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Motivation

• To develop a model providing a constitutive parameter characterizing the
underlying scale of microstructure for materials that have —

• an apparent scatter in tensile behavior, perhaps due to dimensional effects
• use in structural applications — as steels, aluminum, and titanium alloys

• undergone rapid transients in their fabrication

• anisotropic microstructures approaching the nanoscale

• Such materials are found processed through additive manufacturing (AM)
methods such as laser powder bed fusion (LPBF)

• The tensile behavior of 316L is of interest for pressure vessels

• test coupons are prepared from AM sheet printed to various thickness
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Background

• A model was proposed by J.W. Morris, Jr. (2007) at the ISOPE meeting in
Portugal to describe a softening factor CI, as modified in derivation from a Kocks-
Mecking (K-M) model that provides insight to the scale of microstructure
responsible for nanosteel mechanical behaviors
• In particular, a model to predict the amount of plasticity that can be obtained in a two-phase

structure maximizing the extent of work hardening by refining the microstructure towards
the nanoscale

• Several measurable parameters from tensile experiments are used to determine
a constitutive formulation for the softening factor cb
• plastic strain El, from the yield point to the instability

• tensile strengths cyy and cyu as formulated through the Considère criterion, i.e. the
subtangent method for determining the instability

• work-hardening rate O that equals dcy/clz
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Softening factor cb

• A linear form of the K-M relationship defines

0 = 00 — coa

• The Considère criterion is

cla/dE = a/(1+E)

• The instability is determined when

Ou = [clo/dE]u = au

(1)

(2)

(3)
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true strain E

• The true strain E to the instability point is determined by evaluating the integral
from ay to au (where Gy*= ay/au) as

E = f (dE/dOdo= f [0(6)]-1'd6 (4)

Ep = (cb)-1*In[l + cb11— ay*)] (5)
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Materials

• The mechanical behavior of 316L is
affected by the microstructure and
surface irregularities that dominate
thin cross-sections

• 4"x2" sheets and 1.2"D cylinders are

printed using LPBF

• tensile specimens

bars are cut using electro-discharge

machining (EDM) in the rolling (x-axis)
and build (z-axis) directions

0.060"D cylinders are machined
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Tensile tests

z-axis bars x-axis bars

0.92"

0.06"

0 5"

• A quasi-static strain rate of 10-5 s-1 is used for all tests to failure.
• tensile bars are tested with surfaces in the as-deposited condition
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Test results for AM 316L
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• Anisotropy and surface roughness affect the scatter in the AM data

• cyy:cyu appears to scale with thickness, with greater El, along z-axis 7



Test results for wrought 316L

100
• Wrought 316L stock is

machined into tensile bars as
well as cylinders for
comparison with the AM test
results

• samples cut from plates at
random directions

• CYy:CTu appears to scale with
thickness as well

• cylindrical samples results are
similar to the thickest tensile
bars
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Data analysis
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• True stress-strain behavior: the proportional limit for yield strength say is determined with R2 = 0.98;
and the ultimate strength au is located at the instability using the Considère subtangent construct.
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Trend analysis

• The CI, vs. cp plot shows that
plasticity is enhanced for a

constant u* as cp decreases

• the cb-value is relative to the
alloy system

• The CI, values for AM 316L

converge to —2.5 for a cy* of
—0.5 as thickness increases

• The wrought material is
different than AM as CI, —2
for CY* —0.3
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AM microstructures

• The 316L behavior varies with
plate thickness — indicative of
surface roughness effects on
providing a continuous cross-
section and reduced plasticity

• The microstructure within the
overlapping melt zones is on the
same scale, independent of plate
thickness
• views are in cross-section

• interior features are submicron
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Discussion

• The tensile bars and cylinders produce similar behaviors with similar cross-
section thicknesses — i.e. the specimen geometry has little effect

• However, the effects plate thickness coupled with of surface defects leads to
lower strength values and a distribution in cb-values for the AM material

• Mechanical anisotropy is seen between the roller direction (lower strength,
reduced plasticity, and higher cb) and build direction (greater strength, higher
plasticity, and smaller CO

• The intrinsic microstructure is consistent, apparently independent of AM plate
thickness

• The wrought material is fundamentally different than the LPBF sheet material in
its u* behavior
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Summary

• A model is developed that includes cp, Gy and Gu to define a softening coefficient
cb that reveals a scale of microstructure attributed to work hardening behavior
from the yield point to the instability

• J W Morris, Jr (2007) — based a K-M approach and the Considère criterion

• The application to metal AM provides results consistent with observed
mechanical behaviors, defect structure, and microstructure intrinsic to the LPBF
process.

• A unique value of -2.5 for cb, independent of thickness, is converged upon for
the AM sheet material with G* -0.5

for further information — see, e.g., A.F. Jankowski, et al., Inter. J. Mater. Res. (2019) in press
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