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Development sCO2 Power Cycles
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Progress Toward Commercial Deployment of sCO2 Brayton Power Cycles



‘ The sCO2 Brayton Cycle [1]
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4 | Comparison to Other Power Cycles [2]
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Commercially-relevant Pilot Systems
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7 I Echogen Power Systems — Akron, Ohio, USA [7,8]

* First commercial sCO2 Brayton power system

* Significant technical milestones including:

1. Transportable skid-mounted system
2. 7.3 MW, design, 3.1 MW, demonstrated

3. 16 MW, sCO2 recuperator (200 kW /K)

4. Validation of design and transient models



s I STEP 10 MW, Demonstration — San Antonio, Texas, USA [9]

* Largest indirect-fired sCO2 Brayton cycle

* Significant technical milestones including:

1.

2.

16 MW, SwR1/GE turbine design
700 °C 740H turbine stop/control valve
715 °C 740H gas-fired heater

Scheduled for operation in 2021
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s | NET Power 50 MW, Demonstration — La Porte, Texas, USA [10-13] 2

* Largest sCOZ2 Brayton power system

* Significant technical milestones including:

1. 50 MW, Toshiba turbine
2. High pressure oxyfuel combustor
3. Alloy 617 diftusion bonded heat exchanger

4. First fire on 2018-05-30



Ongoing Research and Future Plans
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11 I R&D to Reduce the Cost of Heat Exchangers

Design [14,15]
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2 ‘ R&D to Increase the Reliability of Turbomachinery Systems

4 Bearings [17]
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Technoeconomic Studies for First Available Markets[22] (th

Levelized Cost of Energy Comparison—Unsubsidized Analysis [23]

Certain Alternative Energy generation technologies are cost-competitive with conventional generation technologies under certain circumstances!!

Solar PY—Rooftop Residential $160 _ $267
Solr PY—communty s« | <

Solar PY—Crystalline Utiity Scale ™ $40 I $46

Alternative Energy Solar PY—Thin Fiim Utiity Scale $36 I $44

Solar Thermal Tower with Storage $98 m $181
Fuel Cell $103 _ $152
Geothermal $71 _ $111
Gas Peaking $152 _ $208

$0 $50 $100 $150 $200 $250 $300 $350

Gas sCO2 Cycle <:> [Levelized Cost ($/mwh)|

|



More sCO?2 Learning Opportunities
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More to learn
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16 | Future Conferences with an sCO2 R&D Focus

7% International sCO, Power Cycles

Symposium — 2020 /\QML » Turbomachinery Technical Conference

& Exposition
Presented by the ASME Internz

Conference: June 22 — 26, 202
Exhibition: June 23 — 25, 2020

Tutorial Sessions: March 30, 2020

Conference: March 31-April 2, 2020
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L. AZARD LAZARD'S LEVELIZED GOST OF ENERGY ANALYSIS—VERSION 12.0

Levelized Cost of Energy Comparison—Unsubsidized Analysis

Certain Alternative Energy generation technologies are cost-competitive with conventional generation technologies under certain circumstances!!

Solar PV—Rooftop Residential $160 _ $267
o pt—sutopci g ke
Solar PY—Community $73 _ $145

Solar PY—Crystalline Utility Scale @ $40 . $46

Alternative Ener Solar Pv—Thin Fim Utility Scale $36 I $44

Solar Thermal Tower with Storage

Fuel Cell

Geothermal

Gas Peaking

Gas Combined Cycle $41 - $74

$0 $50 $100 $150 $200 $250 $300 $350

Levelized Cost ($/MWh)|
Sowrce: Lazard echimafes.

Mote: Here and throughout this presentation, unless otherwise indicated, the analysis assumes 80% debt at 8% interest rate and 40% equity at 12% cost Please see page fitled “Levelized Cost of Enemgy Comparison—Sensitivity to
Cost of Capital” for cost of capital sensifivities.

(1) Such observation does not take into acoount other factors that would also have a potentially significant effect on the results contained hersin, but have not been examined in the scope of this analysis. These additional factors,
ameng others, could include: import tariffs; capacity value vs. emergy value; stranded costs related to distributed generation or otheraise; network upgrade, transmission, congestion or other integraion-related costs; significant
permitiing or other development costs, unless othenwise noted; and costs of complying with various environmental regulations (2.g.. carbon emissions offsets or emissions control systems). This analysis also dees not address
potential social and environmental extemalities, including. for exampile, the social costs and rate consequences for thaese who cannot afford distribution generation solutions, as well as the long-term residual and societal
consequences of various conventional generation technologies that are difficult to measure (2.g., nuclear waste disposal, airbome pollutants, greenheouse gases, sic.).

2} Unless otherwise indicated herein, the low end represents a single-axis tracking system and the high end represents a fixed-tilt design.
{3) Represents the estimated implied midpoint of the LCOE of offshors wind, assuming a capital cost range of approximately 32 25 — 53,80 per watt
(4) Unless cthersise indicated, the analysis hersin does not reflect decommissioning costs or the potential economic impacts of federal loan guarantees or other subsidies.
(5) Represents the midpoint of the marginal cost of operating fully depreciated coal and nuclear facilifies, inclusive of decommissioning costs for nuclear faciliies. Analysis assumes that the salvage value for a decemmissioned coal
plant is equivalent to the decommissioning and site restoration costs. Inputs are derived from a benchmark of operating. fully depreciated coal and nuclear assets across the U.S. Capacity factors, fuel, vanable and fixed operating
L A ZA R D expenses are based on upper and lower quartile estimates derived from Lazard's research. Please see page titied “Levelized Cost of Energy Comparison—Altemative Energy wversus Marginal Cost of Selected Existing
Conventional Generation” for additional details.
Copyright 2018 Lazard [:1] Unless otherwise indicated, the analysis herein refiects age of Northern A lachian Upper Chio River Barge and Pittsburgh Seam Rail coal. High end incorporates 80% carbon capture and compression. Does not include

cost of transportation and storage. . . X . X X
This study has been prepared by Lazard for general informational purposes only, and it is not intended to be, and should not be construed as, financial or

other advice. Mo part of this material may be copied, photocopied or duplicated in any form by any means or redistributed without the prior consent of Lazard.




