This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.
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Experimental Configuration: high-p and low-T
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Representative data: high-p and low-T
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Wavelength dependence indicative of a metal

2600 €V, (b) Signal through
0.9} <— deuterium from _
2650 ] aluminum drive
’;- \ plate
2700 ; N 0.8f Reflected T
m £ 5 signal from
£ 2750 : E 0.7} deuterium _
[} ‘1 ® )
e e o aty iz | o
= 2800 | —— ?ﬂ?q‘?.ﬁ:"”? = 06 v
2850 £ N 0.5 g
| £
B S
= 0.5F Band gap -
2900 ©
/ ! | . < closes to
2950 < &= H = c o4f ~2.1 eV
0
450 500 550 600 650
Wavelength (nm) 0.3f
= 1
2 Laser and U 0.2}k
E notch filter
’Im 0.8t
= - n 0.1f .
'E 0.6 Wavelength
3 Wavelength and time 0 . L L '
6.4 fiducial . fiducials 2600 2700 2800 2900
450 500 550 600 650 Time (ns)

Wavelength (nm)

Knudson, Desjarlais et al, Science 348, 1455 (2015)



Insulator-metal transition at high-p and low-T

= Shock-ramp technique
enabled experimental access
to liquid-liquid, insulator-
metal transition (LL-IMT)

= Experiments above ~250 GPa
show clear evidence of
metallization of deuterium

= Best agreement with nonlocal
xc functionals

= More complex T-dependence

= Not consistent with semi-local
xc functional PBE

= Dissociation occurs at much too
low P
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Experimental configuration and data: low-p and high-T
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Quartz high precision standard Iaboratories
Pressure (TPa)
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Insulator-metal transition at low-p and high-T

= Recent high-precision
measurements of the deuterium
Hugoniot near the IMT

= Provides unique insight into the
dissociation process

= Results compared with various
xc functionals

= Nonlocal functionals better
describe the onset of dissociation

= These same functionals exhibit a
significantly wider P range for
dissociation to complete

= Provide means for evaluation of
future theoretical developments
and new xc functionals
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" The first experiments to address
the IMT in liquid hydrogen and
deuterium were performed by
Nellis, Weir, and Mitchell in the
1990’s
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" Gas-gun technique

= Multiple-shock compression at
successively higher P and T states

= Measured electrical conductivity

Temperature (1000 K)

= Set of experiments provides a
very good test of first-principles
methods

= Probes aregime in which both T

and p (or P) play an important role 50 100 150 200 250 300 350 400
Pressure (GPa)
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Reanalysis of inferred temperature states ) @"&.‘1""‘@
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Reanalysis of semiconducting model
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Determination of the peak state of the system

= P js experimentally constrained and does not depend upon the hydrogen/deuterium EOS
" |n this regime P depends much more strongly on p than T

" Chose to fix T, then varied p to match experimentally measured P

Kerley03 PBE DFI DF2
o ' o T 0 o o, o o, o ol

Experiment (2 cm)™! (GPa) (K) (g/cm’) (Qem)™! (g/em?) (Qem)™ (g/em’) (Qem)™!  (g/cm?)
SLDMS4-D, 0.71 93 2204 1.25 4989 1.397 1.99 1.249 0.30 1.222
SLDMS5-D; 77 121 2987 1.38 8919 1.534 4518 1.437 493 1.359
SLDMSS-D, 417 136 3397 1.44 9970 1.589 5461 1.514 3234 1.455
SLDMS6-H, 2.6 100 1978 0.64 3456 0.710 0.62 0.641 0.11 0.624
SLDMS13-H, 7.1 105 2093 0.66 4990 0.729 2.32 0.652 0.35 0.636
SLDMS7-H, 135 125 2567 0.70 9034 0.780 1546 0.722 16.2 0.683
SLDMS9-H, 313 125 2573 0.70 9034 0.781 1546 0.722 16.2 0.683
SLDMS12-H, 2380 142 2984 0.73 10410 0.816 5671 0.777 1693 0.737
SLDMS10-H, 1670 156 3310 0.76 11290 0.840 7061 0.807 3880 0.774
SLDMS11-H, 2000 183 3951 0.81 13180 0.881 8907 0.854 6551 0.827

-
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Predicted conductivity at the peak states

o VS Pressure
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Predicted energy gap at the peak states

. Energy gap vs Pressure
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Inconsistency of the PBE xc functional
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There appears to be a systematic trend in P

Pose < Pprr < Ppp

Pressure errors with respect to High-T, low-p dissociation along

Low-T, high-p dissociation above
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Conclusions

’ National
" Performed a reanalysis of the Nellis, Weir, and Mitchell experiments

* Corrected an inconsistency in the inferred T and p states and semiconducting model

" Performed a detailed comparison of the measured o with first-principles
density functional theory using various xc functionals

= Results found to be inconsistent with the semi-local xc functional PBE

" [nconsistency likely stems from P errors associated with the PBE xc functional that result
from premature dissociation

" Calculated P are too low at these T and p conditions

= Results found to be in better agreement with non-local vdW functionals

" Together with previous comparisons at high-T, low-p and low-T, high-p, these
results provide a consistent picture for the IMT over a wide T and p range

Knudson, Desjarlais et al, PRB 98, 174110 (2018)



