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Non-adiabatic flamelet chemistry tabulation with LES/RANS enables simulation
of sooting, turbulent fires at engineering scales of interest SIERRA/Fuego

e Tabulation techniques aid in making fire simulations computationally feasible
e We were seeing over-predictions in soot and unstable simulations in some cases...
e Want to explore different ways of constructing/accessing chemistry tables

How chemistry tabulation works: /\ F
Get data Tabulate properties - CED):
e DNS : . UegO( ).
(temperature, fluid properties,
e ODT > S00% SUUNES HETE..) transport reduced
Flamelet U i By
: Experiments over reduced set of coordinates coordinates a7
: , \/ . . SNL’s Thermal
Options for the reduced set of coordinates:  (for strongly sooting and radiating fires) Test Complex s amaags
composition

1 dimension: mixture fraction (2)
Equilibrium, Burke-Schumann
composition, strain

2 dimensions: Z, scalar dissipation rate (x)
Steady Laminar Flamelet Model (SLFM)

composition, strain, heat loss

3 dimensions: z, X, enthalpy (h) or enthalpy deficit (y = h - had)

Non-adiabatic Flamelet Model




Non-adiabatic flamelet chemistry tabulation with LES/RANS enables simulation |
of sooting, turbulent fires at engineering scales of interest

Options for the reduced set of coordinates:  (for strongly sooting and radiating fires)

composition

1 dimension: mixture fraction (2)
Equilibrium, Burke-Schumann

composition, strain

2 dimensions: z, scalar dissipation rate (x)
Steady Laminar Flamelet Model (SLFM)

3 dimensions: z, ¥, enthalpy deficit (y = h - haq)

Non-adiabatic Flamelet Model
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Unstructured non-adiabatic I
flamelet data over (z, x, y)| Interpolation onto structured grid (for speed)

Structured Table

Different ranges in y for each xst

v(MJ/kg)  —data is unstructured
0.0

Viewing
this plane

—0.5




Unstructured non-adiabatic
flamelet data over (z, X, Y)

Regression

There are challenges in constructing and accessing tabulated/modeled chemistry

Interpolation onto structured grid (for speed)

X ,Y depend on z

—can’t build a table over (z, yx, y) directly

Machine learning model
(Z, X, Y)

Advantages:

Structured Table | Use reference (stoichiometric) values
(Z) Xst, YSt)

e

Fuego (CFD):
transports z, X, ¥ ( h, had)

T

Convert (z, X, Y)

into (Z) Xst, YSt)
/

e Simulation variables are the model inputs
e Smaller memory requirements
e Higher dimensional models

Disadvantages:

o Challenges associated with finding “optimal” networks
e Difficult to determine error bounds
e More expensive to query a neural network than interpolant



Unstructured non-adiabatic
flamelet data over (z, X, Y)

Regression

There are challenges in constructing and accessing tabulated/modeled chemistry

Interpolation onto structured grid (for speed)

X ,Y depend on z

—can’t build a table over (z, yx, y) directly

Presumed form for x

Machine learning model Structured Table 1.0-
(Z) X Y) (Z) Xst, YSt) F)((Z) — 0.81 I
T )(F)((Zst) 0.6- "
Convert (z, X, Y) - -
Fuego (CFD): into (Z, Xst, Yst) o Ast 0.
transports Z, x, Y ( h, had) 7
No Presumed form for Y "%0 0.2 0.4 7 0.6 0.8 1.0 ‘
Consistent Enthalpy das Approximate Enthalpy .
Reconstruction (CER) 1.0 Reconstruction (AER)
Find the correct yst in the table using Y os- ii SS/'O@z‘f Presume a functional form for ¥(Z:¥st) )
a (Newton-based) root finding method IS B | 1 ‘On |
st K " .
| —
ytable(Z )(S[@ }/CFD 04l (GSS'IE' y }/ F}/(Z)}/St
5 Ut &
e Requires have vy in the property table 0.2 ISS"Oc?z:;.* .. : ,
e More accurate 0.0+ n
e More expensive 0.0 0.2 0.4 7 0.6 0.8 1.0



Unstructured non-adiabatic
flamelet data over (z, X, Y)

Regression

Machine learning model
(Z, X, Y)

.

-

Fuego (CFD):
transports z, x, v ( h,

had)

X ,Y depend on z

—can’t build a table over (z, yx, y) directly

Structured Table
(Z) XSta YSt)
T

Convert (z, X, Y)
into (Z) Xst, YSt)

-

There are challenges in constructing and accessing tabulated/modeled chemistry

Interpolation onto structured grid (for speed)

Presumed form for x

1.0

F)((Z) — 0.3
)(F )((Zst) 0-61 m
7,

No Presumed form for y

SN
~
~
~3 1
~

Average (A-AER)

—— A-AER
--- T-AER

Consistent Enthalpy 1.2 ﬂ:ﬁ"
Reconstruction (CER) 1.0-
e Find the correct yst in the table using Y o8
a (Newton-based) root finding method
Yst 0.6
ytable(Z’)(st@ = V/CFD 0414
e Requires have vy in the property table 0244
e More accurate 0.0
e More expensive 0.0
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The AER methods lead to substantial errors in scenarios with high heat loss

Ethylene laminar coflow, sooting jet steady state
11 mm diameter (D) jet

Simple radiation model (40T;‘éf)
2-equation soot model

Non-linear trend in temperature errors moving up centerline
e Largest errors in rich regions near inlet, O(100 K)

Persistent errors (errors remain in steady state)
10% over-prediction in soot for T-AER than CER

e Emitting more smoke

e 2% over-prediction in soot for A-AER than CER
Overall less error in A-AER method compared to T-AER

Little to no errors in pure streams and near adiabatic

Observed similar trends in the errors for heptane
and for a participating media radiation model

The CER simulation was 2x slower than the T-AER simulation

temperature (K)

CER

14

12

10

8

y/D

e Currently performing Newton solve for every property table
o Optimal redesign should result in only 5-10% more time for CER
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Machine learning is a promising alternative to structured chemistry tabulation

Machine learning model
(z, x, h)

ANN1: trained on whole
unstructured flamelet dataset

ANN2: trained on every
other point in dataset

predicted

2250
2000
1750
1500
1250
1000

750 1
500 1

Temperature parity plot (ANN2)

-

T (K)

500 750 1000 1250 1500 1750 2000 2250
observed

-———

Unstructured (T, p) Structured Table (CER, AER)
ethylene flamelet data (Z, Xst ,Yst)

Temperature (K) reconstructions for Xst=11s" (selected profiles)
2250 - :

?f«\ - flamelet solution - flamelet solution

2000 - = A-AER

17501 -
1500+ #
12501 I :

1000 {u/:

750 {mf :

500 -

0.0 0.2 0.4 0.6 0.8 1.0.0 0.2 0.4 0.6 0.8 1.0

e The ANNs have more error than CER, but less error than AER methods
e ANNs trained on coarsened datasets show good accuracy

e ANNs are only 1 MB compared to 28 MB for a structured table build using (T, p, ¥)

e Structured tables can reach around a few GB large for actual turbulent simulations



Conclusions

e AER methods lead to substantial errors in scenarios with high heat loss
e Up to 10% over-prediction in steady state soot mass fraction for T-AER

compared to CER for the laminar sooting ethylene jet flame studied here
e Improved approximations can be constructed (A-AER),

but are not generally accurate

e The CER method offers more accuracy for high heat loss scenarios
e Should only be 5-10% more expensive than AER when optimized

e Replacing structured tabulation with ANNs shows promise

e May dramatically reduce memory ~30x
e May enable higher dimensional models
e Shows accuracy between AER and CER

Future Work

e Explore optimal ANNs and run in situ for flame calculations
e Study optimized interpolants to improve CER
e Perform more detailed cost analysis between CER and ANN approaches

e Test in turbulent simulations at scale
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A transient non-adiabatic flamelet approach enables a large enough range of states |

accessed in sooting, turbulent fire simulations |
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Qualitative differences are observed between the methods

for a steady laminar ethylene sooting jet flame
mixture fraction

Steady state profiles for an
ethylene laminar coflow, sooting jet
with 11 mm diameter (D)

Simple radiation (40Tféf)

e Largest qualitative difference in
soot mass fraction

e T-AER has the largest areas of heat
loss for a given contour
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AER methods have less error in scenarios with less heat loss I
Transported in simulation

enthalpy deficit error (MJ/kg) I

A-AER vs CER T-AER vs CER
14 - 0.000
12 A - —0.016
10 - ~0.032
Computed from table queries 0.048
! - g - .
o
temperature error (K) I ~0.064 I
A-AER vs CER T-AER vs CER ~0.080
14 160 4 -
~0.096 §
12 - 128 2 - QB
l l -0.112
10 i 96 O I I 1 I I I
l 64 -2 -1 0 1 2 =2 -1 0 1
8 - r/D r/D
) - 32 :
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] f - 0
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4- | - 32 14
| | 0.0192
2 i 'f o W —64 12 4
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Qualitative differences are observed between the methods
for a steady laminar ethylene sooting jet flame

Steady state profiles for an
ethylene laminar coflow, sooting jet

with 11 mm diameter (D) temperature (K) at different heights in the flame
2000 A . g
1 La00 | — CER _ — CER _ — CER
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2000 A
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o AER methods show a non-linear pattern of over- 1800 1 —— 1sEr —— e
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We can explain errors in the steady state profiles through a priori error analysis

Under-predicting temperature around zs;
Smaller magnitude of error in this region compared

temperature error (K)
T-AER vs CER

to rich regions at 0.58 s-1
Y (MJ/kg)

r/D

Over-predicting temperature everywhere rich of zs
Matches observations for T error near inlet
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The analysis remains applicable for radiation modeled with PMR

participating media radiation (PMR) - simple radiation for CER

Temperature difference (K) Soot mass fraction difference
14 20 14
12 - - 10 15 0.018
-0 0.015
10 - 10 -
- —10 0.012
8 - . -
) &4 o ° 0.009
] ~30 >
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5 - €0 2 - g 4 - 0.000
0 . | | | | | | —70 0 | | | I | \ | | | - —0.003
20 -15 —-10 =05 00 05 10 15 2.0 -20 -15 -1.0 -05 00 05 1.0 15 20
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e Near the inlet, the temperature is higher for PMR than SR, which corresponds to a larger soot mass fraction
e At most a 5% difference in temperature, but an 11% higher maximum observed soot mass fraction for PMR
compared to simple radiation
e any differences in temperature can be amplified in the soot production due to sensitivities
e soot production more coupled to PMR
e PMR changed the overall quantities of the steady state properties compared to simple radiation,
but did not change the relative differences between the CER, T-AER, and A-AER



y/D
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e See same trends in results as saw with ethylene
e However, with heptane there is only about a 5% over-prediction of the
maximum soot mass fraction by T-AER compared to CER
e The heptane case also has less heat loss overall compared to ethylene
e AER methods have less error in scenarios with less heat loss
e have the benefit of being less expensive in these scenarios

The analysis remains applicable for heptane
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The equations we solve

e Thermochemical states are typically calculated using the steady laminar flamelet model (SLFM)

oY, y 9%, 9

E_Eaﬁ | p
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classical flamelet equations variable ¢p distinct ¢p,i



