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| Agenda

Obijectives

* Development of a scalable 2.0MWth CSP system using a ternary
chloride molten salt, with operational temperatures up to 740°C.

* Characterization of a high-temperature molten salt recetver system
that can operate efficiently & reliably.

Overview

* Gen 3 Liquid-Pathway Program

* Molten Salt Technology-Approach
* System Design

* System Analysis Results

Conclusions & Future work




| Transition to Gen 3 CSP Systems

* Limit of traditional solar-salt thermal stability is ~600 °C with ambient air as cover gas.

* Nitrate salt concentrating solar power (CSP) systems currently deployed are considered state-of
the art heat transfer fluids (HTFs)

* To achieve $15/kWhth HTFs and LCOE of 6¢/kWh, need technologies at higher temperatures
(e.g., 650 °C to 750 °C) with alternative salt chemistry composition.

Parameter Solar Salt
(Gen2)

Mass composition

Solidification Temp
(°C)

Stability Limit (°C)
Density (kg/m3)
Specific Heat (J/g-K)

Viscosity (cP)

Thermal Cond. (W/m-

K)

60% NaNO,
40% KNO,

238

600
1770 @ 500°C
1.53 @ 500°C
1.30 @ 500°C

0.54 @ 500°C

Ternary
MgCl,-KCl-
NaCl blend

426

>1418
1590 @ 700°C
1.1 @700°C
1.4@700°C

0.4 @700°C

MgCl,
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600
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500

400

300
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A X 0.7 0.6 0.5 0.4 0.3
KCl 0.9 0.8 . )
mass fraction

NaClJ

Mohan et al., Energy Conversion and Management 167 (2018)




Gen 3 Liquid-Pathway System

* 2.0MW, Pilot-scale CSP plant developed to acheive

thermodynamic performance for operation to 720 °C.

* Molten salt system HTF/TES with sCO, power block.

* 6 hours of TES with charging/discharging cycles.

* Established approaches for piping, pump, valve, and
heat exchanger design (including the recetver).
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* High energy & exergy efficiency with direct TES. | %
> Flexible dispatch because solar collection and power generation are U
decoupled. e
:"“

* Recognized and accepted by industry and financiers. Vertical turbine
salt pump.

Image courtesy
Flowserve.

Need molten salt system capable of temperatures above 720°C to achieve DOE 2020 SunShot Targets.
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| Gen 3 Liquid-Pathway Operation

Charging Operational Modes. Pilot-system operational modes
consist of:

Fill of the riser, downcommer & receiver with low-temp. ramp-up
Start-up and high-temperature ramp-up of systems and components
Steady operation

Drain operation of system high-level lines and receiver

Drain of all lower-level system lines

|dle operation of cold tank and remaining wet components
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Steady Operation

~
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Start-Up / High- ~ . “ High-Drain (Receiver,
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Ramp _ Evening Operation

(Runningfrom Storage)
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Low-Drain (All Remaining
Lines)
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Thermodynamic System Prediction Model

EES System Model

*Model considers 3 NPS SCHS80 pipe with 2 inches of insulation blanket.

* State properties calculated at inlets/outlets along both hot/cold legs of
pilot-scale plant.

* User-supplied inputs & calculation settings in EES diagram window,
lookup tables & parametric tables as for the solution configuration.

*Data from user input saved to and loaded from a file to simplify scenario
modeling without requiring multiple copies of the EES code.

*Model developed to be configurable to facilitate parametric studies
related to pump design, heat exchanger design, etc.




System Model

* EES System Model
> Tank Model — Well-insulated tank with a well-
mixed liquid and ullage gas systems at const. 5
psig
> Valve/Pump Models — Steady flow calculated
using the ISA S§75.01 equation for sizing valves
and pumps.

> Piping Model — Implemented as standard
quadratic head rise formula with fitting
coefficients derived from actual head-flow curves
estimations based on design requirements for a
desired head-flow curve.

b

* System Model Development

o 27 state points to evaluate calculated
thermodynamic temperatures, pressure and flow
rates.

> Approximations for laminar flow, and exclusion
of attemporation pump, chem. control, ullage gas
system and salt heat mixing tanks.

o Salt receiver 120 ft. above lower TES and power
block.
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‘ System Results

operating envelope is bound by minimum and maximum speed control of the recirculating throttle va
‘and 2400 RPM pump operating points.
s were determined to be respectively 181.6-165.9 ft. and 311.2-327 ft. for pump flow rates of 90-120 G

) suggest a reciculating throttle valve minimum Cv of 60 required to meet the operational envelope spa;

gest TDH values between 49.65-57.73 ft. and 93.19-101.3 ft. for 1800 and 2400 RPM operational poin
1 Cv of 60 was also determined for the hot-side throttle recirculation valve for the operational envelopg
rottle recirculation valves, the results suggest relatively high Cv values requiring minimal pressure drop

o pump operating points with minimal recirculation.
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| Receiver Model

Parametric analysis was performed for a simple tubular receiver with a single-pass design.
Receiver flux & efficiencies calculated for an estimated 2.56 m? aperture area based on SolTrace
0 Performed with the NSTTF heliostat field and the 120 ft. test section of the solar towet.

Model developed w/ 40 single-pass 0.5 NPS Sch. 10 tubes constructed of an H230 material.
Assessment performed to compare receiver performance between 2 molten salt chemistries

o 735 °C operation where flux calculated with respect to tube diameter and thermal convection losses.
Receiver sub-model to accept uniform heat flux & assess heating of vertical receiver tubes.
Receiver model considers panel with N #tubes to allow a mass flow rate and a pressure drop.

o Considers uniform heat flux & flow through the tubes with grey properties approximated for the tubes.
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Wind Speed [MPH]

| Receiver Results

Results indicate receiver peak flux increases for uniform flux distribution & tube geometry.

> Receiver efficiency sensitivity due to wind also increases.
Required peak flux for chloride salt found to increase with wind speed by 33.3% for an 85%
recetver efficiency, and 21.7% for a 95% recerver efficiency from a wind speed of 5 to 50 mph.
Required peak flux levels found higher by avg. 11.1%, though sensitivities found to be less for
efficiencies less than 90%, and greater for efficiencies greater than 93%

> For 95% receiver efficiency, peak flux was found to increase by 13.7% for a wind speed from 5 to 17 mph.
Recetver efficiency was found to be overall higher for the ternary flouride salt by an average of
1.2% than the ternary chloride salt, possibly due to higher £
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| Conclusions & Future Work

* System layout for 2-MWth molten-salt loop with EES thermodynamic system model
operational states.

* Two molten salt chemistries compared with respect to required flux & efficiencies to achieve
system design criteria including cold and hot tank temperatures of 500°C and 720°C.

* Results suggest non-linear variation with receiver diameter

oTernary chloride salt required an average 11.1% lower receiver flux with lower calculated receiver
efficiency compared to ternary fluoride salt.

* Sys. performance evaluated for cold/hot pumps & trespective recirculation throttling valves.

* Results suggest minimum Cv of 60 for cold/hot throttle recirculation valves for operational
pump speeds between 1800 and 2400 RPM.

* Future studies will include recetver flux distributions & transient operational modes.

* Future recetver model development will consider accepting SolTrace beam information
from SNL. NSTTF Heliostat field with transient contributions and 2D flux distributions.
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