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I The US national ICF program is identifying
3 credible paths to multi-MJ fusion yield

100 MJ

10 MJ

10 kJ

1 kJ

2D clean simulated MagLIF performance

1

1

1

1

1

z I

014
1 

Future facility

20 30 40 50

Current [MA]

60

1

• MagLIF can access multi-
MJ yields at achievable
driver energies for a i
future facility

• This scaling is contingent
on understanding
degradation mechanisms
(e.g., 3D effects, mix)
and the interplay
between the physics of
magnetization, preheat,
and implosion
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1 MagLIF has demonstrated the exciting potential4 of magneto-inertial fusion

• MagLIF produces fusion-relevant temperatures,
significant neutron yields, and magnetic trapping of
charged fusion products

• Improvements to the platform have enabled an order of
magnitude increase in neutron yield, consistent with
simulation predictions

1015

• Parametric scans in laser energy
and initial magnetization show
the expected trends in target
performance

• Additional improvements to the
platform are underway, which are
expected to increase neutron
production by another order of
magnitude
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1 MagLIF is a magneto-inertial fusion concept that
5 relies on three components to produce fusion

conditions at stagnation

Magnetization
• Suppress radial thermal

conduction losses

• Enable slow implosion with
thick target walls

Preheat
• Increase fuel adiabat to limit

required convergence

Implosion
• PdV work to heat fuel

• Amplify B-field through
flux compression
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1 Magneto-inertial fusion requires magnetic fields
to trap charged fusion products I
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• Ignition-scale MIF
designs achieve self-
heating through
magnetically-trapped
charged fusion
products
• Low initial fuel density
• Cylindrical

convergence: density —
1/R2

• Relatively small radius

• Large magnetic fields
trap charged fusion
products opening up a
larger ignition space
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I A quick introduction to the MagLIF

• Target body is
beryllium

• 10 mm tall

• 5.58 mm outer
diameter

• 0.465 mm wall
thickness
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I A quick introduction to the MagLIF
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• Laser entrance hole
window is polyimide

• 1-3 p.m thick

• 2-3 mm diameter



I A quick introduction to the MagLIFexperimental geometry
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• Fuel is deuterium

• Densities between
0.7 mg/cm3 and 1.4
mg/cm3



11 I A quick introduction to the MagLIFexperimental geometry
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• Axial magnetic field
applied with
Helmholtz-like coils

• Typically 10 T

• Risetime is several ms
to allow field to
diffuse through
conductors

• Maintain radial
diagnostic access
with split coil design
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13 I A quick introduction to the MagLIFexperimental geometry
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• Laser enters target
axially through LEH

• 527 nm, multi-kJ, up
to 1 TW laser

• 5-10% ne/ncrit

• Beam smoothing with
DPP available

• Fuel reaches up to 1
keV on axis with an
average temp r%j100
eV



I A quick introduction to the MagLIFexperimental geometry
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• Current is delivered to
the target via the final
transmission line

• 15-20 MA flows axially
in the target

• Target radially
implodes over 100 ns
with CR .-z: 30-40



15 I A quick introduction to the MagLIFexperimental geometry

60

40

E
E 20
c
o
F,
ow 0
in_

To
R
< -20

-40

-60

r

t

-60 -40
-0.5 0 0.5

Transverse Position [mm]

• Current is delivered to
the target via the final
transmission line

• 15-20 MA flows axially
in the target

• Target radially
implodes over 100 ns
with CR .-z: 30-40

• High aspect ratio
stagnation column with
keV temperature and
kT B-field



1 Initial MagLIF experiments demonstrated keyaspects of magneto-inertial fusion
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Perhaps most importantly, these experiments
19 produced significant yield only when using both

an applied B-field and laser preheat
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22 I The initial MagLIF experiments established targetperformance in a new region of phase space
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1 Same LASNEX model indicates significant23 increases fusion yields are possible on Z
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• More than 10x
improvement 1
possible at
fixed current
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1 Increases in applied B-field, laser preheat, and24 drive current increased neutron yield by >10x
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1 Fuel temperature and stagnation pressure also I

25 increased as expected with the improved platform 1

B-field [T]

Preheat energy [kJ]

Current [MA]
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• 2D LASNEX calculations accurately predict the trend in
ion temperature and stagnation pressure, though
absolute values are off
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1 3D effects may contribute to the discrepancy" between clean 2D simulations and experiments

• Experimental stagnation parameters are more
accurately reproduced in 3D HYDRA simulations

• 3D stagnation structures qualitatively match
experiments

DD yield [1012]
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Mix likely also plays a role in the discrepancy
'7 between clean 2D simulations and experiments

• Spectroscopic dopants are used to determine both the
sources and quantities of mix

• Axially-resolved x-ray spectra indicate both a higher
mix, cooler region and a low-mix, hotter core
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28 1 Laser preheat energy coupling was increased byup to a factor of three with several key changes

• LEH window thickness was reduced from 3 p.m to 1.5 p.m
(transmission r%j30% r‘j 70%)

• 1.1 mm DPP was introduced to
smooth the beam
(SBS backscatter >30 % r%j1%)

111

SBS: 35% k SBS: 1%.

M. Geissel, et al., Phys.

Plasmas (2018).

See Adam Harvey-Thompson's presentation 6A06 Friday at 11:20
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30 1 Magnetization and current coupling designs are
linked so they were optimized simultaneously

• Conical transmission line with lower inductance and larger
anode-cathode gaps reduced current losses allowing 19.5 MA to
be delivered to the target

• Single, high performance coil delivered 15 T average field to the
target while maintaining radial diagnostic access
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1 Larger effort to understand MagLIF through" focused physics studies aids our scaling work
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A.J. Harvey-Thompson, et al., Phys. Plasmas (2018).

S. A. Slutz, et al., Phys. Plasmas (2018).

P. F. Knapp, et al., Phys. Plasmas (2019).

M. R. Gomez, et al., IEEE TPS (2019).

4

• Significant effort to
understand the source and
quantity of mix during
preheat and deceleration
stages

• Modification of laser
configuration and removal
of mid-Z fuel-facing
components enabled
significant increases in ion
temperature and neutron
yield

• Parametric scans help
identify key gradients in
performance

1



32 1 Neutron yield rapidly increases with laserpreheat energy and then plateaus as predicted

• Target performance is
sensitive to preheat energy in
low energy limit

• Plateau observed in p
experiments was predicted in .,, 0 13— io
simulations with Nernst term c

2included -50c

0 1012
,'
co
E
6:

1011
S. A. Slutz, et al., Phys. Plasmas (2018). 0
M. R. Gomez, et al., IEEE TPS (2019).

A.J. Harvey-Thompson, et al., Phys. Plasmas (2019).

Target configuration, B-field (10 T),

and load current (16 MA) held

constant across experiments

2D Clean LASNEX simulations
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3 3 1 Neutron yield rapidly increases with laserpreheat energy and then plateaus as predicted

• Target performance is
sensitive to preheat energy in
low energy limit

• Plateau observed in
experiments was predicted in
simulations with Nernst term
included
• Increased preheat creates

higher initial temperatures
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34 1 Neutron yield rapidly increases with laserpreheat energy and then plateaus as predicted

• Target performance is
sensitive to preheat energy in
low energy limit

• Plateau observed in
experiments was predicted in
simulations with Nernst term
included
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3 5 1 Neutron yield rapidly increases with laserpreheat energy and then plateaus as predicted

• Target performance is
sensitive to preheat energy in
low energy limit

• Plateau observed in
experiments was predicted in
simulations with Nernst term
included
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3 6 1 Neutron yield rapidly increases with laserpreheat energy and then plateaus as predicted

• Target performance is
sensitive to preheat energy in
low energy limit

• Plateau observed in
experiments was predicted in
simulations with Nernst term
included
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37 1 Neutron yield rapidly increases with laserpreheat energy and then plateaus as predicted

• Target performance is
sensitive to preheat energy in
low energy limit

• Plateau observed in
experiments was predicted in
simulations with Nernst term
included

• We observe similar stagnation
temperatures in the high
preheat limit, as expected

• Higher initial fuel density
and/or higher magnetization
are necessary to take
advantage of further increases
in preheat

10
14

1012

2D Clean LASNEX simulations

1

Laser preheat energy [kJ]

S. A. Slutz, et al., Phys. Plasmas (2018).
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38 I lon temperature and neutron yield scale as
expected with increased B-field

Target configuration, preheat energy (1 kJ), and load current (15.5 MA) held constant across experiments
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• Increased magnetization reduces thermal conduction losses and decreases the
impact of the Nernst effect

• We expect increasing in ion temperature with initial B-field, as observed

• With higher ion temperatures, the fusion reaction rate increases, so we also
expected the higher neutron yields



1 Target performance remained flat with
39 increasing current unless B-field and preheat

were also increased
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• Simulations predict
increased yield but also
increased CR with fixed
preheat and B-field and
increasing current

• Experimental CR --z--. 40 and
we do not observe a
significant increase in CR
with current
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See Dave Ampleford's presentation 6A07 Friday at 11:40
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Simulations predict decreased convergence (530)
in the limit of high preheat and magnetization

• Simulations predict
increased yield but also
increased CR with fixed
preheat and B-field and
increasing current

• Experimental CR --z--. 40 and
we do not observe a
significant increase in CR
with current

• When B-field, preheat,

22 and current are increased
simultaneously, we
observe significantly
higher neutron yield, as
expected
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See Dave Ampleford's presentation 6A07 Friday at 11:40



We will continue to test MagLIF scaling through
41 further increases in magnetization, preheat, and

drive current

1015
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1012
wider range,

15 16 17 18 19 20 21 22 23 providing a more
complete
understanding

Current [MA]

Developing 20-25 T, 2-4 kJ, 20-21 MA in the next 2 years

• Our goal is to
understand how
target dynamics
change with
magnetization,
preheat, and
current drive



We are developing new coils and preheat
42 protocols, which will be tested on Z in 2020

• New laser pulse shape recently tested on
Z coupled 1.7 of 2.5 kJ on target
• >2 kJ possible with present laser capability

• Cryogenic cooling to reduce window
thickness will allow greater fraction of
energy deposition in the fuel
• Enables use of new phase plate (1.5 mm) with

minimal energy loss to window

• New orbital winding capability allows
improved internal reinforcement and
complex coil cross sections

• Targets magnetized to 20-30 T

• Maintains radial diagnostic access

Reduced LEH

window thickness:

0.5 p.m

'f ncreased fuel density:

1.4-2.1 mg/cm3

T. J. Awe, et al., Rev.

Sci. lnstrum. (2017).
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1 MagLIF has demonstrated the exciting potential43 of magneto-inertial fusion

• MagLIF produces fusion-relevant temperatures,
significant neutron yields, and magnetic trapping of
charged fusion products

• Improvements to the platform have enabled an order of
magnitude increase in neutron yield, consistent with
simulation predictions
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• Parametric scans in laser energy
and initial magnetization show
the expected trends in target
performance

• Additional improvements to the
platform are underway, which are
expected to increase neutron
production by another order of
magnitude
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