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Research Background
• Hydrogen is an excellent, efficient, and clean energy carrier

• Metal hydrides draw interests due to an ideal combination of
volumetric and gravimetric densities

Main commercial challenges:

❑ Overall kinetics is sluggish

❑ Rate-limiting mechanisms are
not clear

❑ Phase transformation
mechanisms are not
understood

Source: https://ssl.toyota.com/mirai/stations.html
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Role of Atomistic Simulations

Continuum models require knowledges on

❑ Evolution of bulk properties such as Gibbs energy, lattice /

elastic constants, and diffusivities

❑ Evolution of surface / interface properties such as surface /

interface energies, surface segregation, diffusivities

❑ Reaction mechanisms

These can be obtained from atomistic simulations but not other

ways



Outline: Three Classes of Materials
❑ Diffusional hydride PdHX

➢ Bulk properties (Gibbs energy, lattice / elastic constants, diffusivities)

➢ Surface / interface properties (surface / interface energies, surface

segregation, diffusivities)

❑ Transformational hydride Mglix

➢ Bond order potential development

➢ Molecular dynamics simulation examples

❑ Complex hydride MgBxHy

➢ Interatomic potential development

➢ Molecular dynamics simulation examples



Molecular Dynamics (MD) Uncertainty Quantification

The total MD simulated time ttot is divided into N segments ti = iAt (i = 1, 2, ..., N, At = ttot/N). Each

segment gives a time averaged property Pi. The best estimate of the property is P = The
uncertainty of P can be quantified by the standard deviation defined as

— 15)2 
(N — 1)N

Alternatively, if Pi are obtained from different properties i = 1, 2, ..., n, then the uncertainty can also be
quantified by

p*)2

n

where P* is a knowledge based best estimate. For example, if are elastic constants C11 , C22 , C33
calculated for cubic crystals, P* = (C,--11+C22 + C33)/n, n = 3. If Di are diffusivities calculated at different
temperatures Ti (i = 1, 2, ..., n), then we can define Pi as ln(Di) and P* as ln(D0) — Q/kTi, with Do the pre-
exponential factor and Q the activation energy.



First Class: Diffusional Hydrides
Case Study: PdH),



Pak: Selection of Pd-H Potential
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PdH -liffusion Analysis Method
• Coordinates of N hydrogen atoms (i = 1, 2, ..., N) at t = jAt, j = 1, 2, ..., m (m = tmD/At) are ai(t) .

• m+1-k displacement measurements for hydrogen atom i over a kAt period: AN(kAt) = cci(jAt-
At+kAt) - cci(jAt-At) where j = 1, 2, ..., m+1-k.

• This allows calculations of hydrogen mean square displacement

• Mean square displacement is fitted to diffusivities D
N 
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tivm = 2.2 ns
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Table I. Measured and predicted activation energy Q and pre-exponential
factor Do as a function of phase and tem erature.

Authors Phase T (K) Q (eV) Do (V/ps)
Arons et al [2,3] R 110-300 0.210 ---

50-100 0.150 ---

Cornell et al [4] 13 195-300 0.228 ---

100-195 0.100 ---
Mazzolai et al [5] 0 250-270 0.210 ---

130-200 0.130 ---

Burger et al [6] R 230-320 0.210 ---
180-230 0.060 ---

Torrey et al [7] 13 >220 0.240 ---
<220 0.080 ---

Beg et al [15] 13 293-473 0.146 1.10x101

Seymour et al [16] 0 296-413 0.229 9.30x 10°

Davis et al [17] 13 300-400 0.228 3.00x101

Majorowski et al [18] i3 208-338 0.287 1.13 x 102

Bucur [19] a 278-323 0.054 2.48x 101

Holleck [20] a 533-913 0.055 2.94x101
Simmons et al [21] a 273-650 0.062 6.10x101

Maeda et al [22] a 773-1373 0.215 2.80x101

Hara et al [23] a 523-773 0.219 2.40x101

Pietrzak et al [24,25] a 273-473 0.230 2.20 x 101

Yoshihara et al [26] CC 273-350 0.231 2.91x 101

Zuchner [27] a 200-700 0.250 5.25x101
MD fitted Eqs.

(1) - (5)
a 300-600 —0.15 —3.5x 101

p (x=0.8) 600 —0.20 —7.8x 101

0 (x=0.8) 300 —0.14 —1.7x 101

X. W. Zhou, T. W. Heo, B. C. Wood, V. Stavila, S. Kang, and
M. D. Allendorf, Scr. Mater., 149, 103 (2018)

PdHx: Experimental Validation
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(a) x = 0.0
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z [001]

PdHx: Two Representative Jump Paths
Barrier calculated by nudged elastic band
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PdHx: Two-Barrier Model
(a) activation energy Q
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PdHx•• Two-Barrier Model at Surface
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P dHx: Finite-Temperature Elastic Constants
Convergence is extremely challenging

MD calculations: C ,m-D

e — (cri

2e j

Cast to cubic values

C11 MD + C22,MD C33,MD
Cii =

3
C44,MD C55,MD C66,MD

3
C + 12,MD C13,MD + C21,MD + C23,MD + C31,MD + C32,MD

C.- = C.. =
6

i 1,2,...,6

i= 1- 3

i= 4 - 6

, j>i,j=2-3

j>i,j=4-6



tMD = 100 ns (first 20 ns discarded)

(a) bulk modulus B
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• Experimental values pertain to
ultrasonic measurements

• MD pertains to mechanical testing
with continuous Pd-H debonding

• Significant difference between
static and dynamic elastic
constants is well known for
minerals (Int. J. Rock Mech. Sci.
Geomech. Abstr. 1988, 25, 479;
METABK 2003, 42, 37-39)
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P€11-1x: Simulation of Dynamic C44

Sinoidal loading in MD (t: thermal noise): 61 + c= cy •
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P€11-1),: Mechanical Testing of Young's Modulus
(a) original Pd
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P€11-1),: Surface Segregation
(a) atomic configuration
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Second Class: Transformational Hydrides
Case Study: MgH),



Mg Review of Potentials

CI Literature Mg-H EAM potential by
Ruda et al, ANALES DE LA
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Mg1-1,,: Analytical Bond Order Potential
Electronic

Tight-Binding Approximation

a and bon
integrals

Effective one-electron Model

Density
functional
theo

Many-body Quantum Theory

Coarse grain
and link
electronic
structure

to atom-centered
moments and
bondentered
interference

paths

Atom isti c

Kinetic Monte Carlo

introduce
lattice

Molecular Dynamics

Calculate
forces

Bond-Order Potentials

D. G. Pettifor et al, Mater. Sci. Eng. A, 365, 2 (2004)



MgHx: H Component
Hydrogen crystal to H2 gas H2+H—>H+H2 energy profiles
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Energy / volume trends of phases
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Third Class: Complex Hydrides
Case Study: MgBxHy



Mg13„Hy: Motivatioi.
Example Molecules

O LLNL is developing a phase field
model for (de)hydrogenation
kinetics of MgBxl-ly

O The phase field model requires
thermodynamic and kinetic
properties as inputs

O Many molecules may occur, and
many exhibit amorphous structures

challenging for DFT studies

O We will use MD to fill the gaps

1133118

[1361-1612-

113101-11012-

111711712-

B111-111r [B121-11212-

R3811812

[131111141



Mg(BH4)2<=>MgB2+4H2...

MgB12H12

Mg(B3H8)2

MgB10H10

MgE3),Hy

• • •

> Many molecules were observed in NMR,
XES, XAS, but not XRD amorphous

> DFT is not sufficient for amorphous
complex hydrides

Goal 1: Use MD to evaluate stabilities of
different intermediates

MgBxHy: Two Goals
A/B interface

Crystal A Crystal B

> Interfaces between crystalline solids are
often exhibit amorphous "soup"
containing different molecular species

Goal 2: Use MD to calculate interfacial
energies



MgB„Hy: "Molecular" Dynamics Simulations

Molecular Systems Li Computational systems contain

i) 0

molecules rather than atoms

CI Molecular forces equal sum of atomic
forces between molecules

CI In molecular dynamics simulations,
species are distinguished by combination
of molecules and atoms, not just atoms

Molecular and Atomic Forces



Mg13„Hy: Methods

O Energy comes from interactions
between atoms from different
(similar and dissimilar) molecules 

B6H6

O Perform DFT calculations of
energies of all pairs of molecules at
various distances and angles

O Fit pair potentials to DFT energies

O Implement the approach in
LAMMPS

Interactions between different
pairs of species are distinguished
by rotation

B12H12



Mg13,(1-1y: Status
O Completed the Mg, H2, BH4, MgH2, and B12H12 model

> 36 interactions (intra-molecule interactions not included): Mg-Mg(Mg-Mg),
Mg-H2(Mg-H), Mg-BH4(Mg-B,Mg-H), Mg-MgH2(Mg-Mg,Mg-H), Mg-
B12H12(Mg-B,Mg-H), H2-H2(H-H), H2-BH4(H-B,H-H), H2-MgH2(H-Mg,H-H),
H2-B12H12 (H-B ,H-H), BH4-BH4(B-B ,B-H,H-H), BH4-MgH2(B-Mg,B-H,H-
Mg,H-H), BH4-B12H12(B-B ,B-H,H-B ,H-H), MgH2-MgH2(Mg-Mg,Mg-H,H-
H), MgH2-B12H12(Mg-B ,Mg-H,H-B ,H-H),B12H12-B12H12(B-B ,B-H,H-H)

O Adding B3H8 and B10H10 results in 42 additional interactions

O Adding B11H14 results in 27 additional interactions

O Ultimately we plan to perform MD studies on mixture of Mg, H2, BH4,
MgH2, B12H12, B3H8, B10H10, and B11H14



MgBx Hy 
: Mg, H2, BH4, MgH2, and B121-112 Modeling

N( Completed DFT training sets on H2, Mg, MgH2,

BH4, B12H12 (> 700 cases)

N( Fitted all 36 interactions of these five molecules

0 . 2
Rotation Dependent Molecular Interaction .--,

t 0.1

B12H12

illiid
Mg

- 0 . 2

MgH2-Mg; a = O. °, /3 = O.

MgH2-Mg; a = 51.43 °, /3 = 51.43 °
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MgB),Hy: "Molecular" Dynamics Simulation



Highlights
LI Robust MD tools have been developed for various classes of materials

LI Lattice / elastic constants, Gibbs energy, surface / bulk diffusivities,
surface / interface energies, surface segregation, are calculated in the
entire temperature / composition space for PdHX

LI H diffusivity in PdHX can be described by a two-barrier model

LI Static shear elastic constants might be lower than ultrasonic elastic
constants for H-rich PdHX phase.

LI Our Mg-H potential enables MD to examine MgH2 formation mechanisms
and extract related properties

LI We have developed a "molecular" dynamics tool to study complex
hydrides such as Mg13„Hy



Bulk Lattice Constant and
Gibbs Free Energy

4.4

2, 4.2
ct9

- 3.9

3.8
0.0 0.2 0.4 0.6 0.8

hydrogen composition x in PdHX

a(x,T) = a300K a300K • a -(7' 300)

1.0

a300K = 3.8927 + 0.5360 - x - 0.1047 - X2

a = 0.00001574 + 0.00002680 - x

• Experimentally, a300K = 3.89 A, a =
0.000012 K-1 (Griessen, R.; Strohfeldt,
N.; Giessen, H. Nature Mater. 2016,
15, 311-317), match well predictions

• However, experimental lattice constant
of 4.09 A for PdH at 77 K (Schirber, J.
E.; Morosin, B. Phys. Rev. B 1975, 12,
117-118), does not match predictions.
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(a) composition across a sharp interface

Surface/Interface Energies
Interface Energy Model

(b) composition across a smooth interface
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Surface Diffusion

y [111]

MD Geometry
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Arrhenius Plots

x [224]
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Nudged Elastic Band Calculations
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M D reveals the same new diffusion mechanisms as bulk

•Low H-composition has a single diffusion barrier because it

is a dilute solution

•High H-composition has two diffusion barriers because the

local H-composition varies

•This was confirmed by the nudged elastic band calculations
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