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Background and Motivation

• Alkaline Zn/Mn02 batteries hold great promise for electrical energy storage and
load-leveling power grid applications due to their high energy density, non-
toxicity, and low cost.

• Development of commercially viable rechargeable Zn/Mn02 alkaline batteries
has been hindered by a short cycle life due to irreversible changes occurring in
the Mn02 cathode and Zn anode.

• Theoretical studies have been focused on the development of a computational
model for accurate prediction of the electrochemical behavior of y-Mn02 in
Zn/Mn02 batteries.

• The main objective of this research is to analyze the relationship between the
depth of discharge (DOD) and the probability of formation of irreversible redox
reaction products in the 7-Mn02 cathode.



Cathode Half-Cell reaction in Zn/Mn02 Batteries

Electrochemical reaction (y-Mn02 cathode)

I) MnIv02+ H20 + e- _) 1 .MnI1100m + OH- (Reversible)

11) MnIII0OH + H20 + e- _, mnilow + 2) OH-

Extensive formation of Mn(OH)2 leads to further convertion of cathode to other
forms such as hausmannite

2Mn0OH + Mn(OH)2 —) Mn304 + 2H20

Initial Mn02 discharge reaction is the proton insertion in solid phase of y-Mn02

Mn02+xH20 +xe- —> Mn02,(OH)x+x0H- (0 x S 1)



Computational Methods
• Calculations are done using an ab initio computational methods based on

density functional theory (DFT).
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• Quantum ESPRESSO* (opEn-Source ackage for esearch in lectronic
Structure, Simulation, and Optimization) code for electronic structure
calculations.

• Exchange correlation functional was approximated by GGA PBEsoI.

• Vanderbilt ultra- soft pseudopotentials**

• Spin polarized calculations.

• http://www.quantum-espresso.org

**http://www.physics.rutgers.edu/—dhv/uspp/
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Stability of Mn02 polymorphs
• fl-Mn02 is supposed to be the lowest energy structure
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• GGA PBEsoI xc functional predicts the correct order of the energies of Mn02
polymorphs



Hydrogen insertion in y-hnnt

Calculated Lowest Energy Structures of Mn02_,,(OH)x for 0 x 1
x=1/6 x=1/3

• Protonation is carried out in three stages:

(1) One H atom is inserted in each 2x1 tunnel,

(2) Two H atoms are inserted in each 2x1 tunnel,

(3) One H atom is inserted in each lx1 tunnel.

• Protonation produces significant structural distortions in y-Mn02.



Hydrogen insertion in y-Mn02
Energy and volume changes of y-Mn02 with increase in DOD
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• Energy of H-insertion is lower for 2x1 tunnels than for lx1 tunnels.
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• Initial volumes: Vfl < Vy < VR

• Volume of protonated Mn02 phases increases nonlinearly with increasing DOD.

• For large DOD volume of protonated /3-Mn02 becomes larger than volume of
protonated y-Mn02



Binding energy comparison with other forms of Mn02
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• For protonated y-Mn02 binding energy per H atom decreases significantly with increasing DOD.

I Ebstagel > I Ebstage2 I > I Ebstage3 I

• Protonated y-MnO, is more stable for small value of X and becomes less stable for large X than
other forms of Mn02

• Protonation of lx1 tunnels may leads to structural breakdown of Mn02_x(OH)x
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Summary

• Energy of H-insertion is lower for 2x1 R-Mn02 tunnels than for lx1

f3-Mn02 tunnels.

• Protonation produces significant structural distortions in Mn02
polymorphs.

• Initially, inserted protons occupy 2x1 tunnels of y-Mn02

• Protons insertion into lx1 tunnels may lead to breakdown of y-
Mn02.

• Battery life cycle can be extended by limiting protonation to one H
atom per 2x1 tunnel.

Supported by: The LDRD program at Sandia National Laboratories and
by the U.S. DOE OE Energy Storage Program.


