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ABSTRACT

The full implications of sharing genomic information are still
largely unknown. Understanding what attributes can be in-
ferred from available information is therefore a critical part
of genomic privacy and security. We show that compression
analytics are successful at classifying, or inferring, unknown
attributes of genomic sequences without the need for a prede-
fined feature set and with very little training data. Compres-
sion analytics perform best when predictable elements within
a sequence are local; however, long range dependencies are
ubiquitous in the human genome. We therefore consider a
variety of schemes to reorder genomic sequences so as to lo-
calize predictable elements and improve the performance of
compression analytics. Compression analytics on both native
and reordered sequences are shown to outperform more tradi-
tional, feature-based machine learning approaches.

Index Terms— Machine learning; Genomic privacy; Ge-
nomic Security, Genomic inference; Compression; Louvain

1. INTRODUCTION AND PREVIOUS WORK

Personalized genomics is transforming modern medical ther-
apies [[I]. Therefore, there is a strong motivation for the
collection, sharing, and analysis of genomic data. At the
same time, as our understanding of genomic data increases,
so too does the risk of revealing interdependent informa-
tion that may be considered sensitive due to known privacy
concerns or—perhaps more significantly—because the full
implications of sharing that information are still largely un-
known. Understanding what attributes can be inferred from
available information is therefore a critical part of genomic
privacy and security.

Several recent surveys provide good overviews on the
issues of genomic privacy and security [2, 3]. In terms
of privacy, the most commonly discussed risks include re-
identification, attribute inference, and revelation of familial
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relationships. Although there exist methods in place to pro-
tect against each of these privacy breaches, including data
access controls, data anonymization, and cryptographic tech-
niques, both real and demonstrated examples of successful
attacks have revealed weaknesses in existing privacy protec-
tion methods. For example, widely used data anonymization
techniques that explicitly remove identifying meta-data still
allow for an adversary to make linking attacks using avail-
able background information from, for example, genealogical
databases [4, 5, 6].

A second type of attack is based on inferences that can be
made directly from the rich background of publicly-available
genomic information [7, &, 9]. For example, pairwise cor-
relations, or linkage disequilibrium (LD), between genomic
variants can be used to infer unpublished genomic data from
published genomic data. These previous demonstrations of
genomic inference attacks have primarily exploited first and
second order statistics of genomic variants. More recently,
demonstrations using high-order statistics have proven much
more powerful [10, [11]. In these studies, the probability of
a genomic variant occurring in the genome is conditioned on
a contiguous set of the preceding k variants observed. This
model is called a k-th order Markov chain; although gener-
ally successful, there are serious limitations when applied to
genomic data. In particular, it is well known that long-range
dependencies far outside (both before and after) the preceding
k variants exist, which brings into question the effectiveness
of such a model.

Machine learning (ML) algorithms provide an alternative
approach to genomic inference [12, [13]. Standard ML algo-
rithms seek to identify—from a predetermined feature set—
the features most useful for defining a decision boundary for
a given prediction problem. While ML algorithms enable
the efficient use of high-dimensional feature sets without ex-
plicit knowledge of the relationships among the features, the
best features for a given prediction problem are generally not
known a priori. For genomic data, a standard feature set is
the normalized count of all subsequences of length £, that is,
the k-mer distribution, which again assumes that contiguous
sequences of k variants contain the predictive elements.

Herein, we develop an alternative, compression-based ap-
proach that capitalizes on the ability of compression algo-
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Fig. 1: Schematic of an individual’s genome with the SNVs
highlighted.

rithms to operate on raw data and discover the predictable
elements. This approach does not require a predetermined
feature set and has been shown to outperform genomic analy-
ses based on k-mer distributions [[14]. However, compression
algorithms perform best when predictable elements within a
sequence are local (we define what we mean by local in Sec-
tion 3.3). In many datasets, predictable elements are indeed
local and compression algorithms have shown the ability to
identify subtle features in complex datasets that are useful
for, among other prediction tasks, authorship and deception
detection [15]. However, in genomic sequences, where de-
pendencies can be long-ranged and non-sequential, this con-
straint is not necessarily satisfied. Therefore, we also propose
multiple reordering schemes to localize predictable elements,
thereby improving the performance of compression analytics
on genomic sequences.

Major contributions of our work include the development
of a general compression-based approach that can be applied
without expert-derived feature engineering, and that automat-
ically identifies the most predictable elements in data, partic-
ularly non-sequential data, for a given prediction task. Fur-
thermore, unlike other approaches that also try to discover
the features [16], compression algorithms are successful even
with very little training data. Section 2 provides background
on the necessary genomics foundations for understanding this
work. Sections 3H6 describe the method, data, results, and
conclusions.

2. GENOMICS FOUNDATIONS

DNA is a molecular sequence composed of base units referred
to as nucleotides, and each nucleotide contains one of four nu-
cleobases: cytosine (C), guanine (G), adenine (2), or thymine
(T). We can visualize an individual’s genome as a pair (one
from each parent) of DNA sequences of length N =~ 3.3
billion nucleotides. Most of the genome is identical across
the human population, but there are still millions of positions
where two or more variants, termed alleles, occur. These po-
sitions are referred to as Single Nucleotide Variants (SNVs)
and carry privacy-sensitive information [10, [17]. Understand-
ing the information that can be inferred from SN'Vs is there-
fore a critical part of genomic privacy and security.

The genomic information for an individual ¢ can be de-

scribed by the corresponding sequence of SNVs, denoted by

SEQ) = xfoi):vfoé) - xﬁ\)/p @))]
where @ = 1,2 represents a copy from each parent, and

M < N denotes the number of SNVs; see Fig. [I] for a
schematic. Most SNVs are bi-allelic, where the allele occur-
ring most (least) often is referred to as the major (minor) al-
lele; we limit our analysis to bi-allelic SN'Vs. The sequence of
SNVs can thus be represented as a sequence of binary random
variables, which have some useful properties that we discuss
next.

Let X, € {0, 1} be a random variable that represents the
major or minor allele at SNV position k. The probabilities
Pr(X; = 0) and Pr(X; = 1) then denote the major and
minor allele frequencies of SNV k. Because each SNV is
assumed bi-allelic, the joint probability function between two
SNVs k and [ takes only four values that can be expressed in
the following manner [[17]:

Pr(X,=0,X;=0)=(1—pg) 1 —p1) + Lliy
Pr(Xe =0,X;=1) = (1 — pr) pr — Lr,i
Pr(Xy =1,X; =0) = pi (1 — p1) — liy
Pr(Xy =1,X;=1) =prpi + Lk,

where, to simplify notation, 1 — py and p; denote the major
and minor allele frequencies of SNV k. The term /;; that
is present in each line above is referred to as the linkage dise-
quilibrium (LD) between SNVs k and [, and quantifies the de-
gree of statistical dependence between them, where £;,; = 0
if and only if X} and X; are independent. We note that the
LD depends on the allele frequency; a normalized version in-
dependent of allele frequency is usually defined (assuming

Pk, Pi 7£ 0)

Zk,l =le1/vV/ (1 = pe)pe (1 — 1) pr- )

Each normalized LD satisfies —1 < Zk,l < 1. In Section ,
we will apply the allele frequencies and normalized LD values
to define various reordering schemes for improved compres-
sion analytics.

3. METHODS

In their standard use cases, compression algorithms operate
on individual sequences, which means that the underlying
statistics have to be derived not only from the sequence it-
self, but from the components of the sequence leading up to
the current token that is being compressed. For compression
analytics, each sequence is compressed using the statistics of
training data, which forms a model. The size (in bits) of the
compressed sequence with respect to a given model is used to
determine how well the model describes, or predicts, the data,
where fewer bits means better prediction.



Arithmetic coding with prediction by partial matching
(PPM) is a compression algorithm well-suited for analyt-
ics [18, 19]. The key component here is that the better the
prediction, that is, the larger the probability, for some token
occurring in a sequence s, the better the compression for
s. There are a variety of ways to compute the probabilities
of some token occurring. PPM is a method for computing
the probabilities that takes into account the previous n to-
kens, referred to as a context of order n. Taking into account
the context can result in larger probabilities and better com-
pression. Importantly, PPM adaptively chooses the context
order n, up to a user—defined maximum (we use n = 10),
and therefore allows an analysis of the raw data at multiple
scales. In the following section, we formalize the application
of compression for analytics.

3.1. Compression for classification

Recall that the genomic information for an individual 7 is de-
scribed by a pair of SNV sequences defined by Eq. (1)). To
encode this information into a single sequence, we first let
each a:flk), .I'EQk) be one of the four nucleobases A, T, G, or C.

Each of the possible 10 combinations for the pair .Tglk) xﬁ) is

then encoded by a single token x; ;, where each x;  is one
of AA, AC/ CA, ..., TT. Thus, we can represent a sequence of
SNVs for individual 7 as

Si = Xi,1X4,2 " Xi,m» 3)

where we use m < M to denote that, in general, we don’t
have any individual’s full genomic information. We note that
the binary random variables discussed in Section 2 could be
used as an alternative encoding.

Now suppose we have labeled SNV sequences for ¢ indi-
viduals, each from exactly one of r < ¢ distinct populations.
We can assemble the SNV data into a training set, denoted
by S = {s1,s2,..., 54}, where each s; has corresponding
population label y;. Nextlet S; C S be the subset of SNV se-
quences for individuals that are a member of population 7, We
can train a PPM model 1; on subset S;; refer to Fig. 2. The
PPM model constitutes a set of conditional probability tables,
one for each observed context in S; of order n less than the
max order. A table for a given context contains all the predic-
tions for that context [[18]. By repeating this training process
for each population, we obtain a collection of PPM models.

Next suppose we have an unlabeled SNV sequence s; for
an individual from an unknown population. Let c(s;; ;) de-
note the score corresponding to the compressed size of se-
quence s; using PPM model p;. This process, which is re-
peated for each of the » PPM models, corresponds to the test-
ing process and is depicted by the right hand side of Fig. 2.

Finally, we predict the population label of individual ¢ as
the population whose PPM model compresses s; in the fewest
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Fig. 2: Diagram of the classification by compression process.

number of bits, that is,

Y; = arg min c(s;; p;), )
J= ey T

where we use Y; to represent both the population index and
the population. The intuition behind this scoring function
is that the PPM model that has been trained on sequences
most similar to s; will, in general, contain the best predic-
tion (larger conditional probabilities at higher context orders)
for the next token in s;, leading to better compression in fewer
bits.

3.2. Slice compression (SC) for classification

We next present a modified version of standard compression
based on the slice compression (SC) algorithm [20]. In the
normal use of compression analytics, the compression algo-
rithm is applied to the entire sequence s at once, producing
a global score in the form of the number of bits required to
describe s in its compressed state. In contrast, the objective
of SC is to identify local behavior within a sequence by con-
sidering the compression of subsequences, or slices, of s.

Similar to Section 3.1, we train a set of PPM models /1
for each subset S;; refer again to Fig. [J. However, instead of
considering c(s;; pt;) for individual ¢, we define a sequence of
SC scores as

i
z(ky pg) = p c(oi(k;w); pj), (5)

where o;(k; w) is a slice of s; beginning at index k and with
width w. By following the evolution of the SC scores across
the sequence, we can track the local behavior of the sequence
up to the resolution of the slice width, where we use w = 100
as the window width. The SC testing process can similarly be
depicted by Fig. 2Jif we replace s; and c(s;; 1) with o (k; w)
and z; (k; i), respectively.

Let Z;(11,) denote the average of z;(k; 11,) over its length;
we can then apply Eq. (4) with c(s;; ;) replaced by z; (1)
to classify the population of individual ¢ using the SC scores
with respect to the different population models.
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3.3. Reordering schemes

As mentioned in Section [I, compression algorithms rely on
predictable elements within a sequence to be local. More
specifically, they require that predictable elements are com-
pletely contained within subsequences of length less than the
maximum context order of the PPM algorithm. However,
genomic sequences can exhibit dependencies over lengths
larger than any reasonable context order. For example, Fig. 3
demonstrates that two SNVs separated by thousands of base-
pairs can be highly interdependent (|l7k7l| near one). There-
fore, we present multiple reordering schemes for localizing
predictable elements within each sequence, thereby improv-
ing the performance of compression analytics.

We define a reordering function a(k) = k, where k de-
notes the index of a SNV in its native order, and k denotes the
index of the same SNV within the reordered sequence. The
reordering functions o we consider will utilize the allele fre-
quencies and normalized LD; see Section 2. For the latter, we
define an m x m adjacency matrix £ = {Zkl} where Zk,l
is the normalized LD defined by Eq. (2). In order to limit
the reordering function to significant pairwise dependencies,
we set all normalized LD values whose absolute value is less
than some tolerance £* to zero. The corresponding matrix is
denoted by £*, which can be viewed as an adjacency matrix
for a weighted graph.

The reordering functions e we consider are as follows:

1. Reorder by allele frequency. Recall that p; denotes the
minor allele frequency of SNV k. For this case, « is de-
fined such that pi < p; 1 i.e., the reordered sequence
has the minor allele frequency in ascending order.

2. Reorder by community assignment of £*. Louvain
is an approach for identifying communities in large
scale networks based on a greedy optimization of the
graph modularity [21]. Let L denote the community
assigned to SNV k by Louvain. For this case, « is de-

fined such that L; < L; s i.e., the reordered sequence
is sorted by community assignment in ascending order.

3. Reorder to minimize the matrix bandwidth of £*. The
bandwidth of £* is defined as the number b such that
Uiy = 0if [k — | > b. The Reverse Cuthill-McKee
(RCM) algorithm [22] rearranges the nodes of a graph

to reduce the bandwidth of £*. In this case, (k) is the
row/column of SNV k in L£* after application of RCM.

We use symbol § to denote SNV sequence s in its reordered
configuration. Note that the reordering is non-unique, e.g.,
two or more SN'Vs may have the same minor allele frequency
or be assigned to the same community.

To incorporate reordering into compression analytics, the
approach discussed in Section B.1] is modified as follows.
During the training phase, we apply one of the proposed
reordering schemes to obtain fi;, the PPM model trained
on Sj, the set of reordered sequences belonging to popu-
lation j. In general, each population will have a different
reordering scheme. Now suppose we have an unlabeled SNV
sequence s;. The population label for s; is predicted using
Eq. @) with c(s;; 1) replaced by ¢(8;; f1;). Here each §; is
reordered according to the same reordering used to obtain
the corresponding /i;. An analogous modification is used to
incorporate the reordering scheme into the slice compression
(SC) technique discussed in Section 3.2,

4. DATA

The data used in this study are obtained from the 1000
Genomes Project [23]]. The stated goal of the 1000 Genomes
Project is to identify “genetic variants with frequencies of
at least 1% in the populations studied”. The final phase
(phase 3) of this project provides data for 2,504 individuals,
together with associated metadata including 26 population
groups, 5 superpopulations, and some familial relationships,
if available. We focus our analysis on » = 3 population
groups: (1) Chinese Dai in Xishuangbanna Prefecture (CDX);
(2) Finnish in Finland (FIN); and (3) Mexican ancestry in Los
Angeles, California (MXL). There are 93, 99, and 64 indi-
viduals from each of the CDX, FIN, and MXL population
groups, respectively. As mentioned previously, we filter our
data such that only bi-allellic SN'Vs are considered. For train-
ing purposes, we further require that the minor allele occur at
least once in our dataset. Finally we note that there is nothing
particular about the 3 populations considered, only that each
population belongs to a different superpopulation.

5. RESULTS

We seek to understand the impact of reordering on the local-
ity of dependent SN'Vs by visualizing the linkage disequilib-
rium (LD) matrices (Section 5.1)) and quantifying the model
compressibility (Section 5.2)) of both the native and reordered
SNV sequences. Then, in Section 5.3, we show that reorder-
ing to localize pairwise dependent SN'Vs improves the ability
of compression analytics to predict attributes that may be as-
sociated with privacy concerns, where here we use the popu-
lation attribute provided by our dataset.
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Fig. 4: Visualization of the LD matrix for m = 1000 SNVs
in the native and reordered sequences of the FIN population.
Reordering localizes dependent SN'Vs.

Rather than apply our algorithm to the full set of SNVs
in the genome, we non-specifically choose a subsequence of
m = 1000 SNVs to show that, given a limited amount of
non-specific information on a limited training set (we only
have data for the individuals in the 3 population groups de-
scribed in Section @), compression can discover elements that
are useful for predicting attributes. Furthermore, we choose
100 different subsequences of m = 1000 SNVs to show that
this result is general and does not depend on which subse-
quence is chosen. We emphasize that no a priori information
is used in selecting the subsequences nor in deriving a feature
set.

5.1. Visualizing reordering

Figure 4 shows the structure of the LD matrix for a subse-
quence of m = 1000 SNVs belonging to the FIN popula-
tion. We begin with the LD matrix for the native sequence of
SNVs. Non-zero values of Z; &, are seen distributed throughout
L and in particular far from the diagonal; these correspond to
the long-ranged dependencies that motivated the reordering
schemes introduced in Section (3.3 If instead dependencies
between SNVs wereAlocal, the LD matrix would constitute a
narrow band of high ¢}, ; values along the diagonal, represent-
ing local communities of highly dependent SNVs.

Next, we consider the structure of the corresponding LD
matrices for the SNV sequences reordered according to Lou-
vain, RCM, and allele frequency. For Louvain and RCM, the
reordering is computed from the thresholded adjacency ma-

CDX

FIN

MXL

1.00
0,954 o
0,901

@ 0.85

0.754 ¥,

p=-077 ©

0.70 1

ooe
p=-074 *

p=-0.78

0.85 0.90
1(5,5)

0.85 0.90
1(5,5)

095 0.80

0.85
1(5,5)

0.90

Fig. 5: Relationship between the model compressibility ratio
B; and the extent of reordering, as quantified by the distance
J (Sj,Sj). Reordering by RCM increases model compress-
ibility. Colors correspond to point densities.

trix with £* = 0.5; reordering by allele frequency is inde-
pendent of the LD matrix. It can be seen that all reordering
algorithms produce small, dense communities of highly de-
pendent SNVs, even those algorithms that don’t explicitly op-
erate on optimizing graph community structure. A reduction
in dimension and increase in density of the communities rep-
resent a localization of dependent elements, that is, we have
reduced the distance between two SNVs k and [ with high
Zkyl. The effects of localizing dependent elements within a
sequence on the compressibility and performance of the cor-
responding model are discussed next, where for illustration
purposes we focus on reordering using RCM with threshold
£* = 0.5. Results using the other reordering schemes are
qualitatively similar and are summarized in Table [L|.

5.2. Model compressibility

Recall from Section that §; C S denotes the set of SNV
sequences for individuals that are a member of population j.
If §; denotes the reordered sequences of the same individuals,
then

B; = c(Sj; i)/ e(Sy; 15) (6)

less than one indicates an increase in model compressibility
with reordering. There are multiple metrics for quantifying
the extent of reordering. The Lempel Ziv Jaccard Distance
(LZJD) [24] is a convenient information-theoretic metric for
quantifying the distance between the sequences before and
after reordering.

Figure 5] shows the model compressibility ratio 3; as a
function of the LZJD distance J(S;, S‘j) for populations j =
CDX, FIN, and MXL. Each marker is the result using a sub-
sequence of m = 1000 SNVs from the individuals in our
dataset, and we consider 100 such subsequences. For all pop-
ulations, the greater the reordering, as quantified by larger dis-
tances J(S;, S ), the more compressible the reordered model,
as quantified by lower 3;. The Pearson correlation coeffi-
cient, which measures the strength and direction of the linear
relationship between the two metrics, is also provided in the
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figure legends. Next, we show that increasing the local struc-
ture and compressibility of the sequences forming the PPM
models improves the performance of compression analytics.

5.3. Classification

To quantify classifier performance, we estimate the probabil-
ity that sequence s; with true label y; is correctly classified,
that is, Pr(Y; = y;), where Y; denotes the predicted label.
This probability for each population j can be approximated
by

1Y =y | yi =), (7

i=1

1

aj ~ =

where 1(A) is the indicator function, equal to 1 or 0 if event

A is true or false, and n; is the number of test sequences be-

longing to population j. In standard ML terminology, Eq. (7)

is equivalent to the class accuracy of our classifier. Similarly,
a4 denotes the analogous class accuracy after reordering.

We begin with results using the standard compression ap-
proach described in Section 3.1. Figure |6 (top) illustrates
class accuracy before and after incorporating the reordering
schemes. Results are obtained using a 3-fold cross valida-
tion on our dataset, where we train on the larger split. Each
marker corresponds to results for a sequence of m = 1000
SNVs, and we study the same 100 subsequences presented in
Fig. [5 Regardless of the sequence of SNVs chosen to train
a model, it can be seen that after reordering, the class accu-
racy increases for all populations, where it can be seen that
most points are above the diagonal, where a; > a;. We can

quantify the improvement A as the mean ratio of the perfor-
mance after reordering to the performance before reordering.
Reordering showed the greatest improvement for population
j = MXL, where A = 1.26; less significant improvements
are noted for populations CDX and FIN, where A = 1.08
and 1.07, respectively. However, MXL had the lowest initial
accuracies using the native sequences, where there is perhaps
the greatest potential for improvement.

We also quantify performance by calculating the accu-
racy and the average precision (AP) [25] across all popula-
tions; see Fig [ (bottom). To calculate the AP, we assign
each sequence s; a confidence score 'yi(l) that compares how
well each population model j; compresses s;, and assigns a
higher score to sequences where the difference between the
minimum score and the average of the remaining scores is
large. The confidence score is defined as follows:

1 L &
A = > clsispg) | —clsizpy),  ®)

r—1 4
J=1j#Y;

where ¢(s;; py;) is the minimum compression score; see
Eq. (4). We also consider assigning each sequence a score
based on the minimum compression score itself, that is,
fyi(2) = c¢(s;; 1y, ), where we note that lower scores are pre-
ferred when computing the average precision. The average
precision using v(*) and +(?) are denoted AP, and AP,, and
we can obtain analogous scores that account for the reorder-
ing. It can be seen that all three metrics indicate an increase
in performance with reordering.

Next, we apply SC for classification; see Section 3.2 Re-
sults are once again obtained using a 3-fold cross validation
on our dataset, where we train on the larger split. Figure [7]
illustrates some statistics of the SC scores belonging to the
FIN population for a subsequence of m = 1000 SNVs be-
fore (top) and after (bottom) reordering by RCM. Each color
corresponds to SC scores using a different population model
for the compression, where the mean of each is plotted (dark
line) along with the interquartile ranges (shaded regions).

Figure [7| (top) shows the result before reordering. The SC
scores with respect to the three population models are moder-
ately compressible, do not display any notable structure, and
are not that distinguishable from each other. Figure [7 (bot-
tom) shows the result after reordering. Note that the reorder-
ing schemes yield different reorderings for the different pop-
ulation models. Therefore it is not possible to compare the
SC scores at a given l%; however, it is still possible to compare
the SC scores over all l} which we do next. The SC scores
with respect to the three population models are separated into
distinguishable regions of high and low compressibility (com-
pared to before reordering). Furthermore the correct model
(FIN) has one small incompressible region, whereas the incor-
rect models (CDX and MXL) exhibit multiple and significant
incompressible regions. Because lower scores correspond to
better compression, for correct prediction of individual i we



3 Hcox
— Hrn
27 — Hmxc

=
ww
3 | M
o

3 Hcox
— A

= — Hmxt
N

0 200 400

600 800 1000

Fig. 7: SC scores as a function of SNV position for a subsequence of m = 1000 SNVs belonging to the FIN population before
(top) and after (bottom) reordering by RCM. Reordering increases distinguishability of the different population models.

require Z; (prN) < Zi(pepx) and Zi(uen) < Zi(pmxe); see
Section 3.2 For this particular subsequence, reordering in-
creases class accuracy from appy = 0.45 to apny = 0.72. We
note that the window size used in SC provides a local repre-
sentation of the data; alternative scoring functions exist that
take into account this local structure. We defer a more de-
tailed investigation of the local structure of the SC score to
future work.

Table [I] summarizes the total accuracy of the different
classifiers and reordering schemes, averaged across the 100
subsequences. For both the standard compression and SC ap-
proaches, reordering by RCM shows the greatest improve-
ment, followed by Louvain and allele frequency. Although
reordering by allele frequency yields the least improvement,
it has the benefit of not requiring the LD matrix computa-
tion, which can be expensive for large sequences. Finally, we
compare compression analytics to the Random Forest (RF)
classifier, a traditional feature-based ML algorithm [26, 27].
As mentioned in Section [I], feature-based ML algorithms re-
quire a predefined feature set; here we explore multiple fea-
ture sets, including the SNV sequence, where each SNV in
the sequence is a feature, and the k-mer histograms with k& =
1,10. Compression outperforms feature-based ML on all fea-
ture sets considered. We note that reordering should modify
the k-mer histogram for £ = 10; we find that it does not yield
an increase in the performance of RF.

6. CONCLUSIONS

Understanding what attributes can be inferred from available
genomic information is a critical part of genomic privacy and
security. We have demonstrated that compression analytics
are successful at discovering relevant features in genomic data
without the need for a predefined feature set and with very lit-
tle training data. Furthermore, we have modified compression
analytics to handle long range dependencies that are ubiqui-
tous in the human genome. Our approach outperformed a
more traditional feature-based machine learning method us-

Table 1: Summary of the total accuracy and accuracy im-
provement (A), if relevant. All reordering schemes consid-
ered improve accuracy of both standard compression and SC,
with RCM yielding the most significant improvements.

Method Accuracy A
RF (Native) 0.67 -
RF (k-mer histogram, k = 1) 0.55 -
RF (k-mer histogram, k£ = 10 ) 0.68 -
Compression (Native) 0.74 -
Compression (Louvain) 0.81 1.10
Compression (RCM) 0.82 1.11
Compression (Allele Frequency) 0.79 1.06
SC (Native) 0.70 -
SC (Louvain) 0.75 1.08
SC (RCM) 0.77 1.10
SC (Allele Frequency) 0.73 1.04

ing Random Forests.

Finally, we note that an interesting analogy exists between
genomic sequences, which can be thought of as code, and
other forms of code, such as computer code. Both genomic
and computer code can contain references that introduce long-
ranged dependencies and non-sequential functional interpre-
tations. Developing methods for identifying predictable el-
ements in genomic sequences is therefore useful beyond the
application considered here.
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