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Research Background
* Hydrogen is an excellent, efficient, and clean energy carrier

* Metal hydrides draw interests due to an ideal combination of
volumetric and gravimetric densities

Main commercial challenges:

J Overall kinetics is sluggish

1 Rate-limiting mechanisms are
not clear

(J Phase transformation
mechanisms are not
understood

Source: https://ssl.toyota.com/mirai/stations.html



Hydrogen Materials Advanced @MARC

Research Consortium —

In situ characterization

HyMARC provides tools and foundational understanding of thermodynamics
and kinetics needed to improve solid-state hydrogen storage materials



Role of Atomistic Simulations

Continuum models require knowledges on

 Evolution of bulk properties such as Gibbs energy, lattice /
elastic constants, and diffusivities

1 Evolution of surface / interface properties such as surface /
interface energies, surface segregation, diffusivities

J Reaction mechanisms

These can be obtained from atomistic simulations but not other
ways



Outline: Three Classes of Materials
] Diffusional hydride PdH_

> Bulk properties (Gibbs energy, lattice / elastic constants, diffusivities)
» Surface / interface properties (surface / interface energies, surface
segregation, diffusivities)

 Transformational hydride MgH_

» Bond order potential development
» Molecular dynamics simulation examples

1 Complex hydride MgB H,

» Interatomic potential development
» Molecular dynamics simulation examples



Molecular Dynamics (MD) Uncertainty Quantification

The total MD simulated time t, is divided into N segments t;=1At (1=1, 2, ..., N, At =t,/N). Each
segment gives a time averaged property P;. The best estimate of the property is P = Y, P,/N. The
uncertainty of P can be quantified by the standard deviation defined as

Z?,=1(Pi T 13)2

0O —

(N —1)N
_ \
Alternatively, if P; are obtained from different properties 1= 1, 2, ..., n, then the uncertainty can also be
quantified by
\ n

where P* is a knowledge based best estimate. For example, if P; are elastic constants C;;, Cy5, C33
calculated for cubic crystals, P* = (C;;+C,, + C33)/n, n = 3. If D; are diffusivities calculated at different
temperatures T, (i=1, 2, ..., n), then we can define P; as In(D;) and P* as In(D,) — Q/kT;, with D, the pre-
exponential factor and Q the activation energy.




First Class: Diffusional Hydrides
Case Study: PdH_
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PdH_: Selection of Pd-H Potential
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(1 The key is to capture the miscibility gap
 This is a challenge for interatomic potentials
(1 Wolf et al’s potential captured it, but is lost

(d Our potential also captures it and is used

N. A. Al-Mufachi et al, Ren. Sus. Ener. Rev., 47, 540 (2015)



PdH_: Diffusion Analysis Method

Coordinates of N hydrogen atoms (i=1, 2, ..., N)att=jAt,j=1, 2, ..., m (m = t,,p/At) are ai(t) .

m+1-k displacement measurements for hydrogen atom i over a kAt period: Aq ;(kAt) = o;(jAt-
At+kAt) - au(jAt-At) where j=1, 2, ..., m+1-k.

This allows calculations of hydrogen mean square displacement MSD

Mean square displacement is fitted to diffusivities D
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PdH_: Bulk Diffusion

(b) hydrogen composition x = 0.7
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Statistical errors are negligible

MD results fall exactly on
smooth lines

The MD does not have time and
length scale issues

The Arrhenius relation is
satisfied at low H
concentrations

The In(D) vs. 1/T relation
becomes non-linear at high H
concentrations



Table 1.

Measured and predicted activation energy Q and pre-exponential
factor Do as a function of phase and temperature.
Authors Phase T(X) |Q(eV) | Do (A%ps)
Arons et al [2,3] B 110-300 | 0.210 -
50-100 | 0.150 ---
Cornell et al [4] B 195-300 | 0.228
100-195 | 0.100 ---
Mazzolai et al [5] B 250-270 | 0.210
130-200 | 0.130 ---
Burger et al [6] B 230-320 | 0.210
180-230 | 0.060 ---
Torrey et al [7] B >220 0.240 -—-
<220 0.080 ---
Beg et al [15] B 293-473 | 0.146 | 1.10x10"
Seymour et al [16] B 296-413 | 0.229 | 9.30x10°
Davis et al [17] B 300-400 | 0.228 | 3.00x10!
Majorowski et al [ 18] B 208-338 | 0.287 | 1.13x10?
Bucur [19] o 278-323 | 0.054 | 2.48x10!
Holleck [20] a 533-913 | 0.055 | 2.94x10!
Simmons et al [21] o 273-650 | 0.062 | 6.10x10!
Maeda et al [22] o 773-1373 | 0.215 | 2.80x10!
Hara et al [23] o 523-773 | 0.219 | 2.40x10!
Pietrzak et al [24,25] o 273-473 | 0.230 | 2.20x10!
Yoshihara et al [26] a 273-350 | 0.231 | 2.91x10!
Zuchner [27] a 200-700 | 0.250 | 5.25x10!
MD fitted Eqgs. o 300-600 | ~0.15 | ~3.5x10!
(1) -(5) B (x=0.8) | 600 ~0.20 | ~7.8x10!
B (x=0.8) 300 ~0.14 | ~1.7x10!

X. W. Zhou, T. W. Heo, B. C. Wood, V. Stavila, S. Kang, and

M. D. Allendorf, Scr. Mater., 149, 103 (2018)

PdH,: Experimental Validation
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PdH,_: Two Representative Jump Paths

Barrier calculated by nudged elastic band
(a) x=0.0 (b) x=10.6
Q~0.13eV

y[111]




PdH_: Two-Barrier Model

(a) activation energy Q
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PdH_: Two-Barrier Model at Surface
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Q = [slope| = 0.144 eV
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PdH_: Finite-Temperature Elastic Constants

Convergence 1s extremely challenging

<O'i ("' &, )> - <O'i (_ &, )>

MD calculations: C. = i=1,2,...,6

UaMD 28 ?
J

Cast to cubic values

C = Ciiup + C223,MD + C33.mp | i21-13
C. - Cagp + C553,MD + Co6, 1D | i_4_6
C;=C; = Ciomp + Cisup + Corup + Co3.mp + C3up + Cao,mp Cisij=2-3
C;=C; =0, ° j>i,j=4-6



tyip = 100 ns (first 20 ns discarded)

(a) bulk modulus B
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PdH._:

Elastic Constants

* Trends cannot be attributed to
potentials

* Experimental values pertain to
ultrasonic measurements

* MD pertains to mechanical testing
with continuous Pd-H debonding

 Significant difference between
static and dynamic elastic
constants is well known for
minerals (Int. J. Rock Mech. Sci.
Geomech. Abstr. 1988, 25, 479;
METABK 2003, 42, 37-39)

* R. B. Schwarz et al, Acta Mater. 54, 569 (2005)
* D. G. Safarik et al, Ultrasonics. 50, 155 (2010)
** Hsu, D. K.; Leisure, R. G. Phys. Rev. B. 20, 1339 (1979)



PdH_: Simulation of Dynamic C..

Sinoidal loading in MD (1. thermal noise): o, +:=C, ‘{gj,o tAg, Sin(zﬂ iﬂ
-

2 2
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PdH, : Mechanical Testing of Young’s Modulus

(a) original Pd (b) original PdH, ¢
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S. H. Goods and S. E. Guthrie, Scripta Metall. Mater. 26, 561 (1992)

d Young’s modulus of PdH, . seems to be lower than that of Pd

(1 The resolution in experiments is too low to conclude

0.010



PdH_: Surface Segregation

X

(a) atomic configuration
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Second Class: Transformational Hydrides
Case Study: MgH_



MgH._: Review of Potentials

4 Literature Mg-H EAM potential by
Ruda et al, ANALES DE LA
ASOCIACION QUIMICA
ARGENTINA, 84, 393 (1996)
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MgH_: Analytical Bond Order Potential

Electronic Atomistic

Tight-Binding Approximation 4 | Kinetic Monte Carlo

Coarse grain
and link
electronic
structure
to atom-centered
moments and
bond-centered
| interference

paths

Effective one-electron Model Molecular Dynamics

Many-body Quantum Theory D Bond-Order Potentials

D. G. Pettifor et al, Mater. Sci. Eng. A, 365, 2 (2004)
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Energy / volume trends of phases M g HX: Tl’anSfeI'ab ility

'0.6 T T T T T T T T T T T T T

+pl . : 7
0.8 2 Mg-hcp and MgH,-rutile growth simulations
-1.0F *p .

op4
-12

op5 - E;=05eV H/Mg=4,E;=0.1eV
‘ b y[010]  T=400K,R=1nm/ns

Cohesive energy E. (eV/atom)
S

16k ] R =5.0 nm/ns
1‘ y [0001] t=1.0ns A t=1ns
-1.8+ -
201 scaled DFT Mg \ooro;oo > b
221 ¥exp . oo oooc?o O‘bgﬁmoooo& oo?g‘boocnmo
oAl o w0y 000 @’ NGOV 0000 0Q FpaFo 00 oo
=2, S5 9 58 8 8000 .05 O 06 60 WBVOOP 000 00R0E 00085800006
TET?25R3L8YRYKTQ 00 00 FVRVVR0 00 ©0 006 0 CBO 0§ 00000
%’3 e %D T & HQZ2T 9 omFE ©0000900000000000000000000 0000
b= oA ST £ 0000000000000000090000060090600
%0 %" %0 o0 ) 000000000000000000000000000000
= = = 000000000000000000000000000000
oD ©0000000Q0000000806000000000000
= 000000200000000000000600000000
/_\50 — T — T — T T 0000000000000000000000080000060
g 45 | * +pl A 00000000000Q0000000006000000060
8 x 2 00 O0VOTADOTVRL000000VICOO0DAD
340+ p< 000060000000000000000000000000
I 35 *p3 0000000000000 00000000000000000
ﬁ i op4 ] 0000000000000000000006000000000
Q30+ opS ©000000000000000000000 000 20 00P
5 25 i i 000000000000002000 PVPOMOOVOOPO
s 069000000000000000000000000080
32+ i 0900000006 0008EAVO2 000 0OOAAA0 00
o) 000000000800006000600000000000
> 15 - - 009000000000000000000000000000 3
é 10 F —DFT - S 0000000000000000Q00000000000009 g
000000000000000000000000000000 &
g 5L 43"1’ E 000000009000000000000000000000 5
c 0 o 000000000000000000000000000000
[S) >} o ) [S) e — — (] (] 0000000000O0QCOQOOOQCOQOO0OOO0OCOOOOODOOODOO ":
-b?D br{)[) _E) Q% B b|] Ly)) % 9 % 0000000000000 00C0C0OD0COO0OOOCOQODOO0OODO0OO0 E
FfirEsiing o -
) T T —
2323 —  x [1120] 10A x [100]

~ 10A




Third Class: Complex Hydrides
Case Study: MgB H,



MgB H,: Motivation

Example Molecules

1 LLNL i1s developing a phase field
model for (de)hydrogenation
kinetics of MgB,H,

1 The phase field model requires
thermodynamic and kinetic
properties as iputs

1 Many molecules may occur, and
many exhibit amorphous structures
= challenging for DFT studies

d We will use MD to fill the gaps

BoH, ™  [BuHul™  BoHo™ B, H, -



MgB. H: Two Goals

Mg(BH,),>MgB,+4H,...
MgB,,H,,

Mg(B;Hj),

MgB,,H,,

MgB,H,

» Many molecules were observed in NMR,
XES, XAS, but not XRD = amorphous

» DFT is not sufficient for amorphous
complex hydrides

Goal 1: Use MD to evaluate stabilities of
different intermediates

A/B interface

Crystal A Crystal B

» Interfaces between crystalline solids are
often exhibit amorphous “soup”
containing different molecular species

Goal 2: Use MD to calculate interfacial
energies



MgB,H : “Molecular” Dynamics Simulations

1 Computational systems contain
molecules rather than atoms

Molecular Systems

)2 1 Molecular forces equal sum of atomic
forces between molecules

%%3 1 In molecular dynamics simulations,
species are distinguished by combination
of molecules and atoms, not just atoms

Molecular and Atomic Forces
f B12H12




MgB H,: Methods

1 Energy comes from interactions
between atoms from different
(similar and dissimilar) molecules

 Perform DFT calculations of
energies of all pairs of molecules at
various distances and angles

1 Fit pair potentials to DFT energies

1 Implement the approach in
LAMMPS

Interactions between different
pairs of species are distinguished
by rotation

» B12H12




MgbB H,: Status

d Completed the Mg, H,, BH,, MgH,, and B,,H,, model

» 36 interactions (intra-molecule interactions not included): Mg-Mg(Mg-Mg),
Mg-H,(Mg-H), Mg-BH,(Mg-B,Mg-H), Mg-MgH,(Mg-Mg,Mg-H), Mg-
B,,H,,(Mg-B,Mg-H), H,-H,(H-H), H,-BH,(H-B,H-H), H,-MgH,(H-Mg,H-H),
H,-B,,H,, (H-B,H-H), BH,-BH,(B-B,B-H,H-H), BH,-MgH,(B-Mg,B-H,H-
Mg,H-H), BH,-B,,H,,(B-B,B-H,H-B,H-H), MgH,-MgH,(Mg-Mg,Mg-H,H-
H), MgH,-B,,H,,(Mg-B,Mg-H ,H-B,H-H),B,,H,,-B,,H,,(B-B,B-H,H-H)

d Adding B;H, and B, H,, results in 42 additional interactions
4 Adding B,H,, results in 27 additional interactions

 Ultimately we plan to perform MD studies on mixture of Mg, H,, BH,,
MgH,, B,,H,,, BsHg, B;jH,(, and B} Hy,



MgB . H : Mg, H,, BH,, MgH,, and B,,H,, Modeling
—— MgH2-Mg; a=0.%, 8=0.°
v Completed DFT training sets on H,, Mg, MgH,,
BH,, B,,H,, (> 700 cases)

— MgH2-Mg; a =51.43° B=51.43°

—— BH4-Mg; a=0.°%8=0.°
v’ Fitted all 36 interactions of these five molecules

—— BH4-BH4; a=0.° 8=0.°
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MgB H : “Molecular” Dynamics Simulation




Highlights

Robust MD tools have been developed for various classes of materials

Lattice / elastic constants, Gibbs energy, surface / bulk diffusivities,
surface / interface energies, surface segregation, are calculated 1n the
entire temperature / composition space for PdHx

H diffusivity in PdH, can be described by a two-barrier model

Static shear elastic constants might be lower than ultrasonic elastic
constants for H-rich PdHx phase.

Our Mg-H potential enables MD to examine MgH> formation mechanisms
and extract related properties

We have developed a “molecular” dynamics tool to study complex
hydrides such as MgB H,
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a(x,T)= aspox +az00x -@-(T'=300)

az00x = 3.8927 +0.5360-x—0.1047 - x*
a = 0.00001574 +0.00002680 - x

* Experimentally, a3y, =3.89 A, o=
0.000012 K-! (Griessen, R.; Strohfeldt,
N.; Giessen, H. Nature Mater. 2016,
15,311-317), match well predictions

* However, experimental lattice constant
of 4.09 A for PdH at 77 K (Schirber, J.
E.; Morosin, B. Phys. Rev. B 1975, 12,
117-118), does not match predictions.
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Surface/Interface Energies
Interface Energy Model

(a) composition across a sharp interface (b) composition across a smooth interface

! t I B wi2 AGf(x,T)+Ee(x,T,fﬁ,xa,xﬁ)d B
= L 2. 1) "
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;c) energy density across m:r::::m {I: diffused-sharp interfacial energy difference AG , (xp , T )+ Ee (xﬁ ’ T , fﬁ X, xﬁ ) >
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5 ? w2 B g% B fg: volume fraction of § phase; x,, X5: compositions of o
w——— o — and 3 phases.
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Interfacial energy as a function of 8 volume fraction at T =300 K, x, = 0.1, x5 =0.9, and w =15 A.



Surface Diffusion
p = 3.3 ns
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MD reveals the same new diffusion mechanisms as bulk

*Low H-composition has a single diffusion barrier because it
is a dilute solution

*High H-composition has two diffusion barriers because the
local H-composition varies

*This was confirmed by the nudged elastic band calculations



