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1 What is a High Entropy A11 HEA)?

High Entropy Alloys: primarily solid solutions containing 5+ alloying constituents, where the
solutions have high configurational entropy ( AS„nf > 1.4R , approx. 12 J/mol-K).

High configurational entropy is believed to thermodynamically suppresses phase separation, a
primary route for degradation of mechanical properties in conventional alloys.
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SEJ20 Title could be "What is a High Entropy Alloy?
Schindelholz, Eric John, 3/20/2019

SEJ21 Also, why should we care about HEA for corrosion? What advantages over convetional alloys?
Schindelholz, Eric John, 3/20/2019
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High Entropy Alloys (HEAs): Unusual mechanical
properties
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41 Additive Manufacturing of HEAs

Why AM?
(1) Faster cooling rates promote single phase, (2) minimize waste of expensive material, (3)
non-metallic inclusion size, (4) opportunity for combinatorial exploration of HEA
compositions.

To date, AM studies have shown:
• Several studies on AM HEAs, specifically CoCrFeMnNi alloy looking at mechanical

behavior.
• No work on corrosion of AM CoCrFeMnNi.

Study objectives
• Demonstrate feasibility of directed energy deposition (DED) for HEA processing low

porosity, single phase part.
• Understand process-microstructure-mechanical, corrosion relationship.

• CoCrFeMnNi as model alloy
• Hypothesis - 20 at% Cr with Fe-Ni imparts passivity similar to SS 304.



51 Powder and DED characteristics
Average powder diameter = 67 [tm Build direction

2 mm

Open architecture Laser Engineered Net Shaping (LENS) system using a 2kW
fiber laser (1064 nm):
• Inert atmosphere maintained at <50ppm 02 and <10ppm H20 by a

continuously flowing Ar gas.
• Laser power: 350 — 400 W.
• Build velocity: 400 — 600 mm/min.
• A 90 degree cross hatch build pattern was employed, first material

deposited each layer was the perimeter of the build.

E-'\ SrM

Focused laser
Hatch

beam 
- WidthPowder feed

Layer
,, Thickness

Scan direction (x)

Courtesy of Andrew Kustas

Composition
(wt%)

Al C Co Cr Fe Mn Ni N O S

Powder 0.003 0.005 20.91 18.46 20.14 19.06 21.34 0.002 0.064 0.008

As-built 0.006 0.005 21.3 18.2 20.5 18.5 21.5 0.0021 0.055 0.005

1

Powder from Ames Lab: Drs. Emma White and Iver Anderson Chemical analysis by NSL Analytical.



61 Microstructural Characteristics

As-built
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Microstructural Characteristics: As-built
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I Microstructural Characteristics
8

As-built., .
•

8

Interdenrite
thickness:
0.5 — 1 gm

Cooling rate:
103-104 K/s

a

•

•

•

•

• 11 As-cast

•

•

10 pm
a

10 Inn

Interdenrite
thickness:
— 5 gm

Cooling rate:
100_102 K/s

Courtesy of Bucknell University



91 Mechanical properties of CoCrFeMnNi alloy
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Slide 9

SEJ27 this plot is going to be really hard to read- font should be 18, but at the very least 16.
Schindelholz, Eric John, 3/21/2019

SEJ32 Be speciffci in descripttion. is "not AM" all just cast? If so, state "cast" instead.
Schindelholz, Eric John, 3/21/2019

SEJ33 Is green cantor alloy "AM" all SLM? or is there DED as well? State "SLM" or "SLM, DED". Same with 316L
Schindelholz, Eric John, 3/21/2019

SEJ34 Why are there two points for "this study" Annealed and As-built. If so, differentiate these in the plot.
Schindelholz, Eric John, 3/21/2019



101 Anodic polarization behavior of CoCrFeMnNi alloy
0.8 - 1.2 

0.6 M NaC1, 21°C
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J l
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What is responsible for difference in Eb between CoCrFeMnNi and 304L?
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11 I Pit morphology of CoCrFeMnNi alloy
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12 Pit morphology of CoCrFeMnNi alloy annealed

Signs of lacy
pit cover.
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20
Particles at pit bottom.

Typically observed lower number of pits on the annealed specimen after a CPP measurement.

Pit bottom was smooth compared to as-built HEA. Pit stability implications?
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131 Passive behavior of CoCrFeMnNi alloy
Calculated Pourbaix diagram for CoCrFeNi alloy
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Zhang, 2018 pH



141 Anodic polarization behavior of CoCrFeMnNi alloy

[ What is responsible for difference in Eb between CoCrFeMnNi
and 304L? 

What about the additional alloying
elements?
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H.-Y. Ha, M.-H. Jang, T.-H. Lee, Influences of Mn in solid solution on the pitting corrosion behaviour of Fe-23 wt%Cr-based
alloys, Electrochimica Acta, 191 (2016) 864-875.https://doi.org/10.1016/j.electacta.2016.01.118
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15 'Anodic polarization behavior of CoCrFeMnNi alloy

Mott-Schottky analysis of 304L and HEA.
9x109  • Borate buffer solution (pH = 9.2).

• Potential hold at 600 mV vs. Ag/AgC1 for
1 hour.

HEA

Wrought 304L /

•

•

.

.

.
1 l l l l l l l l 1

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

vAg/AgC1

0.2 0.4 0.6 0.8

Donor density for p-type (Cr oxide) and n-
type (Fe oxide?) were similar.

dC-2/dE = 2/EcoeND

IdC-2/dE ND1



161 Anodic polarization behavior of CoCrFeMnNi alloy

Mott-Schottky analysis of 304L and HEA.
4x109 
 • 1 M NaSO4 solution (pH — 6).

• Potential hold at 600 mV vs. Ag/AgC1 for 1

0
-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

vAg/AgC1

HEA

Wrought 304L

.
•

.04. .
. ...
• . ....

. .
..

..

.
• hour.
.

1 ' I ' I ' I ' I ' I ' I ' I ' 1

Donor density for n-type was similar.
Donor density for p-type was larger for HEA.

smaller slope 4 larger donor density



171 Anodic polarization behavior of CoCrFeMnNi alloy

Mott-Schottky analysis of 304L and HEA.
3x109  • 0.1 M H2SO4 solution (pH — 1).

HEA

Wrought 304L 
: • Potential hold at 600 mV vs. Ag/AgC1 for 1:
• hour.

0 -r 1
-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

vAg/AgC1

•
•

1 l 1-1 l 1 1 1 1 1

Donor density for p-type and n-type were
larger for HEA.

smaller slope 4 larger donor density



18 lIn situ mixing of powders with DED — rapid alloy screening

4— Pure refractory element

Build plate

Add successively more
pure refractory element.

Pure CoCrFeMnNi

Pure W

Pure CoCrFeMnNi

Focused laser
bearn

Powder feed — —

Scan direction (x)

LENS®
Hatch
Width

Layer
Thickness

Courtesy of Andrew Kustas



19 In situ mixing of powders with DED rapid alloy screening
Pure W

Pure
CoCrFeMnNi

EHT = 20.00 kV WD = 8.8 mm Signal A = BSD Width = 500.0 pm

•



20 lIn situ mixing of powders with DED - rapid alloy screening

Pure CoCrFeMnNi

Plan to start performing scanning
electrochemical techniques (SKP, SECM, etc.)
on these compositionally graded samples.
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lIn situ mixing of powders with DED rapid alloy screening

Hardness map overlay on sample.

Vickers
Hardness 

410

ill

370

325

285

240

200

155



221 Conclusions 1.2

Demonstrated DED for manufacture of 99% dense, 0.8 -

single phase CoCrFeMnNi with high combination
of ductility and strength. 0.4 -

Preferential attack of Mn/Ni rich interdendrite
regions during anodic polarization in 0.6 M NaCl:
• discontinuity in Cr oxide film.
• galvanic effects.

Large Mn content may be reducing stability of
passive film on surface.

In situ DED elemental mixing will lead to high-
throughput alloy screening.
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251 Additive manufacturing of HEAs

Why AM? Faster cooling rates, smaller non-metalli
SEJ35

121sisize,on  material waste, etc.

Low porosity, single phase parts can be built via DED. Metrics for success will
be from:

• Fully dense part produced by DED.
• Single phase (FCC) microstructure with limited chemical segregation.
• Similar or superior mechanical behavior to HEA literature.
• Similar or superior corrosion behavior to HEA literature.

Hypothesis that 20 at% Cr leads to similar corrosion behavior as 304L.

Project end goals: Use in situ mixing capabilities of DED to rapidly explore alloy space and
design gradient materials.

Understand contribution of all elements to passivity of these alloys. Are single element
contributions enough to make conclusions?
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MMA12 Should l add a separate slide on this including literature?
Melia, Michael Anthony, 3/19/2019

SEJ35 See alternative slide below
Schindelholz, Eric John, 3/21/2019



26 
I 
High Entropy Alloys (HEAs): Unusual mechanical
properties

D. Raabe, et al., Steel Res. Int., 2015
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SEJ19 Your text in these should be at least 16 point font. Way too small.. Suggest just pick one or two plots and enlarge... Think this would make your poitn.
Schindelholz, Eric John, 3/20/2019
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28 Mechanical properties of CoCrFeMnNi alloy
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291 Pit morphology of CoCrFeMnNi alloy compared to 304L
_As-built HEA As-built 304L
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Annealed/wrought conditions show flat pit bottoms and lacy pit morphology.
Inter/intra dendrite regions will have some control of pit morphology/propagation for as-built material.
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311 Pit morphology of CoCrFeMnNi alloy as-built

Early stages of pitting show propagation
below surface can occur via this
preferred interdendrite corrosion.

I
1
I



321 What causes this preferred interdendrite corrosion?

Short answer: chemical heterogeneity,
specifically enriched areas of Mn.

Long Answer: several factors
involving how Mn impacts passivation
locally:

• Mn has the lowest Nernst potential
of all major alloying elements,
leading to galvanic coupling effect.

• Less stable passive corrosion
product in areas enriched in Mn
(possibly depleted in Cr).

What dominates?
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40 at% Nb — 60 at% Ta
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50 at% Nb - 35 at% Ta - 15 at% W
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Anodic polarization behavior of CoCrFeMnNi alloy
compared to 304L stainless steel

CoCrFeMnNi alloy
(b,)Ye et al. (2017)

Substrate
304
HEA

-1.0 -0.5 0.0 0.5

Potential VS. VSIIE (V)

Breakdown potential is comparable —2-
300 mV reduction in breakdown potential
from 304 to this HEA in NaC1 solutions.

1.0

(b2)

304L

Luo et al.
(2018)

This study performed in 0.1 M H2SO4 shows significantly more corrosion of
the HEA. Had concluded passive film was less stable than 304L because:

• Less Cr was present in film.
• More hydroxide species than oxide.
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SEJ6 Why compare to 304L?
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