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In Brief
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Problem: Atomistic modeling of irradiation damages through displacement
cascades is deceptively nontrivial. Due to the high energy, high velocity nature
of the atom collisions, individual cascade simulations can become very
computational expensive and ill-suited for size and dose upscaling.

Standard Collision Cascade Model

Approach: Expanding upon the foundation of the Frenkel Pair Accumulation
(FPA)L'] technique, we have developed a new accelerated method of simulation
radiation damage accumulation. By integrating the state-of-the-art Athermal
Recovery Corrected (ARC) damage modell?], this method is more adapt at
modeling high energy irradiation of dense materials and metals.

Results: The new method is able to replicate radiation damage up to ~50 keV.
Final defect characteristics are comparable to full cascades; and cluster
formation is successfully captured. Two novel applications shown are shown for
reference.

Defect Characteristics

Reduced-Order Atomistic Cascade (ROAC)
|

This paper describes objective technical results and analysis. Any subjective views or

opinions that might be expressed

in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.
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Athermal Recovery Corrected (ARC) Damage Model
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The newly developed Athermal Recovery Corrected
(ARC) damage modell?l is adopted in order to

incorporate the effects of thermal spike.

* Cascade is approximated as a spherical core-

shell.

* Displacement Per Atom (DPA), point defect
production, is modeled by the atoms displaced

into the cool defect shell.

* Replace Per Atom (RPA), atomic mixing, is
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Reduced-Order Core-Shell Model

MD Implementation

Damage Fitting / Reproduction

SAND2019- 12055C |

Cu Nb
FCC | BCC
o o

@)
o 0O
o o LW
wn
-
@),
(@ I Vg
N OO
o <
- O
| . |
(@ I o\ |
O~
N
o O
a8 Y
T )
M
0
B £
= | =

Fitted Material Constants
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Calibration Data from Cascade

Atomic Displacements of 500
Proton Event
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* 100 full collision cascades are simulated at each 500 eV, | keV, 2 keV, 5 keV,
10 keV, 20 keV and 50 keV to generate the initial calibration data for ROAC.

* ARC DPA function is fitted to the point defect damage.

* ARC RPA function is fitted to the on-lattice atom mixing damage.

* Material constants are calculated for both FCC Cu and BCC Nb.

* ROAC is verified to successfully replicate cascades across the spectrum.
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Comparison of ROAC and Cascade Damage
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