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Dynamic compression experiments on deuterium and their
implications for first-principles theory
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Outline
• Motivation

• Insulator-metal transition at
high-p and low-T

• Insulator-metal transition at
low-p and high-T

• Reanalysis of multiple-shock
conductivity (a) measurements
• Inconsistencies in inferred T and
semiconductor model used to
interpret the measured cy

• Comparison of a with various
exchange-correlation (xc)
functionals (PBE, DF1, DF2)

• Conclusions
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Experimental Configuration: high-p and low-T
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Representative data: high-p and low-T
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Wavelength dependence indicative of a metal
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Insulator-metal transition at high-p and low-T

• Shock-ramp technique
enabled experimental access
to liquid-liquid, insulator-
metal transition (LL-IMT)

• Experiments above —250 GPa
show clear evidence of
metallization of deuterium

• Best agreement with nonlocal
xc functionals
• More complex T-dependence

• Not consistent with semi-local
xc functional PBE
• Dissociation occurs at much too

low P
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Experimental configuration and data: low-p and high-T
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Quartz high precision standard

30

28

26

24

22

.5 200
ri) 18

f) 16
o

Pressure (TPa)
0.1 0.3 0.6

• • O 0

0.9 1.2

4 6 8 10 12 14 16 18 20
Particle Velocity (km/s)

• Nearly 300 Hugoniot points for quartz have been obtained between
1 and 15 Mbar

• A release model was developed using release measurements
obtained from TPX, and both -200 mg/cc and -100 mg/cc aerogel
and based on insight gained from QMD calculations
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Insulator-metal transition at low-p and high-T

• Recent high-precision
measurements of the deuterium
Hugoniot near the IMT
• Provides unique insight into the

dissociation process

• Results compared with various
xc functionals
• Nonlocal functionals better

describe the onset of dissociation

• These same functionals exhibit a
significantly wider P range for
dissociation to complete

• Provide means for evaluation of
future theoretical developments
and new xc functionals
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Insulator-metal transition at intermediate p and T

• The first experiments to address
the IMT in liquid hydrogen and
deuterium were performed by
Nellis, Weir, and Mitchell in the
1990's

• Gas-gun technique
• Multiple-shock compression at

successively higher P and T states

• Measured electrical conductivity

• Set of experiments provides a
very good test of first-principles
methods
• Probes a regime in which both T

and p (or P) play an important role
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Reanalysis of inferred temperature states

• Nellis et al used two different
methods to infer T and p
• Method 1: Hydrocode

simulation using Kerley EOS

• Method 2: lsentrope
calculation from first shock
state for Ross EOS
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Reanalysis of semiconducting model

• Nellis et al appealed to a simplified semi-
conducting model to infer an energy gap as a
function of p

a = ao exP[—Eg(p)12kB T]

• The limiting conductivity was taken to be a
free parameter
• This results in a negative energy gap for

p > 0.32 mol/cm3

• With the limiting conductivity taken from
experiment the result is more physical
• The gap closes at p — 0.37 mol/cm3
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Determination of the peak state of the system

• P is experimentally constrained and does not depend upon the hydrogen/deuterium EOS

• In this regime P depends much more strongly on p than T

• Chose to fix T, then varied p to match experimentally measured P
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Experiment

a
(E2 cm)-1

Keriey03 PBE DF1 DF2

P

(GPa)

T
(K) (g/cm3) (E2 cm)-1 (g/cm3) (E2 an)-1 (g/cm3) (E2 an)-1 (g/cm3)

SLDMS4-D2 0.71 93 2204 1.25 4989 1.397 1.99 1.249 0.30 1.222
SLDMS5-D2 77 121 2987 1.38 8919 1.534 4518 1.437 493 1.359
SLDMS8-D2 417 136 3397 1.44 9970 1.589 5461 1.514 3234 1.455
SLDMS6-H2 2.6 100 1978 0_64 3456 0.710 0.62 0.641 0.11 0.624
SLDMS 13-H2 7.1 105 2093 0.66 4990 0.729 2.32 0.652 0.35 0.636
SLDMS7-H2 135 125 25(57 0.70 9034 0.780 1546 0.722 16.2 0.683
SLDMS9-H2 313 125 2573 0.70 9034 0.781 1546 0.722 16.2 0.683
SLDMS12-H2 2380 142 2984 0_73 10410 0.816 5671 0.777 1693 0.737
SLDMS10-H2 1670 156 3310 0.76 11290 0.840 7061 0.807 3880 0.774
SLDMS 11-H2 2000 183 3951 0.81 13180 0.881 8907 0.854 6551 0.827
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Predicted conductivity at the peak states

a vs Pressure
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Predicted energy gap at the peak states
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Inconsistency of the PBE xc functional

• What if we fix P and p instead
of P and T?

• SLDMS13-H2 (105 GPa)
• Kerley EOS predicts

T = 2093 K p = 0.66 g/cm3

• Fix T and P

p = 0.729 g/cm3 cy = 4990 (Q cm)-1

• Fix P and p

T = 5800 K CT = 7500 (Q cm)-1

• Fix P and p = 0.689 g/cm3

T = 4200 K CT = 7600 (Q cm)-1

• Regardless of how one tries to
equate the experimental P, the
predicted cy is inconsistent with
the measured value
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There appears to be a systematic trend in P

PPBE < PDF1 < pDF2
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High-T, Iow-p dissociation along

the Principal Hugoniot
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Conclusions

■ Performed a reanalysis of the Nellis, Weir, and Mitchell experiments
■ Corrected an inconsistency in the inferred T and p states and semiconducting model

■ Performed a detailed comparison of the measured a with first-principles
density functional theory using various xc functionals
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■ Results found to be inconsistent with the semi-local xc functional PBE
■ Inconsistency likely stems from P errors associated with the PBE xc functional that result
from premature dissociation

■ Calculated P are too low at these T and p conditions

■ Results found to be in better agreement with non-local vdW functionals

■ Together with previous comparisons at high-T, low-p and low-T, high-p, these
results provide a consistent picture for the IMT over a wide T and p range

nudson, Desjarlais et al, PRB 98, 174110 (2018)


