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Background and Motivation

Alkaline Zn/MnO, batteries hold great promise for electrical energy storage and
load-leveling power grid applications due to their high energy density, non-
toxicity, and low cost.

Development of commercially viable rechargeable Zn/MnO, alkaline batteries
has been hindered by a short cycle life due to irreversible changes occurring in
the MnO, cathode and Zn anode.

Theoretical studies have been focused on the development of a computational
model for accurate prediction of the electrochemical behavior of y-MnO, in
Zn/MnO, batteries.

The main objective of this research is to analyze the relationship between the
depth of discharge (DOD) and the probability of formation of irreversible redox
reaction products in the y-MnO, cathode.



Cathode Half-Cell reaction in Zn/MnO,, Batteries

Electrochemical reaction (y-MnO, cathode)

) MnVO,+H,0+e = Mn""OOH + OH- (Reversible)
) Mn"OOH + H,0 + e = Mn'(OH), + OH-

Extensive formation of Mn(OH), leads to further convertion of cathode to other
forms such as hausmannite

2MnOOH + Mn(OH), = Mn,0, + 2H,0

Initial MnO, discharge reaction is the proton insertion in solid phase of y-MnQO,

MnO, + xH,O + xe = MnO,_(OH), + XOH~ (0<x<1)



Computational Methods

Calculations are done using an ab initio computational methods based on
density functional theory (DFT).

VZ
Kohn-Sham equations: (—7 * Veff[n](r)> Pi(r) = &y (1)

n(r’)
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Vesr[n](r) = Vere () + j &1 + Ve [n] (1)

Quantum ESPRESSO* (opEn-Source Package for Research in Electronic
Structure, Simulation, and Optimization) code for electronic structure
calculations.

Exchange correlation functional was approximated by GGA PBEsol.
Vanderbilt ultra- soft pseudopotentials™*

Spin polarized calculations.

* http://www.quantum-espresso.org { O

**http://www.physics.rutgers.edu/~dhv/uspp/
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Stability of MnO,, polymorphs

. -MnO, is supposed to be the lowest energy structure
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* GGA PBEsol xc functional predicts the correct order of the energies of MnO,
polymorphs



Hydrogen insertion in y-MnO,,

Calculated Lowest Energy Structures of MnO,_(OH), forO<x <1

* Protonation is carried out in three stages:
(1) One H atom is inserted in each 2x1 tunnel,
(2) Two H atoms are inserted in each 2x1 tunnel,
(3) One H atom is inserted in each 1x1 tunnel.
* Protonation produces significant structural distortions in y-MnO,.
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Hydrogen insertion in y-MnO,

Energy and volume changes of y-MnO,, with increase in DOD
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AV =[ V(Mn O,H. ) = V(Mn0,,H- )/ VIMNOLH, ) ;n=1,2,..6

Energy of H-insertion is lower for 2x1 tunnels than for 1x1 tunnels.
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Vqume/MnO2 with increasing DOD
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* Initial volumes: Vg <V}, < Vg

* Volume of protonated MnO, phases increases nonlinearly with increasing DOD.

* For large DOD volume of protonated f-MnO, becomes larger than volume of
protonated y-MnO,



Binding energy comparison with other forms of MnO,

Binding Energy per H
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For protonated y-MnO, binding energy per H atom decreases significantly with increasing DOD.

|Ebstage1| > |Ebstage2| S |Ebstage3|

Protonated y-MnO, is more stable for small value of X and becomes less stable for large X than

other forms of MnO,

Protonation of 1x1 tunnels may leads to structural breakdown of MnO,_ (OH),



Summary

* Energy of H-insertion is lower for 2x1 R-MnO,, tunnels than for 1x1
B-MnO, tunnels.

* Protonation produces significant structural distortions in MnO,
polymorphs.

* Initially, inserted protons occupy 2x1 tunnels of y-MnO,

* Protons insertion into 1x1 tunnels may lead to breakdown of y-
MnO.,.

» Battery life cycle can be extended by limiting protonation to one H
atom per 2x1 tunnel.
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