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Metamaterials and Metasurfaces

Man-made “atoms” : Metamaterials
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Neshev & Aharonovich, Light : Science & Applications 7
(58), 2018.

John Pendry, Neils Bohr Lecture, Copenhagen 2010

The constituent units need to be much smaller than the wavelength. Metasurfaces are
planar (2D) equivalents of metamaterials.



The All-Dielectric Approach: Mie modes
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For dielectric particles, the polarizabilities of the 1
electric and magnetic dipole resonances are
comparable at optical frequencies 0 . \ . .
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This is not the case for metallic resonators at optical A (nm)

frequencies because of metal losses Optics Express 21, 26285 (2013) 3




Metasurfaces based on Resonant Mie Modes

Magnetic Response Nonlinear Optics Tailoring Linear Transmission
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Hybrid Dielectric Metasurfaces : Integration of Mie modes with intersubband transitions ! 4



Hybrid Mie Metasurface : A Coupled System 05| e
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The strength of light-matter interaction depends on :

1. Transition dipole moment of intersubband transitions and
number of electrons inside the cavity.

2. Field enhancement of the photonic mode 5 10 15 20 25
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Fabrication of a Hybrid Metasurface
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Experimental Demonstration of Strong Light-Matter

Interactions

No coupling : Linear scaling
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The strength of light matter interactions can be engineered by engineering heterostructure!




Tailoring Strong Light-Matter Interactions using Different
Mie modes

— R/h =0.42 and o = Q°
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Since different Mie modes have different mode volumes and field enhancements, we can modify light-
matter interaction by modifying the resonator (without modifying the heterostructure) !




Experimental Demonstration of Strong Light-Matter

Interactions

Reflectance

Magnetic Dipole

65 70 75
Frequency (THz)

Electric Dipole

7

Relectance
O o o —
N w AN (@)

O
—

65 70 5 80
Frequency (THz)

The magnetic dipole modes show stronger light-matter interaction !

10



Nonlinear Metasurface Approaches

Plasmonic Metasurface All Dielectric Metasurface IST-Plasmonic Metasurface
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Comparison of SHG efficiencies
(normalized by spot size)

Nonlinear Metasurface Approaches Maximum Normalized Conversion
Efficiency

(W/W2/cm?2)

IST + Plasmonic Resonator + Metal 1746 ( Experimental)
Backplane + Etching of QWs

IST+ Leaky Mode Resonance 101 ( Experimental)
IST + Plasmonic Resonator 29 ( Experimental)
GaAs/AlGaAs nonlinear Mie metasurfaces 0.05 ( Experimental)

IST + Mie Resonator (Not optimized!) 3250 (14 micron spot size)
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Generation of Resonant [1(?) using Intersubband Transitions Ry | “Lodaames
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Second Harmonic Generation ( SHG) : Simulations

« Los Alamos

Second Harmonic Generation Efficiency of Metasurface
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Extremely high efficiencies can be obtained. Maximum SHG is at shorter wavelengths due to larger field
enhancements | 14



Second Harmonic Generation ( SHG) : Experimental Data

Linear Reflectance of Metasurface Reflected Second Harmonic
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Similar to simulations, max SHG is at shorter wavelengths. Experimental measurements are ongoing. 15



Summary

« We demonstrate tailored light-matter interactions and nonlinearities in
hybrid dielectic metasurfaces.

« Hybrid dielectric metasurfaces offer an efficient and flexible platform for
both fundamental studies of light-matter interaction and for realizing
efficient new light sources and nonlinear devices.

 OQur approach although demonstrated for a particular wavelength, in
principle, can be scaled to other wavelengths.
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