative differences between the CER, T-AER, and A-AER



The analysis remains applicable for heptane

• See same trends in results as saw with ethylene

• However, with heptane there is only about a 5% over-prediction of the

maximum soot mass fraction by T-AER compared to CER

• The heptane case also has less heat loss overall compared to ethylene

• AER methods have less error in scenarios with less heat loss

• have the benefit of being less expensive in these scenarios
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The equations we solve

. Thermochemical states are typically calculated using the steady laminar flamelet model (SLFM)

aYi X a2Yi ± wi

dt 2 dZ2 p

dT

dt

1 n 
% a2T

1 coh. +
pcp i_1 1 1 2 dZ2

classical flamelet equations

±
% 1 aT acip
2 cp aZ aZ

±
% dT ill cp,i dYi

2 dZ Li c aZi-1 p

variable cp distinct cp,i


