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4 ‘ Frequency mixing — from electronics to optics

Electronics - signal processing: modulators, phase detectors, frequency synthesizers,
heterodyne, etc.

Ideal Mixer
(Multiplier)

put __,omx = Flectronics component dimensions << wavelengths

Signal Signal

I

Local

Oscllator Variety of frequency conversion effects:
Second Harmonics Generation (SHG)
Third Harmonics Generation (THG)

Sum frequency Generation (SFG)

etc.

* Nonlinear optics

P(t) = o (XVE®) + xXPE2(t) + xPE}(¢) +...)

Phase matching (dispersion) is critical
Nonlinear crystal dimensions >> wavelengths




“Super” frequency mixing?

TH=

Can we see all of these mixings at the same time?

Require:

» Relaxed phase matching

» Strong nonlinear materials
» High field intensity



Nonlinear Photonic Metasurfaces
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Kauranen, M., and Zayats, A. V. Nature Photonics, 6(11), M .R. Shcherbakov, et. al. Nano Letters 14, 11,
737, (2012) 6488-6492, 2014
« Surface/Local Plasmon resonances Dimensions < wavelength

« Mie resonances l 1
Resonant enhancement of EM field Relaxed phase matching conditions




Extinction coefficient

Mie resonances in all-dielectric metasurfaces

Mie resonances in Dielectric spheres
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Mie resonances
* Low losses

* Much larger mode volume
* High nonlinear coefficient materials
(GaAs: ~200pm/V)

Baranov, D.G., et al. Optica 4.7, 814-825, 2017




Nonlinear dielectric

Third Harmonic Generation
centrosymmetric

M .R. Shcherbakov, et. al. Nano Letters 14,

11, 64886492, 2014
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metasurfaces —

Four-Wave Mixing High-Harmonic Generation
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Generation (10-8 W/W?2)

AlGaAs — Carletti, L., et al. Optics express 23.20, 26544-26550, 2015
Camacho-Morales, R., et al. Nano letters 16.11, 7191-7197, 2016
Kruk, S.et al. Nano Lett., 17 (6), pp 3914-3918, 2017

GaAs - Liu, S. et. al. Nano letters 16.9, 5426-5432, 2016



Multiple frequency mixing in dielectric metasurfaces
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Liu, S. et. al. Nano letters 16.9: 5426-5432, 2016

Fabrication of GaAs metasurface

SiO, - 300 nm
GaAs - 400 nm
(AlXGa1_x)203 - 450 nm

Diameter 400 nm
Period 840 nm

SEM image



GaAs-based metasurfaces

SiO, - 300 nm
GaAs - 400 nm
(AlXGa1_x)203 - 450 nm

Diameter 400 nm
Period 840 nm

Liu, S. et. al. Nano Reflectivity spectrum

letters 16.9: 5426-5432,
2016
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High nonlinear coefficient material
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Single beam experiment
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2nd 3rd - Ath harmonic generation spectra

Photon energy (eV)

13

SHG THG

FHG TPAPL

w, Power (mW)

40 35 30 25 20 1.5
. :OlomL@W%WNJ o
.6 { 0.0004K . .
_ 374 396 418
" |FHG 0, THG o,
' PL
400 600 800 1000
Wavelength (nm)
SHG power dependence
3 10 sHG o, 5 [SHGo,
= 5o - < | —Quadtari
> 0_6__|(:)it1adtarlc = Fi’l[Ja arg
@ 0.4} 80.1 A
2 0.2} 3
£ : , = ——
00553 8 1 2 3 45678

w, Power (mW)



Two-beam experiment
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Frequency mixing spectra
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Frequency mixing spectra
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Frequency mixing spectra
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absorption




Frequency mixing spectra

11 spectral peaks
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Frequency mixing spectra: six wave mixing

11 spectral peaks
325 3.00 275
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) ‘Temporal dynamics of frequency mixing
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§ ‘Temporal dynamics of frequency mixing
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THG SHG FWM (1) SFG SWM TPAPL FWM (2)

The even and odd order nonlinearities of GaAs enable our observation of
second-, third- and fourth-harmonic generation, sum-frequency generation,
two-photon absorption induced photoluminescence, four-wave mixing, and
six-wave mixing.

Liu, S.*, Vabishchevich, P. P.*, Vaskin, A., Reno, J. L., Keeler, G. A., Sinclair, M. B., ... & Brener, |.
Nature communications 9 (1), 2507



GaAs (100) lattice plane
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GaAs (100) single disk and metasurface emission patterns
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Goal: Redirection of the SHG emission
to zeroth diffraction order in GaAs
metasurfaces

second harmonic ntensity



SHG in GaAs for different orientations of the crystal, (111), (110)
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GaAs (111) metasurface: reflectance spectra
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. SHG in GaAs (111) metasurface
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» SHG in GaAs (111) metasurface: Fourier-space image
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. SHG in GaAs (111) metasurface: Fourier-space image

Power dependence for the
zeroth-order diffraction
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Comparison: Fourier-space images for metasurfaces with
s different crystallographic planes
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SHG in GaAs metasurfaces |
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Symmetry-broken metasurface:
High-Q resonances




Metasurface with broken symmetry design resonators:
3 IHigh-Q factor resonance

FDTD simulations
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‘ SHG in broken symmetry design metasurface

SHG intensity enhancement in the vicinity of the High Q resonance x300
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‘ Emission + All-dielectric Metasurfaces: Recent work
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Embedding Emitters in Metasurfaces
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Liu. et al. Nano Lett. 18 (11) p.6906-6914 (2018)



Embedding Emitters in Metasurfaces
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Light Emitting Metasurfaces: Quantum Dot emission
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PL spectrum, obtained when Fano resonance overlaps with the maxima of QD PL band, shows

~110-fold enhancement of the PL peak intensity in comparison with unpatterned sample.

Liu. et al. Nano Lett. 18 (11) p.6906-6914 (2018)



Emission with Out of Plane Dipole Modes: angular
dependence
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« | Controlling Far-Field Angular Spread

Measured
Fourier-space
images

Numerically
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By changing the array design, we can change the angular distribution
of the PL in the far-field

Liu. et al. Nano Lett. 18 (11) p.6906-6914 (2018)
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Conclusions

The even and odd order nonlinearities of GaAs enable the observation of
second-, third- and fourth-harmonic generation, sum-frequency
generation, two-photon absorption induced photoluminescence, four-
wave mixing, and six-wave mixing in GaAs semiconductor metasurfaces.

By changing the orientation of the GaAs crystal from (100) to (111) plane
we were able to redistribute the SHG generation to the zeroth diffraction
order.

By utilizing symmetry broken design of 1ll-V semiconductor metasurface
we were able to achieve 13 fold enhancement of the second-harmonic
generation.

By controlling the symmetry of the resonant modes in the Mie-resonant
metasurfaces made from semiconductor heterostructures containing
epitaxial guantum dots we were able to enhance the PL brightness by
two orders of magnitude.




