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Abstract—When Dbatteries supply behind-the-meter
services such as arbitrage or peak load management,
an optimal controller can be designed to minimize the Energy Reservoir Model
total electric bill. The limitations of the batteries, such as ERM L o
on voltage or state-of-charge, are represented in the F) Atel(1+pF +p7) +7d+L|p* +p7|I3

model used to forecast the system's state dynamics. (3a)
Control model inaccuracy can lead to an optimistic subject to: QgpDs = 7.p™ + p~
shortfall, where the achievable schedule will be costlier S[1] = <o (3b)
than the schedule derived using the model. To improve S{1] = S[n (3¢)
control performance and avoid optimistic shortfall, we 0] < pt < Pua[1] (3d)
develop a novel methodology for high performance, sl <9< B e)
risk-averse battery energy storage controller design. cinl1] < 6 < ax[1] (3f)
Our method is based on two contributions. First, the Tl

l+pT+p~ <7[1] (3g)

application of a more accurate, but non-convex, battery .

i g : " — i bas 3n+2 + " e -
system model is enabled by calculating upper and lower where x, = {p™.p~.¢.7} € R, pT € RY is the ac
bounds on the globally optimal control solution. Second, electrical power provided to charge battery system, p~— € R™

. - : is the ac electrical power discharged from the battery system,
the battery model is then modified to consistently ¢ € R s the battery SoC, 7 € R is the peak demand power

underestimate capacity by a statistically selected ® and the differential matrix D is shown in (4).
margin, thereby hedging its control decisions against - 1 8 . . o7
normal variations in battery system performance. The 1 S prOp O S ( { 0 -1 10 . .

proposed model predictive controller, developed using
this methodology, performs better and is more robust
than the state-of-the-art approach achieving lower bills

wingr === | controller performs better
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ConS|der a hypothetical
commercial electrical
customer billed for power

®
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EFERIEBIRwWithout Pac = (it + i) Vi (5¢)
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where p is the battery system power that element wise P < Pmax[1]

minll] < P < Pma
state-of-the-art controllers
The problem is thus formulated: design a control algorithm ° Smin[1] =6 = Smax

- 'mi < Vbat < Umax 5
to optimally calculate a vector of batterypsystem power Umin 1] < Voat < Umax 1] oK

.
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that minimize /i 2 customer’s bill  without exceeding [0] < iy < imax[1] (S)
the battery’s limits imin[1] < i, < (0] (5m)
Methods 1+ p < 7[1] (5n)
We compare three controller models: the state-of-the-art where x. = {p.pdc.i;f“.ih_m.vbm.vs.vm-.g‘.T} e W
energy reservoir model (ERM), a more accurate charge Pac € R™ is the dc electrical power provided to battery,
reservoir model (CRM), and a modified risk-averse CRM. Vou € R™ is the battery terminal voltage, v, € R} is

the slack voltage used in calculation of an upper bound,
Voc € R™"1 is the battery open-circuit voltage, and 7 € R
is the peak power demand.

To perform a pseudo-empirical analysis of the optimal
schedules calculated from each model we simulate how the
battery system would respond to each control signal using
an extended CRM that incorporates additional constraints
and parameters to improve its accuracy. The simulation
model uses slightly different functions and parameters,

enabling an analysis of the effects of model and parameter Risk-Averse Capacity (value at

ur]certaint}/ on controller performance. | (Ceap + Ceap) Ds = neiit, + i, 9)
Slmulatlon ReSUItS where écap ~ N(,u, = 0,0 = 2.6Ah) is the random
The results of all three models, with open-loop and closed- component of tpe .batt.ery’s capacity, assumed to be a zero-
loop implementation, are compared using a simulation mean, normal distribution.

model with either mean capacity, or extreme capacity. Total Ceap = Min{Cryp € R|P(Ceqp < Cep) > 0.13%} (10

bill reduction is used to measure performance and
optimistic short-fall is used to measure robustness.

TABLE VI
SUMMARY OF RESULTS FROM SIMULATED CONTROL SCENARIOS -H?EK Neutral Controller . = =
— = B s Averse Controller Bounding the Global Minimum
Controll . . Total % et = .
i Sim-Model* o L ?'ﬁl'f' F= The CRM is a non-convex, non-pseudoconvex problem, hence we cannot grantee that a
Baseline = $310.88 - 8 gradient based solver will find the globally optimal solution. An upper bound to a
o] . s 1w Sum o minimization problem can be found by restricting the feasible set (adding additional
ggm gli Qcil mean 2’;;:23 ::8; i:jj constraints) while a lower bound can be calculated by expanding the feasible set (relaxing
ch extreme $273.66 2.0% -$1.22 . .
—upper bound - $272.72v ‘ or removing ConStralntS).
CRM OL Cal - $26055 133% - . __ Total Bill | Lower Bound (convex relaxation) Upper Bound (convex
—lower bound = $228.89v Notional examples of risk-neutral and risk-averse control bill triction/ _ b
CRM OL Ach ; $27498 11.5% $5.43 i il i i : 9 restricuon/a Ximaton :
CRM CL Ach mean $269.55  13.3% $0.00 savings probability density functions ““1;,,+.; Atc' (14 p) + 7d + IL||p|[5 + Ma||vs]]: i pp&g Cm +P) 42 7d + I ||p||5 + | |vs||1
CRM CL Ach extreme $292.53  5.9% $22.98 O _ _ _ : RR x:. €ER Ny
_RLX)[?{{;:“SS Cal - 23;?%1\/ 12.89 —_ 1 1L - _|_'le|| - =1 - 1; Risk Neutral CEM de g -~ 5 € R 1_{_1
' a = $271.22 2.8% i — - .rl.! rl. - L ‘ “' n
~lower bound - $235.35v o U8r +%'~'T @ +t2o, Lo sk Averse TRV | o E {(]Fl}n—kl
- 0 X — . ] =T . ‘
— gﬁ: SEII:AA ?E /’:CE medn Z;’);:('); :f'gé '28'?3 E: 0.6F igg - s subject to: : (5d) and (5f) through (5n) unchanged —
. i C mean 271. 2.8% -$0. 1« - ) - . — y — - ——
RA CRM CL Ach T $37121  12.8% -$0.01 E 0al s _ relaxing (5b) 6’5()p“) L ip + by > PJLC +py. (7a) subject to: : © (5b) anj (5f) through (5n) unchanged
© o _ o Tha 1T restricting (5¢) pdc = (i, + i )Vocmir (8a
v denotes that the solution to the non-convex problem satisfies the bound -E 02k . 1o ] relaxing (5¢) Aq Tbat) Vat, pdC] = by Uhx” (70) i ,L o = - ( .hd[ hd[)l o 5L . )
* The extended CRM is used to simulate the BESS being controlled. It’s — = ? 2 3 As lb_ , Vhat p;]T < bs[1]1xn (7¢) restricting (3d) Vocmin[1] = Voc [1:n] T RO(lbut + 1) + Vs
parameters are selected to represent average behavior ‘mean’, or ‘extreme 0. 0 . c e _ b T e ' (8b)
case’ lower than normal available energy as described in Section VI ‘ : : : relaxing (5¢) As S, Voc] < bB[]—]an (7d)
""" * Optimistic Shortfall compares the bill achieved by applying control action 265 270 275 280 285 280 295 approx. (5e) vy = l'w,m,,[l] + V1 + Vo + V3 + Vs + Vs
to the simulated BESS to the open-loop calculated bill from each controller Total Bill ($} (8¢)
NS SRR, SRS~ RS, Bk = MR, Tk —~ - 1 Wit~ Control performance sensitivity of the risk-neutral and risk-averse 11
risk-avers L — N " . ‘ ~ — . 1 c - . e
e Rl et e where py. and py. are the charge and discharge dc powers S =Cmin[l] +61+S2+S3+61+¢ (8d)
Conclusions respectively. i -
. . o - Vi, Vs, V3. Vg, V5" = Ay4l61. S2. §3. S4, G (8e)
« In this paper we develop and demonstrate an advanced methodology for designing BESS = L V2, V3, V4, V] slsw, S, 8, G4, 5
controllers under ToU price arbitrage and peak demand charge management applications. £ o o aneton SsegW1 <61 < Geog (8)
* The proposed CRM based model predictive controller outperforms the ERM, but is sensitive to = e W3 <C2 < CooaW1 (80)
BESS capacity. | SsegW3 <63 < GeogWo (8h)
* The risk-averse CRM still outperforms the ERM, but is more robust to variations in BESS g %I T S
o Sseg W4 64 = SsegW3 (1)
performance ®0 20 3 40 s e 7 80 9 100 0 <65 < GegW4 (8))

State of Charge (%)

« This methodology for can be applied wherever the risk profile of a scheduled service is asymmetric.
* Incremental improvements in controller performance can reduce the cost of deploying storage to
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