
Thoughts on Autonomous
Resource Management for HPC

Department 1423 - Scalable System Software

Ron Brightwell, R&D Manager

•••CCR
Center for Computing Research

Sandia National Laboratories is a rnatimission
laboratory managed and operated by National.
Technology ft Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
international inc., for the U.S. Department of

Energ's National Nuclear Security
Administration under contract DE-NA0003525.

SAND2019-11168C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

2 Most Recent Example of Resource Management Complexity (I /3)

—13-1 MVAPICH

Performance Evaluation of MPI Libraries on

GPU-enabled OpenPOWER Architectures:

Early Experiences

Kawthar Shale Khorassani, Ching-Hsung Chu, Han Subramonl, and Dhabaleswar K (DK) Panda

(shafiekhorassani 1, chu 368)(Posu edu, (subramon, pandaNkse Olio state edu

Network-based Computing Laboratory

Department ol Computer Science and Engineenng

The Ohio State University

Native Performance of Interconnects

• NA/Link between CPU and GPU

- BondwidthTest from NVIDIA CUDA sample: Multiple cud aMemcpyAsyn c back-to-back

between system & GPU memory

- https://github_com/hNIDIA/cuda - samples

• GPU HBM2 and NVlink between GPUs

- simple1PC test from WILMA CUDA samplc CPU processes transfer data within a GPU and

between GPUs

• X-Bus

- STREAM benchmark

- https !/www.cs.vvgirna.edu/stream/

• InfiniBand

- InfiniBand verbs performance test Ob_reed_bw)

• •Cas

NO In r IIIN IR
POWER9 Ec•P•040gy ISLinun ft)

17

Hardware Configuration — Sierra-like OpenPOWER System

3-1sne WU,* - - X ZIA - • &Mine Pbe Gen. • • ininbonl
(7S GBAI fINE GS,$) 06 Gat) (12 S GM)

. 0 rt.. •

IB HCAs

0/4 IMP% I WU.

Communication through: NVLink between GPUs

• Theoretical Peak Bandwidth of 3-lane NVIink - 75 GB/s

• Map MPI processes to two GPUs w/ NVLink connection (CUDA_VISIBLE_DEVICES=0,1)

WU,

3 Most Recent Example of Resource Management Complexity (2/3)

Hardware Configuration — Sierra-like OpenPOWER System

Slane WU.* - - %am •- 61rrPC4G,mM - • Nine:end EDR
aS Gen) 84 OW /12 s OM)

.MO Po, .,

18 HCAs

P9 - - i9

(W

Communication through: HBM2

• Theoretical Peak Bandwidth - 900 GB/s

• Map two processes to the same GPU UDA_VlSlBLE_DenCES.0)

Hardware Configuration — Sierra-like OpenPOWER System

Slime NVI.mrs • • X S. • • elan, PCI• Ganil • • infir.torq EDS
(TS Ga.) 014 Gen) (*Gehl (12 GIN I

. 0 Pen I

iB HCAs

Communication through: NVUnk between CPU and GPU

• Theoretical Peak Bandwidth - 75 GB/s

• Map a process to a CPU to communicate with a process mapped to a GPU

I WO. H 1019 29

Hardware Configuration —Sierra-like OpenPOWER System

3 lone NV1 ins - X Bus - lane PCI• GPM - • Inarstssnd EC*
Its Gii.•1 ISA G1YH 116 GROS) 117 3 GM I

Pori 0 Pal

16 HCAs

- 1;9

OM Or

Communication through: NVUnk and X-Bus

• Theoretical Peak Bandwidth - 64 GB/s

• Map two processes to different NUMA nodes (CUDA_VISIBLE_DEVICES432)

•

4 Most Recent Example of Resource Management Complexity (3/3)

Hardware Configuration — Sierra-like OpenPOWER System

NVIroe - • X Bps • - 61ene PCIe owe • • In6nOseel EDR
(75 Gan, CreAl OP Most (125 011on)

,Nart o Peel

IB HCAs

MI -
Communication through: lnfiniBand Socket-Direct Dual Port EDR Network

• Theoretical Peak Bandwidth - 2 5 GB/s (2'100 Gbps)

• MPI processes leundled Oa different nodes

Hardware Configuration — Summit OpenPOWER System

7 Pyle NV1 et; - - Bus • • Sine Pas Genii • • inibilband EOR
(50 cello (64 r. 140691 (12 5 011is)

Communicabon thrOugh:

P9 P9

; Í. • . 0 • 'a. a 0 " ss• I.

• Theoretnel Peat Bandorrelth -2566/s

• 69,1 processes launched on cifferent nodes

Summary - Performance of Interconnects

Achievable peak bandwidth of MPI li bra nes and frach on of peak over interconnects

on a Sierra-like GPU-enabled OpenPOWER System

- MPI Libraries perform umdarly for NVLInk GPU-GPU and)(41us communications

- MVAPICH2.GDR actueues hrghest perfor mance through HBM2 and NI commumcahons

- Spectrum-MPI achreues hrghest performance for CPU-GPU communication

est...oh/PI*Lva,

OPU11IM2 _.,. •,L./.1L.,_.
ir ,:..,.. 69 12 681s

3 '3'6:"'s
40 32 Gi3/3.

Was

13 s7ue,
saii

2336s, 92_ IP% 635 54612%

op..Api i, :11579k 0 74 G. sIL__ 69 7/3 G8ls 32 64 GSA, 11 415 GEL

02)316, 0.911% 93045 5116 47261i

14012-GM
393 t3 G B/ 13 13 GOA, 69 17 G8/s 40 27 Ws\ 22 47 GeV

43 A3111 1257t6 922294 6292% 11911116

...... .

1

Extreme Heterogeneity Priority Research Directions (PRDs)

Maintaining and improving programmer
productivity

)

(plantt 7. bar_id rr
terop_node = *ode;
mode = uatch_bars,

f i le_outputt.

an_done ""

do

• Flexible, expressive,
programming models
and languages

• Intelligent, domain-
aware compilers and
tools

• Composition of
disparate software
components

Managing resources intelligently

• Automated methods
using introspection
and machine learning

• Optimize for
performance, energy
efficiency, and
availability

Modeling Et predicting performance

• Evaluate mpact of
potential system
designs and
application mappings

• Model-automated
optimization of
applications

Enabling reproducible science despite
non-determinism Et asynchrony

• Methods for validation
on non-deterministic
architectures

• Detection and
mitigation of
pervasive faults and
errors

C0111,11.10 Rese,th
C C R

Facilitating execution of science
workflows

• Mapping of science
workflows to
heterogeneous
hardware Et software
services

• Adapting workflows a
services to meet
facility-level
objectives through
learning approaches

1
1
1

6 Autonomous Resource Allocation and Management

• HPC systems have become too complex to manage every critical resource

• Mapping the application to the machine is inefficient and tedious

• Locality management is done by hand
. Processes are placed on specific nodes and cores by the job launcher
. Processes are pinned to cores and never move to minimize memory traffic
. Few (no?) mechanisms for measuring data locality

• Significant effort required to optimize just for a single machine
. Situation becomes untenable for future heterogeneous platforms
. Continuously increasing complexity of systems, applications and workflows

• Software stack needs to enable autonomous resource allocation and management

• Mapping the machine to the application requires dynamic discovery and adaptation
. Determine goals of the application workflow
. Understand how well resources are being used
. Make informed optimization decisions and track behavior in response to decisions
. Evolve with constantly changing cost models and temporal non-determinism

• Ideal opportunity to leverage and apply AI/ML technologies for HPC

Existing Approach

•Generalized abstractions and machine models that allow algorithm designers and application
developers to create code that works reasonably well on a broad spectrum of systems

•Compilers, libraries, RTS, and OS work within the constraints of these abstractions to map the
application to the underlying hardware as efficiently as possible

•Performance tools identify shortcomings in the mapping

•Refine the mapping on a per-platform basis

•Adjust the abstractions and models in response to evolving hardware

•Leverage RTS adaptivity within bounded set of resources and relatively fixed cost models

8 Vision for Post-Exascale Runtime Systems

•Responsible for mapping the machine to the application

•Require dynamic discovery
• Determine the goals of the application
• Develop knowledge on how well resources are being used
• Make informed optimization decisions
• Understand behavior in response to decisions
• Consider constantly changing cost models

•Respond to elastic system and application resources

•Richer abstractions and models at the system level

•Improve the productivity of application and library developer as well as the scalability and efficiency of
the system

9 US DARPA: Microsystems Exploration - Performant
Automation of Parallel Program Assembly (PAPPA)

Solicitation No. DARPA-PA-19-04-02
Nlicrosystems Exploration Topic (pE)

Perlorniant Automation of Parallel Program Assembly (PAPPA)

l. Topic Description

The Defense Advanced Research Projects Agency I
Exploration topic (pE) inviting submissions of innovative
technical domain of massively parallel heterogeneous cor
self-modifying compilers, program synthesis, and predic
under the Program Announcement for Microsystems
proposals in response to the technical area described here
04 and if selected, will result in an award of an Other Tn
to exceed $1,000,000.

B. Objective/Scope

The PAPPA topic will explore tradeoffs between programming productivity, solution generality,
and scalability to enable scientists and domain experts with no understanding of parallel
programming and hardware architectures to create highly efficient performance portable programs.
The goal of PAPPA is to explore the creation of compiler technology that improves the
programming productivity of massively parallel and heterogeneous processing systems with
1,000,000 way parallelism by 10,000X. If successful, such performance portable compilers will
significantly lower the barrier to deploying new algorithms and science on future state of the art
programmable systems.

To enable productive high performance programming going forward, it is imperative that all low
level tasks including task partitioning, aggregation, mapping, scheduling, resource allocation,
memory management, inter process communication, synchronization, and reliability be removed
as burdens from the programmer. To enable scalable and performance portable generation of
executables from a highly productive programming framework, it seems likely that a completely
new approach is needed. PAPPA hypothesizes that many of the challenges associated with the
high performance programing of massively parallel heterogeneous systems can be overcome by
accurately modeling and predicting performance of all key components within the system and
applying global cost optimization to successively lower and optimize appropriately constrained
domain specific programs to generate highly efficient executable code.

10 Post-Exascale Software Stack Components

• Builds on existing Sandia capabilities and expertise in
• Asynchronous many-task programming systems

• Dynamic event-driven lightweight threading runtime systems

• High-performance networking interfaces and protocols

• Lightweight monitoring, instrumentation, and control

• Lightweight HPC-oriented operating systems

• Strengthens Sandia's capabilities in system software and provides
opportunities for research in
• AI/ML techniques for resource management

• Hardware/software co-design to support introspection

• Resilient computing infrastructure

DARMA

portals

tit Qthreads

• Creates opportunities for partnerships in
• Continued exploration of AMT programming systems 4-0-3

• System-wide resource management and workflows Kitten LWK

• Managing I/0 and data-intensive programming systems

OVIS
LDMS

115MCV

I Issues/Concerns

Managing the memory hierarchy
O Lots of evidence that the RTS/OS are not good at this for HPC

Increasing complexity and responsibility of the RTS
O Pushing complexity to the RTS with less info

Resource requirements of the RTS
O Potentially significant overhead

Compelling application evaluation
O Applications need to exercise the advanced RTS functionality

O Implementation bias

Application performance portability
O From laptop to exascale

Transparency is in the eye of the application developer
O Need to support both experts and ambivalent

Cost of modularity
O Not all RTS services should be componentized

Ability to constrain the problem
O Too many hardware and application "knobs"

Performance portability of the RTS
O Not any easier to solve than application performance portability

Dependence on hardware advancements
• Inability to demonstrate compelling results on current systems

Lack of standard low-level network API
• Fundamental issue for RTS communication

HPC market pressure
O Influence of non-HPC "solutions"

Amount of asynchrony
O Ability of algorithms to reduce global operations

Jitter
O Will lack of balance absorb noise effects

Mechanisms to support event-driven capability
O More efficient ways to enable adaptivity

Walking before running
O Make progress at small scale while working towards large scale

CCCR
Gator& Computing Renard

