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1 Multiple techniques ranging resolution and cooling rate scales
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What do all of these techniques have in common?

Chemical heterogeneities 

Cell walls
decorated w'
oxides

Matrix Interface Matrix

• Increased Fe (+ 9%)

• Increased Si

Increased Cr (+ 4%)
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I Outline

Focus areas 
1. Impact of surface finish on the initiation of local corrosion and

possible mitigation strategies.
• Surface roughness controls the susceptibility to local corrosion

initiation

2. Preferential corrosion attack at melt pool boundaries (MPBs).
• Solute depletion at MPBs leads to preferential corrosion along

them in concentrated oxidizing environments.
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Powder bed fusion 316L samples

wt.% C Cr Cu Fe Mn Mo N Nb Ni O P S Si PREN

PBF 316L
as-built

0.013 16.87 0.039 65.5 1.54 2.31 0.078 0.001 12.74 0.055 0.015 0.006 0.71 25.7

Samples were prepared using 316L
powder with a powder bed fusion
(PBF) technique.

Parameter Value
Laser power 110 W
Laser velocity 1400 mm/sec
Layer thickness 30 gm
Laser focus offset +1 mm
Average powder diameter 12 jam
Cover gas Argon

Pre-placed powder

Laser pattem turns 90 degrees every layer and the starting position
changes every layer. Identical laser scan pattern occurs every 4th layer.
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8 1 Experimental approach
Surface finishing procedures:
• As-printed (AP)
• Electro-polished (EP)

• 50% Phosphoric acid, 20% Sulfuric acid, 30% water.
• Tumble polished (TP)

• Fast cutting ceramic (Triangular) media.
• In processed laser polishing (IP)

• Contour build pattem.
• Passivation (P)

• Immersed in 45% nitric acid for 30 minutes.
• Grinding with SiC paper to 1200 grit (G)

Optical white light
profilometry and
SEM for surface
roughness.
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Surface images of various surface finishes
In process laser

polish (IP)As-printed (AP) Electro-polished (EP) Tumble polished (TP)
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Side
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10 'Roughness of various surface finishes Side orientation
In process laser

polish (IP)As-printed (AP) Electro-polished (EP) Tumble polished (TP)



11 I Average and range of Sa and Eb

Average surface roughness (Sa) Breakdown potential (EB)
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12 I Comparison between Sa and Eb
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Scatter plots of Eb with respect to roughness measurements Sa. Error
bars represent one standard deviation for all measurements.
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P
13 Besides roughness, what will be other controlling

factors of corrosion initiation?
As-printed

PrVITTI

Electro-polished

.

JD.

Microstructural differences.
Will tortuosity more accurately predict corrosion susceptibility?
• More accurate depiction of roughness.



P
14 EDS maps of AP Top surface showing oxide in,

between layers.

0-Ka



15 I Oxide formation on Underskin orientation

110 pm
EHT= 10.00 kV WD = 9.5 mm Signal A= BSD Width = 100.0 pm



Eb after removing oxides
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,71Surface finish conclusions

• Surface roughness is controlling the initiation of
pitting to the first order with good correlation
between Sa and Eb.

• EP increased the Eb and reduced the Sa for all
build orientations compared to AP.

• IP, TP, and passivation provide no significant
increase to Eb.

• Surface roughness/tortuosity effects dominate pit
initiation compared to the improvement from
oxides formed during processing. AP
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" I Outline

Focus areas 
1. Impact of surface finish on the initiation of local corrosion and

possible mitigation strategies.
• Surface roughness controls the susceptibility to local corrosion

initiation

2. Preferential corrosion attack at melt pool boundaries (MPBs).
• Solute depletion at MPBs leads to preferential corrosion along

them in concentrated oxidizing environments.



19 I Why we initially looked into melt pool boundary attack:
crevice corrosion of PBF 316L

Observed local corrosion at crevice sites, this is from the high porosity sample, but melt pool
boundary (MPB) attack was seen for both dense and porous samples under an alumina crevice former.



20 I Crevice corrosion of PBF 316L

Local corrosion at melt pool boundaries of AM material, primarily located in
deep crevice region (not center of tooth).

20



21 I Crevice corrosion of PBF 316L

Is there melt pool ("grain") fall out for SLM material?

Local corrosion at melt pool boundaries of AM material, primarily located in
deep crevice region (not center of tooth). Has been seen in other studies.



22 Crevice corrosion of PBF 316L

PBF 316L (Macatangay et al. 2018)

Is there melt pool ("grain") fall out for SLM material?

Local corrosion at melt pool boundaries of AM material, primarily located in
deep crevice region (not center of tooth). Has been seen in other studies.



23 Why are these MPBs showing preferential attack in
aggressive corrosion environments?

L

Composition? Solute depletion.

Local strains?

3 Are the boundaries decorated with oxides
causing preferred initiation?

4 Preferred grain orientation attack?
Impacts from epitaxial growth?

WD det mode HV
• 5.0 mm ETD SE 10.00 kV

mag
6 500 x

tift
0 *

HFW
39.4 pm

10 m

• MPB are raised (etch at slower rate) after electro-etching in nitric acid. This may suggest
it is enriched in Fe and/or depleted in Cr and Mo, based on Cr/Mo oxides being unstable
at high potentials.

• Where Cr/Mo is enriched (dislocation cell boundaries) there is preferential etching.



24 I PBF 316L samples
Samples taken from

this orientation

Build
(B)

Long
transverse (L)

wt.% C Cr Cu Fe Mn Mo N Nb Ni O P S Si
AM316L -
Dense

0.016 17.0 0.14 67.8 1.06 2.1 0.093 0.008 10.86 0.065 0.017 0.009 0.64

YS
(MPa)

UTS
(MPa)

Elongation to
failure (%)

Density
(g/mL)

Hardness
(B)

Charpy
Toughness (ft-lb)

AM316L -
Dense

430.1 575.0 61.3 7.94 92.3 79



EBSD prior to FIB of samples.
This side is melted into already built AM part.
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26 I Top FIB sample
DFTop

WD det
• 5.0 mm ETD

mode
SE

HV mag tilt
10.00 kV 6 500x 0°

HFW
39.4 pm

Red arrow indicates
suspected MPB.

7/12/19
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„ I Top FIB sample
AVIPB

Map data

HAADF MAG: 40.0kx HV: 200kV
200 nm

Map data

HAADF MAG: 40.0kx HV: 200kV

200 nm

Ni
Map data

HAADF MAG: 40.0kx HV: 200kV

200 nm 200 nmMap data

HAADF MAG: 40.0kx HV: 200kV
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28 MPB conclusions

• Solute (Cr/Mo) depletion is likely the reason
for MPB corrosion susceptibility.

• Minimal grain orientation change was shown
across MPBs, epitaxy across these boundaries
was very common.

• Few nanoscale oxide inclusions were found on
the MPBs.

• No localized strain associated with MPBs.

PBF crevice corrosion
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1 What features lower corrosion resistance of AMstainless steel? Melt pool interfaces Secondary phase
SLM 304L (Schaller et al. 2018) formation
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What else:
• Residual stress?
• Micro cracks?
• Non-metallic inclusions?



i
" General microstructure of PBF 316L

Along the edge.



33 1 EDS maps of AP Top surface showing oxide in
between layers. I
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M. Han, K.P. Lieb, E. Carpene, P. Schaaf, Laser—plume dynamics during excimer laser nitriding of iron, Journal of Applied Physics, 93 (2003) 5742-5749.10.1063/1.1563814
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Figure 6: Scatter plots of Eb with respect to roughness measurements, (a) Sa and (b) Sz.

Error bars represent one standard deviation for all measurements.

This is still only useful for the case of these surfaces. If the surface has curvature but does

not overlap itself (many other surfaces) then this wouldn't be picked up. I guess by

arc/chord a little but not entirely.
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Top FIB sample
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Top FIB sample
Composite image

,

MPB

Matrix component image

1000 nm field of view

0 0.2 0 4 0.6 0.8

Cr-Mn-S-Mo-Si-A1-O componeni
ima e

1000 nm field of view

0 0.2 0.4 0.6 0.8

The composite images suggest depletion of solute along this
MPB.
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1 STEM-EDS maps of another MPB

We think this is
where the MPB is for
this sample.

There is depletion of
Cr, Mo, Mn, Si here
and enrichment of Fe.

Also shown for
another MPB back
in May.

Map data 188
BF RAG: 40.0kx HV: 200kV

Map data 188 300 nm

BF MAG: 40.0kx HV: 200kV

M lata 188
BF MAG: 40.0kx HV: 200kV

N i
Map data 188 300 nm

BF MAG: 40.0kx HV: 200kV


