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Frequency mixing from electronics to optics

Electronics - signal processing: modulators, phase detectors, frequency synthesizers,
heterodyne, etc.

Input

Signal

Ideal Mixer

(Multiplier)

Local

Oscillator

• Nonlinear optics

Output

Signal
• Electronics component dimensions « wavelengths

800 nm

400 tlm
-

• 2a)

Variety of frequency conversion effects:
Second Harmonics Generation (SHG)
Third Harmonics Generation (THG)
Sum frequency Generation (SFG)
etc.

P(t) = Eo (x(1)E(t) + x(2) E2 (t) + x(3) E3 (t) + . . .).

Phase matching (dispersion) is critical

Nonlinear crystal dimensions » wavelengths
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"Super" frequency mixing?

''".\11.1h.. ?
•

Can we see all of these mixings at the same time?

Require:
• Relaxed phase matching
• Strong nonlinear materials
• High field intensity
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Nonlinear Photonic Metasurfaces
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Kauranen, M., and Zayats, A. V. Nature Photonics, 6(11),
737, (2012)

• Surface/Local Plasmon resonances
• Mie resonances

Resonant enhancement of EM field

Eco

M .R. Shcherbakov, et. al. Nano Letters 14, 11,
6488-6492,2014

Dimensions < wavelength

Relaxed phase matching conditions
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Mie resonances in all-dielectric metasurfaces

Mie resonances in Dielectric spheres
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Baranov, D.G., et al. Optica 4.7, 814-825, 2017

Mie resonances
• Low losses
• Much larger mode volume
• High nonlinear coefficient materials
(GaAs: -200pm/V)
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Nonlinear dielectric metasurfaces
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Third Harmonic Generation

centrosymmetric

Si
Ge

M .R. Shcherbakov, et. al. Nano Letters 14,
11, 6488-6492, 2014

Non-centrosymmetric

GaAs
AIGaAs

https://www.wikipedia.org
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Grinblat, G., et al, ACS Photonics
4, 2144-2149, 2017

Second Harmonic Generation (10-8 W/W2)
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Liu, Hanzhe, et al. Nature
Physics 14.10,1006, 2018

AIGaAs — Carletti, L., et al. Optics express 23.20, 26544-26550, 2015
Camacho-Morales, R., et al. Nano letters 16.11, 7191-7197, 2016
Kruk, S.et al. Nano Lett., 17 (6), pp 3914-3918, 2017
GaAs — Liu, S. et. al. Nano letters 16.9, 5426-5432, 2016

L. Carletti et al., ACS Photonics,
3(8), 1500-1507, 2016
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Fabrication of GaAs metasurface

E-beam
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Liu, S. et. al. Nano letters 16.9: 5426-5432, 2016
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GaAs-based metasurfaces
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• High nonlinear coefficient material
• Resonance enhancement of EM field



Single beam experiment

Ti:Sa amplifier, 800 nm
35 fs, lkHz, 7 mJ
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2nd, 3rd, A th harmonic generation spectra
Photon energy (eV)
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Two-beam experiment

Ti:Sa amplifier, 800 nm,
35 fs, 11a.7 mJ
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Frequency mixing spectra

Photon energy (eV)
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Frequency mixing spectra
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Frequency mixing spectra

11 peaks
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7 different nonlinear processes: 2nd, 3rd, 4th harmonics, sum frequency
generation, 4 wave-mixing, six-wave mixing, PL induced by two-photon
absorption
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Frequency mixing spectra

11 spectral peaks
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Frequency mixing spectra: six wave mixing
11 spectral peaks
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Temporal dynamics of frequency mixing
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Temporal dynamics of frequency mixing
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FHG THG SHG FWM (1) SFG SWM TPA PL FWM (2)

• The even and odd order nonlinearities of GaAs enable our observation of
second-, third- and fourth-harmonic generation, sum-frequency generation,
two-photon absorption induced photoluminescence, four-wave mixing, and
six-wave mixing.

Liu, S.*, Vabishchevich, P. P.*, Vaskin, A., Reno, J. L., Keeler, G. A., Sinclair, M. B., ... Et Brener, I.
Nature communications 9 (1), 2507
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GaAs (100) lattice plane
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GaAs (100) single disk and metasurface emission patterns
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Goal: Redirection of the SHG emission
to zeroth diffraction order in GaAs

metasurfaces /



26 SHG in GaAs for different orientations of the crystal, (111), (110)
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ICP etching I

GaAs (111) metasurface: reflectance spectra
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SHG in GaAs (111) metasurface
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SHG in GaAs (111) metasurface: Fourier-space image
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30 SHG in GaAs (111) metasurface: Fourier-space image
Power dependence for the
zeroth-order diffraction
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Comparison: Fourier-space images for metasurfaces with
31 different crystallographic planes
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SHG in GaAs metasurfaces
32
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Metasurface with broken symmetry design resonators:
High-Q factor resonance
FDTD simulations
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SHG in broken symmetry design metasurface
34

20000

SHG intensity enhancement in the vicinity of the High Q resonance x300

(6 
15000-

>,

c 10000a)

5000

litb•••••••18
•

0:9 1:0 1:1 1:2

Wavelength (vm)

1.0

0.8

a)
0.6 o

0.4 „_'1)

0.2

0.0
1 3

Fano resonance

0.98 nm
R

5()()
(r)

1.)
15)

1.0-

0.97 0.98 0.99 1.00 1.01

Wavelength ()Am)

-30% of pump
power is used

13-fold enhancement of SHG in Fano metasurface in comparison with the nanodisk metasurface

Vabishchevich, P., et al. ACS Photonics, 5 (5), pp 1685-1690, 2018



35 Outline

Nonlinear optics in GaAs metasurfaces
Frequency mixing
SHG with GaAs (111) metasurface into zeroth diffraction order

SHG in Fano metasurface

Emission engineering in semiconductor metasurfaces



Emission + All-dielectric Metasurfaces: Recent work

White-light emission
from silicon nanospheres
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Embedding Emitters in Metasurfaces

• GaAs AIGaAs

InAs QDs
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I Embedding Emitters in Metasurfaces
• GaAs • AIGaAs

• InAs QDs
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PL spectrum, obtained when Fano resonance overlaps with the maxima of QD PL band, shows
-110-fold enhancement of the PL peak intensity in comparison with unpatterned sample.
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Emission with Out of Plane Dipole Modes: angular
dependence
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41 Controlling Far-Field Angular Spread
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By changing the array design, we can change the angular distribution
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Conclusions

• The even and odd order nonlinearities of GaAs enable the observation of
second-, third- and fourth-harmonic generation, sum-frequency
generation, two-photon absorption induced photoluminescence, four-
wave mixing, and six-wave mixing in GaAs semiconductor metasurfaces.

• By changing the orientation of the GaAs crystal from (100) to (111) plane
we were able to redistribute the SHG generation to the zeroth diffraction
order.

• By utilizing symmetry broken design of III-V semiconductor metasurface
we were able to achieve 13 fold enhancement of the second-harmonic
generation.

• By controlling the symmetry of the resonant modes in the Mie-resonant
metasurfaces made from semiconductor heterostructures containing
epitaxial quantum dots we were able to enhance the PL brightness by
two orders of magnitude.


