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Motivation

* To develop a model providing a constitutive parameter characterizing the
underlying scale of microstructure for materials that have -
* an apparent scatter in tensile behavior, perhaps due to dimensional effects
e use in structural applications — as steels, aluminum, and titanium alloys
* undergone rapid transients in their fabrication
e anisotropic microstructures approaching the nanoscale

* Such materials are found processed through additive manufacturing (AM)
methods such as laser powder bed fusion (LPBF)

* The tensile behavior of 316L is of interest for pressure vessels
* test coupons are prepared from AM sheet printed to various thickness




Background

A model was proposed by J.W. Morris, Jr. (2007) at the ISOPE meeting in
Portugal to describe a softening factor c,, as modified in derivation from a Kocks-
Mecking (K-M) model that provides insight to the scale of microstructure
responsible for nanosteel mechanical behaviors

* In particular, a model to predict the amount of plasticity that can be obtained in a two-phase
structure maximizing the extent of work hardening by refining the microstructure towards
the nanoscale

* Several measurable parameters from tensile experiments are used to determine
a constitutive formulation for the softening factor c,

* plastic strain g, from the yield point to the instability

* tensile strengths o, and o, as formulated through the Considere criterion, i.e. the
subtangent method for determining the instability

* work-hardening rate ® that equals do/d¢




Softening factor c,

* Alinear form of the K-M relationship defines

®=0,-c,0 (1) ; ,
« The Considére criterion is 5 ° P

do/de = o/(1+¢) (2) E
* The instability is determined when 1 1

®, = [do/dg], = o, (3) true strain &

* The true strain € to the instability point is determined by evaluating the integral
from o, to o, (where 0,*= 0,/0,) as

e= [ (de/do)'do=[[O(o)]1do (4)
g,= (cp) ¥ In[1+ ¢y (1-0,%)] (5)
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Materials

e The mechanical behavior of 316L is
affected by the microstructure and
surface irregularities that dominate
thin cross-sections

 4”x2” sheets and 1.2”D cylinders are
printed using LPBF
* tensile specimens

* bars are cut using electro-discharge
machining (EDM) in the rolling (x-axis)
and build (z-axis) directions

* 0.060”D cylinders are machined
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Tensile tests

=

z-axis bars

* A quasi-static strain rate of 10~ st is used for all tests to failure.
* tensile bars are tested with surfaces in the as-deposited condition




Test results for AM 316L
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* Anisotropy and surface roughness affect the scatter in the AM data

* ©,:0, appears to scale with thickness, with greater ¢, along z-axis 7




Test results for wrought 316L
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* True stress-strain behavior: the proportional limit for yield strength o, is determined with R?= 0.98;
and the ultimate strength o, is located at the instability using the Considere subtangent construct. 9




Trend analysis
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* Thec, vs. g, plot shows that oo |
plasticity is enhanced for a
constant ¢* as ¢, decreases

* the c,-value is relative to the
alloy system

* The c, values for AM 316L |
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* The wrought material is |
different than AM as ¢, ~2 000 L
for o* ~0.3 C» coefficient
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AM microstructures

 The 316L behavior varies with
plate thickness — indicative of
surface roughness effects on
providing a continuous cross-
section and reduced plasticity

* The microstructure within the
overlapping melt zones is on the
same scale, independent of plate
thickness

* views are in cross-section
* interior features are submicron




Discussion

* The tensile bars and cylinders produce similar behaviors with similar cross-
section thicknesses —i.e. the specimen geometry has little effect

 However, the effects plate thickness coupled with of surface defects leads to
lower strength values and a distribution in c,-values for the AM material

* Mechanical anisotropy is seen between the roller direction (lower strength,
reduced plasticity, and higher c,) and build direction (greater strength, higher
plasticity, and smaller c)

* The intrinsic microstructure is consistent, apparently independent of AM plate
thickness

 The wrought material is fundamentally different than the LPBF sheet material in
its o* behavior
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Summary

* A modelis developed that includes ¢, 6, and 6, to define a softening coefficient
C, that reveals a scale of microstructure attributed to work hardening behavior
from the yield point to the instability

* J W Morris, Jr (2007) — based a K-M approach and the Considére criterion

 The application to metal AM provides results consistent with observed
mechanical behaviors, defect structure, and microstructure intrinsic to the LPBF
process.

* Aunique value of ~2.5 for ¢, independent of thickness, is converged upon for
the AM sheet material with o* ~0.5

for further information — see, e.g., A.F. Jankowski, et al., Inter. J. Mater. Res. (2019) in press
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