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CALIFORNIA DAILY ELECTRICAL CONSUMPTION AND
ELECTRICAL VEHICLE CHARGING HABITS
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Comparative CO2 emissions from ICEVs & BEVs

We compare like-functionality mid-size vehicles with a similar range

Current Day BEV:

kg-0O2 kg CO kWhr 
CO2 = 150 * 75 kWhr + 0.708 * 26 * 150,000 mi

kWhr kWhr 100 mi

CO2 = 11. 3 + 27.6 = — 39 tonnes CO2

Current Day ICEV (Hybrid EV):

g-0O2 1

2 m 

ga
CO2 = 11. 055 

k  

5 
* 150,000 mi

gal i

l

CO2 = ̂ 32 tonnes CO2

Assumptions:

• 2018 US average marginal emissions rate = 0.708 kg CO2/kWhr per EPA AVERT model

• Emissions associated with battery manufacture = 150 kg-0O2e/kWhr; 75 kWhr

battery; no replacement battery

• Energy requirements for BEV = 26 [KW-hr/100 mi] (Tesla Model 3 2018)

• Carbon intensity of gasoline = 11.055 kg-0O2/gal (GREET 2018)

• 2018 Camry Hybrid 5-cycle fuel economy = 52 mpg

• 150,000 mi lifetime —25-yr NHTSA survivability weighted estimate
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How might this change looking forward to 2050?

Future BEV:

kg-0O2 kg CO2 * 22  kWhr 
CO2 = 100 * 75 kWhr + 0.460

kWhr kWhr 100 mi
* 150,000 mi

CO2 = 7. 5 + 15.2 = 22.7 tonnes CO2

Future ICEV (HEV):

CO2 = 11. 055 
kg-C 

al

02 
* 75 

m 

gal 
* 150,000 mi

g 

CO2 = 22.1 tonnes CO2

Conclusion

• In the short-term in the US, BEVS offer no
CO2 emission benefits over HEVs (or even
41 mpg conventional ICES)

• Looking to the future, we can expect
approximate parity between the two
technologies

Assumptions:

• Future US average marginal emissions rate

= 0.460 kg CO2,/kWhr

• Emissions associated with battery

manufacture = 100 kg-0O2,/kWhr; 75 kWhr

battery; no replacement battery

• Energy requirements for BEV = 22 [KW-

hr/100 mi]

• Carbon intensity of gasoline = 11.055 kg-

CO2/gal (GREET 2018)

• 150,000 mi lifetime close to 25-yr NHTSA

survivability weighted estimate
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ENGINE EMISSION CONTROLS DRAMATICALLY DECREASE THE
IMPACT OF EXHAUST PARTICULATE MATTER ON AIR QUALITY
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Air Quality Expert Group report for the United Kingdom, 2019

https://uk-airdefra.gov.uk/assets/documents/reports/cat09/1907101151 20190709 Non Exhaust Emissions typeset Final.pdf

PM2.5

• Exhaust PM toxicity may be greater than
"wear" sources

• Continued PM reduction is desirable in
all categories

Engine exhaust

Road wear
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NITROGEN OXIDE AND UNBURNED HYDROCARBON
CONTRIBUTIONS FROM TRANSPORTATION ARE SIGNIFICANT

2018 emissions from EPA National Emission Inventory
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CRITICAL NEED TO IMPROVE EFFICIENCY WHILE BRINGING
ICE EMISSIONS (SOOT, NOX, UHC) TO "ZERO-IMPACT"

• Together we can facilitate the development of clean, efficient, low-cost engines
— Predictive spray, engine flows, and combustion is key
— Applies to all classes of engines

• Even with massive battery electric emergence, there will be 1 billion new ICEs
made between now and 2040 let's make these 1 billion ICEs better1

1 SAE Automotive International quotation of TULA President Scott Bailey
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SOOT-FREE, LOW TEMPERATURE COMBUSTION USING EGR AND FAST
MIXING WITH MIXING-CONTROLLED HEAT RELEASE (IN SPRAY CHAMBER)

No
Soot

OH Chemiluminescence
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[1.0]

15% 02
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10% 02

160

Lift-off increases with
increasing EGR

Pickett, SAE 2004-01-1399

• How to realize and optimize such
clean combustion in a realistic
engine?

Single, isolated fuel spray conditions: 
Ta: 1000 K
d: 50 µm

Fuel: #2 diesel

Lift-off

Heat-release ♦

ar S 000 ppm
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Adiabatic mixture flame temperature [K]



COLLABORATIVE RESEARCH THROUGH THE ENGINE COMBUSTION
NETWORK ACCELERATES CFD MODEL DEVELOPMENT

Approach

• Develop diesel and gasoline target conditions with
emphasis on CFD modeling shortcomings

• Comprehensive experimental and modeling
contributions

• Diesel Spray A, B, C, D

• Gasoline Spray G

• Results submitted to online archive (ecn.sandia.gov)
with fields (like geometry and uncertainty) specifically
tailored for CFD simulations

Impact

• Established in 2009, there are already 1400 citations of
the ECN data archive

• Most automotive industry (light- and heavy-duty) use
ECN archive to test their own CFD methods
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ENGINE COMBUSTION NETWORK

ECN formed in 2009
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IGNITION MECHANISM ANALYSIS FOR SPRAY A

—> Turbulence generates steep gradients and, hence, strong diffusion fluxes

12  190 ps ASOI  Turbulent cool flame wave
350 ps [x3]
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x 6
O
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Flamelet simulation

-Period of Chemical-
Initial Re ctions
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200 /Ls CH2O Diffusion
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Equivalence Ratio [—]

5

240 ps

290 ps
Turbulent Cool
Flame Wave

340 ps
see Dahms, Paczko, Skeen,
Pickett. ProCI 36(2), 2017

Effect:
a) Species & temperature diffusion into neighbored mixture triggers 1st-stage ignition
b) Continuous reactions & diffusion leads to cool flame "wave" propagation
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TRANSPORT OF COOL-FLAME SPECIES AND T CREATES BROAD
MIXTURES FOR SECOND-STAGE HIGH-T IGNITION

• CFD researchers showing cool flame
accelerating rich ignition:
— Gong (2014) & Pei (2015) (both using 3D
LES, homogenous reactor combustion)

— Krisman & Hawkes (2017), 2D DNS
— Borghesi (2018), temporally evolving 3D
DNS (65 million CPU-hrs)

n-dodecane
25 bar
Tam b = 960 K
35 species reduced
mechanism
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1'91.74.) Turbulent
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(1) Localized Lean
1"-Stage Ignition

Dahms (2017) conceptual model based
on full-chemistry flamelet analysis
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TRANSIENT SPRAY MIXTURE FRACTION MEASURED (NON-REACTING)
IN VAPORIZED REGION

• Apply custom pulse-burst laser

• Jet mixing characterized by large structures
shed to the side and re-entrained
— Larger residence time in hot mixtures

• Obvious target for high-fidelity LES studies
— verify accurate mixing field as a preliminary

step towards predicting ignition/combustion
— quantify variance, intermittency, scalar

gradients

150 kHz schlieren imaging

67 us
--weep

0 5 10 1/ 20 25 30 35% 40

Fuel
Parameter Quantity mixture

Frequency 100 kHz fraction

Burst duration 5 ms 0.2

Pulse width 4 — 8 ns

Wavelength 532 nm Ambient Gas 0.1
900 K

Pulse energy 15 mJ 60 bar

Polarization Horizontal 0% 02 0

Julien Manin et al., Sandia, 2017
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COMPARISON OF MEASURED OH AND FORMALDEHYDE CH2O VERSUS
SIMULATION

900 K: TUE, Flamelet Generated Manifold, OpenFOAM
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ACHIEVING SOOT-FREE, LOW-T COMBUSTION USING
DUCTED FUEL INJECTION

I= Liquid fuel
1 1 Vapor-fuel/charge-gas mixture

Autoignition zone
Products of rich combustion
Diffusion flame
Thermal NO production zone

Fuel-
injector tip

t Duct

Piston bowl rim

Ducted Fuel lnjection (DP)

CJ Mueller et al. 2017, Sandia
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Natural luminosity images

Without duct (i.e., conventlonal free-spray
combustion)

0 10 20 30 40 50 60 70 80 90

Axial Distance [mmj

Spray A with a duct — soot free!
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CRITICAL ISSUE FOR GDI: PREVENTING LIQUID IMPINGEMENT AND
MIXING IMPERFECTIONS

VOF simulation of internal flow

ECN4: courtesy Bizhan Befrui, Delphi

„„ 37° D

Plume direction

Full outer spray hal

37° drill Plume cone
angle angle

• Changes expected during injection:
— "Plume direction" angle relative to injector
— Individual plume "cone angle"

• Predicting plume direction, growth, and interaction is complex
OIHF COMBUSTIO



EFFECTS OF FUEL ON PLUME MOVEMENT FOR
SPRAY G (0.5 BAR AMBIENT FLASH BOILING)
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ARGONNE LES: EXPERIENCES A TOGGLING/COLLAPSE WITH
INCREASED PLUME CONE ANGLE
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AFTER CHOOSING PLUME CONE ANGLE CASE WITH THE BEST MATCH
TO EXPERIMENT GAS VELOCITY:

■ Nice agreement with measured liquid velocity

■ Plume center moves towards injector axis during injection

■ Plume center measured with DBI extinction imaging also consistent
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COUPLING EXPERIMENTAL AND MODELING EFFORTS HOLDS
POTENTIAL TO OVERCOME EMISSIONS CHALLENGES FOR ICEs

■ Diesel:
— ECN experiments and simulations (even DNS) suggest important cool-flame
transport as key to turbulence chemistry interaction

— Soot-free combustion with control is possible
■ Gasoline:
— Interaction between plumes must be predicted to minimize wall impingement
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• Questions?


