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3 The sCO2 Brayton Cycle [I]
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4 I Comparison to Other Power Cycles [2]
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Critical Milestones in sCO2 R&D
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Commercially-relevant Pilot Systems
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7 I Echogen Power Systems — Akron, Ohio, USA [7,8]

• First commercial sCO2 Brayton power system

• Significant technical milestones including:

1. Transportable skid-mounted system

2. 7.3 MWe design, 3.1 MWe demonstrated

3. 16 MWth sCO2 recuperator (200 kW/K)

4. Validation of design and transient models



8 I STEP I 0 MWth Demonstration — San Antonio, Texas, USA [9]

• Largest indirect-fired sCO2 Brayton cycle

• Significant technical milestones including:

1. 16 MWth SwRI/GE turbine design

2. 700 °C 740H turbine stop/control valve

3. 715 °C 740H gas-fired heater

4. Scheduled for operation in 2021
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9 I NET Power 50 MWth Demonstration — La Porte,Texas, USA [10-13

• Largest sCO2 Brayton power system

• Significant technical milestones including:

1. 50 MWfr, Toshiba turbine

2. High pressure oxyfuel combustor

3. Alloy 617 diffusion bonded heat exchanger

4. First fire on 2018-05-30
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11 R&D to Reduce the Cost of Heat Exchangers
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1 2 I R&D to Increase the Reliability of Turbomachinery Systems
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1 3  Technoeconomic Studies for First Available MarIcets[22]

Levelized Cost of Energy Comparison—Unsubsidized Analysis [231
Certain Alternative Energy generation technologies are cost-competitive with conventional generation technologies under certain circumstances(11
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1 5 More to learn about sCO2 Research at SolarPACES 2019
Draft Program Overview SolarPACES 2019 (Sth August 2019)
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16 Future Conferences with an sCO2 R&D Focus

7th International sCO2 Power Cycles
Symposium — 2020

Tutorial Sessions: March 30, 2020

Conference: March 31-April 2, 2020

Turbo Expo
Tur• omac inery Technical Conference
& Exposition
resented by the ASME Inter e Institute

ExCeL London Convention Center, London, England

Conference: June 22 - 26, 2020

Exhibition: June 23 - 25, 2020

Submit Abstract
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19 More to learn about sCO2 Research at SolarPACES 2019
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LAZARD LAZARD'S LEVELIZED COST OF ENERGY ANALYSIS—VERSION 1 2.0

20  
Levelized Cost of Energy Comparison—Unsubsidized Analysis
Certain Alternative Energy generation technologies are cost-competitive with conventional generation technologies under certain circumstances(1)
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