
Consider a hypothetical
commercial electrical
customer billed for power
under both time-of-use
(TOU) and a $50/kW
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Abstract-When batteries supply behind-the-meter
services such as arbitrage or peak load management,
an optimal controller can be designed to minimize the
total electric bill. The limitations of the batteries, such as
on voltage or state-of-charge, are represented in the
model used to forecast the system's state dynamics.
Control model inaccuracy can lead to an optimistic
shortfall, where the achievable schedule will be costlier
than the schedule derived using the model. To improve
control performance and avoid optimistic shortfall, we
develop a novel methodology for high performance,
risk-averse battery energy storage controller design.
Our method is based on two contributions. First, the
application of a more accurate, but non-convex, battery
system model is enabled by calculating upper and lower
bounds on the globally optimal control solution. Second,
the battery model is then modified to consistently
underestimate capacity by a statistically selected
margin, thereby hedging its control decisions against
normal variations in battery system performance. The
proposed model predictive controller, developed using
this methodology, performs better and is more robust
than the state-of-the-art approach, achieving lower bills
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where p is the battery system power that element wise
subtracts from l when the battery system is discharging.
The problem is thus formulated: design a control algorithm
to optimally calculate a vector of battery mstem power
that minimize "hill customer's bill without exceeding
the battery's limits

Methods
We compare three controller models: the state-of-the-art
energy reservoir model (ERM), a more accurate charge
reservoir model (CRM), and a modified risk-averse CRM.
To perform a pseudo-empirical analysis of the optimal
schedules calculated from each model we simulate how the
battery system would respond to each control signal using
an extended CRM that incorporates additional constraints
and parameters to improve its accuracy. The simulation
model uses slightly different functions and parameters,
enabling an analysis of the effects of model and parameter
uncertainty on controller performance.

Simulation Results
The results of all three models, with open-loop and closed-
loop implementation, are compared using a simulation
model with either mean capacity, or extreme capacity. Total
bill reduction is used to measure performance and
optimistic short-fall is used to measure robustness.

TABLE VI
SUMMARY OF RESULTS FROM SIMULATED CONTROL SCENARIOS

6

13 4

a

2

0 24 48 72 120 144 168

o
o

Time (hours)
1 J.

Customer TOU price and Load

Controller Total %
Sim-Model*

Scenario Bill Savings

Optimistic
Short-
fall**

Baseline $310.88 -
ERM OL Cal
ERM OL Ach
ERM CL Ach
ERM CL Aka
-upper bound
CRM OL Cal
-lower bound
CRM OL Ach
CRM CL Ach
CRM CL Ach

mean
mean
extreme

mean
mean
extreme

$274.91 11.6%
$273.93 11.9%
$273.56 12.0%
$273.69 12.0%
$272.72.7
$269.55 13.3%
$228.89i
$274.98 11.5%
$269.55 13.3%
$292.53 5.9%

-$0.98
-$1.35
-$1.22

$5.43
$0.00
$22.98

-upper bound
RA CRM OL Cal
-lower bound

_ RA CRM OL Ach
= RA CRM CL Ach
- RA CRM CL Ach

mean
mean
extreme

$274.21i
$271.22 12.8%
$235.35./
$271.17 12.8%
$271.08 12.8%
$271.21 12.8%

40.05
40.14
-$0.01

Vdenotes that the solution to the non-convex problem satisfies the bound
* The extended CRM is used to simulate the BESS being controlled. It's
parameters are selected to represent average behavior 'mean', or 'extreme
case' lower than normal available energy as described in Section VI
** Optimistic Shortfall compares the bill achieved by applying control action
to the simulated BESS to the open-loop calculated bill from each controller
Cal - calculated, Ach - achieved, OL - open-loop, CL - closed-loop, RA -
risk-averse

Conclusions

• In this paper we develop and demonstrate an advanced methodology for designing BESS
controllers under ToU price arbitrage and peak demand charge management applications.

• The proposed CRM based model predictive controller outperforms the ERM, but is sensitive to
BESS capacity.

• The risk-averse CRM still outperforms the ERM, but is more robust to variations in BESS
performance

• This methodology for can be applied wherever the risk profile of a scheduled service is asymmetric.

Main idea

This proposed BESS
controller performs better
and/or is more robust to

fluctuating capacity than the
state of the art controllers.

Risk Neutral Controller

Risk Averse Controller
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Notional examples of risk-neutral and risk-averse control bill
savings probability density functions
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Energy Reservoir Model
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where xe = p+. p 6.1 T} E R3n+2, p+ E WIF is the ac
electrical power provided to charge battery system, p- E
is the ac electrical power discharged from the battery system,

Rn+l is the battery SoC, T E R is the peak demand power
and the differential matrix D is shown in (4)
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where x, = I p, Pdclii;at Vbat. Vs. Voc  Sl r E R8n+3,

Pac E Rn is the dc electrical power provided to battery,
Vbat E IRn is the battery terminal voltage, vs E R 7E is

the slack voltage used in calculation of an upper bound,

voc E Rn+1 is the battery open-circuit voltage, and T E R
is the peak power demand.

Risk-Averse Capacity (value at

(Ccap acap)Ð6. = nciL ibat (9)

where Ocap r`d Ar(P = 01 Q= 2.6Ah) is the random
component of the battery's capacity, assumed to be a zero-
mean, normal distribution.

Ocap = min{ Ccap E R P(Ocap < Ccap) > 0.13%} (10)

Bounding the Global Minimum
The CRM is a non-convex, non-pseudoconvex problem, hence we cannot grantee that a
gradient based solver will find the globally optimal solution. An upper bound to a
minimization problem can be found by restricting the feasible set (adding additional
constraints) while a lower bound can be calculated by expanding the feasible set (relaxing
or removing constraints).
Lower Bound (convex relaxation) Upper Bound (convex

270 275 2B0 28.5

TO ta I Bill 1.S)
Control performance sensitivity of the risk-neutral and risk-averse
CRM based model predictive controllers.
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where pct and Pcic
respectively.
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