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Introduction
Syntactic foams, Damage mechanisms, and GMB
interactions
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Mechanics of Syntactic Foam
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Mechanics of Syntactic Foam
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Role of GMB interactions

GMBs are irregularly distributed

What does that mean for the
damage mechanisms?

What are implications of:
• Volume fraction (long-range

interactions)?
• GMB clustering (short-range

interactions)?

XCT cross-section:

a •

•

• •3t • -.Apr
mw

• i
•

• es

250 pm

1

Croom • 2019.09.30
6



Role of GMB interactions
GMB thought experiment:

Sparsely-packed GMBs Closely-packed GMBs
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Which GMBs have higher stress?
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Role of GMB interactions
GMB thought experiment:

Sparsely-packed GMBs Closely-packed GMBs

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

OcDO

tttttttt tttttttt
What happens after one GMB

collapses?
Croom • 2019.09.30



Research Motivation

What is the role of global and local GMB density
on the damage micromechanics?
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Research Outline

1. Finite element study of GMB clustering

2. Statistical analysis of in situ XCT damage
measurements
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FE study of GMB
clustering
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Model development

FE model to address:

• Spacing between
GMBs

• Stress redistribution
after fracture

• Cluster orientation

a + + + + + + + b + + + + + + +
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GMB stress distribution
Intact Damaged
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GMB stress distribution
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GMB stress distribution
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GMB stress distribution
Intact Damaged
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GMB stress distribution
Intact Damaged
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Summary of FE results

• Particle clustering strongly influences GMB
stress:
• Stress is higher for closely-spaced GMBs
• Significant stress redistribution around damaged
GMBs
• In some cases... can increase stress on adjacent GMBs!

• Significant influence of cluster orientation
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XCT analysis of short-
and long-range GMB
interactions
Analysis of sl) and Nneighbor
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In situ XCT experiments
In situ X-ray

In situ XCT experiments Computed
performed on four volume Tomography
fractions:

= 0.10, 0.2, 0.37, 0.46

X-ray
Source

Specimens
imaged at two
resolutions:

500 pm
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Analysis framework

Low
resolution XCT

images

High
resolution XCT

images .)

DVC
 . displacement

measurement
 J

r
Initial GMB
arrangement
 J
i 
GMB damage
measurements
 _J

r

GMB tracking

Statistical
damage
modeling

Croom • 2019.09.30 Croom, Composites Part B, 2019



Effects of Volume Fraction
Macroscopic damage response:
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Effects of Volume Fraction
Damage measurement:
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Effects of Volume Fraction
Damage measurement:
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Effects of Volume Fraction
Damage measurement:
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Effects of Volume Fraction
Damage measurement:
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Effects of Volume Fraction
DVC strain measurement:

0 = 0.1

Ezz

Ezz — a12g CEzz)
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Effects of Nneighbor

0 5 10

Nneighbors

15 20

Irregular GMB arrangement leads to
variation in Nneiyhbor
• Can isolate effects of 0 vs Nneighbor
on damage
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Effects of Nneighbor

1.0 -

ro
0.8 -

\E=-0.21

E=-0.27

= 0.2

-E=-0.12

0.6 -

1 3 5 7

Nneighbor

Croom • 2019.09.30 Croom, Composites Part B, 2019



Effects of Nneighbor
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Summary for XCT experiments

Volume fraction 0 and Nneighbor have similar
effects:
• Large 0 = damage occurs at smaller strain, clustered
damage in tightly-packed regions

• Large N_ _i-ne yhbor = decreased 10' survival

However:
• Damage still occurs faster at higher 11) for same

Nneighbor

• Nneighbor is especially important at low 0

Croom • 2019.09.30
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Conclusions
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Conclusions

In situ XCT experiments reveal the effects of
volume fraction and GMB clustering

• Multiscale XCT + DVC analysis enables tracking of
individual GMBs

• Large 0 and Nneighbor have similar effects

• GMB clustering / agglomeration has strong implications
for mechanical response of syntactic foams
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