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Importance of Flaws in Additive Manufacturing

*Additive manufacturing is known to have a variety of
internal flaws

* State of the art equipment and manufacturing processes reduce
these flaws, but they are ever present

* This results in high part rejection and/or avoidance of the
technology

*Need alteration in paradigm: Consider a flaw tolerant
approach

* To do so we need to understand what parameters will be a
threshold for acceptance/rejection

* Potential Rejection Parameters
¢ Flaw Size
¢ Flaw Shape
* Flaw Density/Proximity

* Flaw Location

* Once threshold parameters are determined, use non-
destructive testing to detect the flaws
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Study Approach: Inclusion of Intentional Flaws

* Design an exemplar component
with known failure region

* Add large geometrical flaws
which will overshadow the
effects of uncontrolled flaws
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Materials

3161, Stainless Steel

* Chosen for high dutility

* Commonly used in AM

* Build Condition:
* Printer — Renshaw AM 400
¢ Laser Power — 200 W
* Hatch Spacing — 60 pm

AlSi110Mg

* Common casting alloy and gaining
popularity in AM

*Usually used in Stress-relief-annealed

condition
* Majority of the work here is ‘as-printed’

*Build Condition 1:
* Printer — EOS M290
* Laser Power — 370 W
* Hatch Spacing — 190 pm

*Build Condition 2:
* Printer — EOS M290
* Laser Power — 185 W
* Hatch Spacing — 90 um




Material Characterization

* Need baseline material characterization
before inclusion of flaws

* Testing performed on coupons adjacent to
exemplar components on the build plate

* Experiments included:
* Tensile testing
* Compression testing

* Practure toughness
¢ Charpy impact testing
* Computed Tomography (CT)

* Metallurgy/EBSD 700
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Mechanical Testing Method

* Load in uniaxial tension until failure
* Displacement control at a rate of 50 um/s

* Use 1in situ non-contact digital
extensometery

* Post-process using full field digital image
correlation
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Stainless Steel 316L - Geometric Flaw Dependence

* Force/displacement curves show a significant
amount of strain hardening

* Ductile dimples observed in fractography
* Pop-in event from quarter crack rupture

* Ductility and load closely follow area reduction

Geometric Peak Load | Max Disp.
Feature (%) (%)
Pristine 100.0 100 100
Internal Void 99.6 100 94
Through Hole  96.1 89 75
Quarter Crack 75.0 73 73
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AlSilOMg - Geometric Flaw Dependence

* Minimal strain hardening
* No signs of ductile dimples

* Adding a flaw (regardless of area)
significantly weakens the part

Geometric Area | Peak Load | Max Disp.
Feature (%) (&) (%)
100

Pristine 100.0 100
Internal Void 99.6 77 47
Through Hole ~ 96.1 56 23
Quarter Crack 75.0 67 38
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Stress-Relief Annealing of AISilOMg

* Stress-relief annealing heat treatment breaks
down silicon cellular network, increases
ductility

* Material behavior transitions from brittle-like
to ductile

* Flaw dependence begins to transition from
geometry to cross-sectional area dependent
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o | Bulk Porosity in Exemplar Components
Recommended Power
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Bulk Porosity Effect on Mechanical Properties

* Compare mechanical results to a
known decrease in porosity on tensile

samples of eight AlSi10Mg build plates

* Porosity increase due to powder re-use in

subsequent build plates

* Strongest correlation: Ductility and

Porosity

Increasing Poros

A

k

3 4 5 6
Strain (%)

Build A
Build B
BuildC
Build D
Build E
Build F
Build G
Build H

ity.

10

Ductility (% Strain)

Build A
Build B
Build C
Build D
Build E 4
Build F
Build G
Build H .
y = -120.8x + 8.435, R% = 0.794
- — —¢,=9.58,n=23.96

#<qoOxe®*0

0

0.005

0.01

0.015

0.02 0.025 0.03 0.035 0.04 0.045 0.05
Volume Porosity



Reduction of Necking

* As part density decreases, ratio of uniform
elongation to ductility approaches 1
* Indicates no necking of parts

* Attributed to transition in failure type from void
nucleation, coalescence, and growth to coalescence
of small voids
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Conclusions

1. Inherent material ductility matters to flaw sensitivity in AM parts |

1. Ductile materials show dependence on area

2. Brittle materials show a dependence on flaw shape (stress concentration)

2. A high concentration of small pores can dominate behavior over a single, large

flaw

3. Ductility and failure type can be predicted by the porosity levels
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Damage Tolerant Approach

Assume all AM components have flaws

Which flaws matter?

Identity flaw types
. Cracks
. Voids
’ Bulk porosity
’ Microstructure-based flaws
1. Print intentional flaws of varying sizes and types

2. Predict critical flaw sizes in different regions for each flaw type

3. Non destructively inspect each component for critical flaws
. Critical flaw size is now defined for each region of the part.

FE model including flaw with
microstructure



Quarter Crack Failure
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Size Effect
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2 | Comparison of Build Plate Mechanical Properties

* Decrease in sample density (increase in bulk porosity) generally equates to a
decrease in mechanical properties
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2 | Data Fitting Density to Mechanical Results

* Perform linear regression analysis using two fitting methods
* Linear Fit: P = m(1 — p) — P,
* Power Fit: P = Py(1 — p)™

* Where P is the mechanical property of interest, Py is the fully dense property, p is the
porosity, and m, n are fitting constants.

*  (Coefficient of determination:
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24 | Fracture Surface Correlation

Measured Predict fracture location and properties
Fracture A A . = Tensile Results
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* Tested/couple data for 85 A-size tensile bars.

* Can we predict fracture location?

* Can we predict ductility, strength, etc?
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