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Introduction

• Motivation

• Uncertainty quantification for high resolution numerical
models.

• fine mesh resolution
• many random parameters/variables

• Objective

• Develop scalable (numerical and parallel) algorithms to
quantify uncertainty in large-scale computational models.

• Methodology

• Exploit non-overlapping domain decomposition methods in
conjunction with an intrusive polynomial chaos approach.



Uncertainty Quantification Framework
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Bayesian Estimation using Nonlinear Filtering

• Model Equation

Uk+1 = 1.pk luk, fk, qk) - - Forecast Step
• Measurement Equation

dk = hk (uk,Ek)

Sensors

-- Assimilation Step



Domain Decomposition Method for Stochastic PDEs

• Spatial decomposition
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Domain Decomposition Method for Stochastic PDEs
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Domain Decomposition Method for Stochastic PDEs
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Block Sparsity Structure

L = 3 and pu = 4,5.
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pi, = 3 and L = 4,5.



Extended Interface Problem

• The Extended Schur Complement System

SUr = gr.

ns

S = [Asrr — Asn (A71)-1 FiRs .

s=1

• Develop parallel iterative algorithms.
• Formulate scalable preconditioners.
• Application to 2D and 3D Stochastic PDEs with non-Gaussian

coefficients.
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Two-Level Domain Decomposition Methods for SPDEs
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• Condition Number Bound of Deterministic System

• One-level preconditioner

2k(A4-1S) < C-1412 (1 + log h ) 

• Two-level preconditioner

k(A4-1S) < C(1 + log Hh 2) 

4 0 0 4 3 0 4 0 4 0 4.-) 4 0.•



Two-Level Domain Decomposition Methods for SPDEs

• Partitioning the interface nodes into remaining (M) and corner(•) nodes
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Probabilistic Balancing Domain Decomposition with Constraints
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Probabilistic Dual Primal Domain Decomposition
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Two-Level Domain Decomposition Methods for SPDEs
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a) Neumann-Neumann with Coarse grid, b) Primal-Primal,c) Dual-Primal Operator.

Investigated numerical and parallel scalabilities:
Subber, W. and Sarkar, A., JCP, 2014

Subber, W. and Sarkar, A , CMAME, 2013

Desai, A., Khalil, M., Pettit, C., Poirel, D. and Sarkar, A., CMAME 2017
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Implementational Framework

GMSH METIS FORTRAN

mesh-generator mesh-partitioner mesh-data

UQTk MESHIO

KLE/PCE-data mesh-converter

1

FEniCS

local finite element assembly

PETSc

local stochastic assembly & computations

Matlab

scalability-plots

ParaView

solution-plots



Problem Setup for Numerical Experiments

• Model Problem:

—V • ( cd(x, 0) Vu(x, 0) ) = F(x), Q x W,

u(x, O) = 0, 6C-2 x W,

• Diffusion coefficient cd modelled as a lognormal process with
the underlying a Gaussian process having mean p, variance a2
and exponential covariance function C (on a 2D domain).

C(xi, yi; x2, y2) = 
0_2 eHx2—xil/bi—ly2—yil/b2,
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Errors Analysis of PCE Coefficients of Solution Process:

Intrusive Vs Non-Intrusive

102
5 RVs, u2

nisp
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Level of quadrature(l) / Order of expansion (p)

Relative error norm —   5 random variables, error in (12),

coarse mesh 150)
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Intrusive vs Non-Intrusive (Sparse Grid)
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calability against Stochastic Dimenszons.



Scalability against Number of Random Variables: NNC/BDDC

nl 
g 7

5

Z 3

Pu= 286
P'=1;71• • • 

P„= 56 Pr,. 816

48 246 704
Number of cores (subdomains)

1520

Fixed mesh resolution (52704 nodes and 105410 elements), fixed
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Scalability against Number of Random Variables: NNC/BDDC
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Parallel Scalability (Strong): NNC/BDDC
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Scalability using Large-Scale HPC Cluster
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For the fixed mesh resolution (0.332 million nodes and 0.664
million elements.) and fixed number of PCE terms (P, = 56).
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Scalability using Large-Scale HPC Cluster
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Probabilistic Coarse Grid in Three Dimensions:
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Deterministic Setting: Condition Number Bound Vertex vs Wirebasket-based

Methods

Ref. Book by Smith, Bjorstad and Gropp, 2004

For the vertex-based method in two dimensions

< C(1 + log(H/h))2,

For the vertex-based method in three dimensions

< C(FI h)(1+ log(H/h)).

For the wirebasket-based methods in three dimensions

< C(1 + log(H/h))2.



Probabilistic BDDC/NNC using Extended Wirebasket-based Coarse Grid
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Numerical Experiments: Wirebasket based BDDC/NNC solver

• Diffusion equation

—V • ( cd(x, 8) Vu(x, 8) ) = F(x), Q x W,

u(x, 8) = 0, SQ x W,

• Diffusion coefficient cd - lognormal process having underlying
a Gaussian process with exponential covariance C

C(xi, z1; x21 Y2, z2)
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Diffusion Equation



Characteristics of the Solution Process:

Diffusion Equation
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Numerical Experiments: Wirebasket based BDDC/NNC solver for PDE System

• Linear Elasticity

—V • a (14(x, 0)) = F(x) in D.

a (14(x, 0)) • n = bT on F 1 = 6T,\F 0,

14(x, 0) = 0 on Fo.

Stress tensor a:

a (11(x, 0)) = A(V • 14(x, 0)) I + 2µ0(x, 0)),

Ey 
—20 

E 
v)where À = (1-0))(1 and it 2(1+ = are Lamé constants.

• Young's modulus E - lognormal stochastic process (as before).

o 5 - .0 ck Cs'
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Characteristics of the Solution Process:

Linear Elasticity

cgOvaarner” . edval* eiagaron.,,

x , y and z components of the mean and standard deviation.



Characteristics of the Solution Process:

Linear Elasticity
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x , y and z components of the selected PCE coefficients.
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Diffusion

Elasticity

Iteration count versus number of subdomains for the fixed mesh

resolution with fixed number of PCE terms.
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Diffusion

,f5

Elasticity

Iteration count versus number of subdomains for fixed problem size
per subdomain with increasing number of PCEs (fixed mesh

resolution).
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Elasticity

Execution time versus number of subdomains for fixed problem size
per subdomain with increasing number of PCEs (fixed mesh

resolution).



Diffusion

"

Elasticity

Iteration count versus number of PCE terms for the fixed mesh

resolution with fixed number of subdomains.



Diffusion

Elasticity
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Iteration count versus number of subdomains for the fixed mesh

resolution with fixed number of PCE terms.



Diffusion

Elasticity

Iteration count versus number of subdomains for the fixed problem
size per core with increasing mesh resolution (fixed number of PCE

terms).



Diffusion

 I

Elasticity

Execution time versus number of subdomains with the fixed mesh
resolution and the number of PCE terms.



Diffusion

Elasticity

Execution time versus number of subdomains for the fixed problem
size per core with increasing mesh resolution (fixed number of PCE

terms).



Diffusion
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Elasticity

Iteration count versus number of PCE terms for the fixed mesh

resolution with fixed number of subdomains.



Diffusion

Elasticity

Iteration count versus number of subdomains for the fixed problem
size per core with increasing number of PCE terms (fixed mesh

resolution).



Diffusion

Elasticity

Iteration count versus order of expansion for the fixed mesh

resolution with fixed number of subdomains (fixed number of RVs).



Conclusion

• Adaptation of two-level iterative substructuring techniques for
SPDEs in order to handle large number of random variables.

• Development of the wirebasket preconditioner for SPDEs in

three dimensions.
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