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EXECUTIVE SUMMARY 

Smart proxy technology leverages the art of artificial intelligence and machine learning in order 
to build accurate and very fast proxy models for highly complex numerical simulation models. In 
this project, smart proxy technology is used to replicate the results of a highly complex single 
phase CFD simulation with reasonable degree of accuracy while reducing the computational cost 
associated with such CFD simulations. 

The CFD model under study simulates the combustion of natural gas under various conditions 
such as varying natural gas composition and flow rate, inlet air flow rate and temperature, and 
outlet pressure in a High-Pressure Combustion Facility (B6 Combustor) with more than 4 million 
simulation cells. Only eight CFD simulation runs were used to create a smart proxy model that 
replicates the detail distribution of Pressure, Temperature, Nitrogen, Oxygen and Carbon-dioxide 
concentration in the CFD simulation model in seconds with less than 10% error. Following figure 
shows a validation example of the smart proxy results for the distribution of Pressure, comparing 
the CFD simulation result (left) to the smart proxy result (middle) and the error plot (right) showing 
the difference between the two simulation runs (Fluent vs. Smart Proxy). 
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1.   INTRODUCTION 

DOE-NETL is supporting projects to develop technologies that will improve the efficiency, cost, 
and environmental performance of complex power generation systems such as gas turbines and 
coal-fired power plants. In-situ monitoring of combustion phenomena is a critical need for optimal 
operation and control of such systems. CFD is an important tool currently being used to investigate 
and understand the dynamics of the combustion process in these systems. Gas turbine combustion 
is a complex process, and it can be a challenge to achieve accurate and reliable CFD simulation 
results at a reasonable computational cost. 

The challenge in CFD simulation of complex reaction flows is to adequately resolve the structures 
that exist at different spatial and temporal scales in an inherently transient flow. Additionally, in 
reacting gas-solid flow simulations, small time steps are needed in order to not only resolve the 
temporal scales of the flow, but also ensure numerical stability of the solution. A rule of thumb for 
adequate spatial resolution is for the grid spacing to be about 10 times the particle diameter [1]. 
The grid requirement for maintaining such a ratio of grid size to particle diameter for smaller size 
particles makes such simulations computationally costly and impractical [2]. Recent work at NETL 
[2] has shown the number of simulations, which is required for non-intrusive uncertainty 
quantification, can easily exceed many tens of simulations. The spatial and temporal resolution 
requirements for multiphase flows make CFD simulations computationally expensive and 
potentially beyond the reach of many design analysts [3]. 

The goal of this research work is to develop a data driven predictive model capable of replicating 
the thermal-flow pattern and species distribution results of CFD simulation of natural gas 
combustion in a High-Pressure Combustion Facility (B6 Combustor). Achieving this goal will 
significantly reduce the typical long time-to-solution characteristics of CFD simulations while 
preserving traditional CFD solver accuracy for the CFD simulation model under study. The 
developed smart proxy will contribute greatly to the development of technologies that improve the 
efficiency, cost, and environmental performance of complex power generation systems. 

1.1 Structure of the Work 

The report presented in this document details the research work performed in building a data driven 
predictive model that replicates transport variables in the CFD simulation of the combustion of 
natural gas in a High-Pressure Combustion Facility (B6 Combustor). The data driven modeling 
framework presented for the B6 Combustor model in this report will ultimately be applied to a 
more complex system (the Tri-State Coal-fired Boiler) in a separate project.  

In chapter one (this chapter), the problem was defined, and the final objective of the research was 
articulated. In chapter two, a brief background information is provided on key elements of the 
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research work. A brief description of the reaction flow and governing equations used in the 
numerical CFD simulation software is provided in order to lay the groundwork for understanding 
the engineering and scientific details associated with the CFD model being studied. A summary of 
the different machine learning and computing techniques used on the project is included in chapter 
two to provide a background to the solution methodology utilized. Also, a brief literature review 
on the use of AI and Machine learning relating to fluid dynamics is provided. 

In chapter three, a general overview of the end-to-end workflow of the smart proxy development 
process is introduced with a description of the design and implementation of the framework used 
for the development of the smart proxy model. This chapter provides a description of B6 
Combustor CFD simulation model, a detailed description of the simulation data received including 
the boundary conditions, a brief description of steps taken to develop the smart proxy model and 
a detailed description of the different machine learning algorithms used in the development 
process.  

Chapter four provides a lot more detail on every step taken to meet the objective of the research. 
Detail information is provided regarding the input training dataset and the neural network setup at 
each step of the development process. This chapter includes results and discussions for each step 
taken towards building the smart proxy model. Conclusions and recommendations for the next 
phase of the research are presented in chapter five. 
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2 BACKGROUND 

This section of the report provides some basic but necessary background on some key components 
of this research work. 

2.1 NETL’s High-Pressure Combustor Facility (B6 Combustor) 

Unconventional gas supplies, like shale gas, are expected to grow which will make U.S. natural 
gas composition more variable and the composition of fuel sources may vary significantly from 
existing domestic natural gas supplies. The effect of gas composition on combustion behavior is 
of interest to allow end-use equipment to accommodate the widest possible gas composition. The 
B6 Combustor is a high-pressure facility used at NETL to study both research and commercial gas 
turbine fuel injectors. B6 combustor experiments have been conducted at NETL to investigate the 
effect of varying fuel composition on combustion dynamics.  

The CFD simulation model was first validated with available experimental data which had been 
collected from the pressurized single injector combustion test rig. The tests were conducted at 7.5 
atm with a 589K preheated air. A propane blending facility was used to vary the site natural gas 
composition. The CFD simulation model predicted results were within the experimental error bar. 
After the CFD simulation model was validated with experimental results, a much wider range of 
gas composition was simulated to investigate the effect of gas composition on combustion. 
Another purpose of the high-pressure combustion facility is to develop a Combustion Control and 
Diagnostic Sensor (CCADS) to in-situ monitor the combustion phenomena which is based on the 
mechanisms for ion formation and electrical properties of a flame. 

2.2 Ansys Fluent 

The CFD model is based on the mass, momentum and energy balance equations with some other 
constitutive equations such as the equation of state to calculate the gas phase density. 

𝜌𝜌𝑔𝑔 =
𝑃𝑃𝑀𝑀𝑤𝑤𝑤𝑤

𝑅𝑅𝑇𝑇𝑔𝑔
 

Equation 2-1 
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Continuity equation: 

 

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜌𝜌𝑔𝑔� + 𝛻𝛻 ∙ �𝜌𝜌𝑔𝑔𝑢𝑢𝑔𝑔����⃗ � = �𝑅𝑅𝑔𝑔𝑔𝑔

𝑁𝑁

𝑖𝑖=1

 

Equation 2-2 

Momentum equation: 

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜌𝜌𝑔𝑔𝑢𝑢𝑔𝑔����⃗ � + 𝛻𝛻 ∙ �𝜌𝜌𝑔𝑔𝑢𝑢𝑔𝑔����⃗ 𝑢𝑢𝑔𝑔����⃗ � = −𝛻𝛻𝑃𝑃𝑔𝑔 + 𝛻𝛻 ∙ 𝜏𝜏𝑔𝑔� + 𝜌𝜌𝑔𝑔𝑔⃗𝑔 

Equation 2-3 

𝜏𝜏𝑔𝑔� = 𝜇𝜇𝑒𝑒 ��𝛻𝛻𝑢𝑢𝑔𝑔����⃗ + 𝛻𝛻𝑢𝑢𝑔𝑔����⃗
𝑇𝑇� −

2
3
𝛻𝛻 ∙ 𝑢𝑢𝑔𝑔����⃗ 𝐼𝐼� 

Equation 2-4 

As the gas phase is composed of several components such as the O2, N2, CO2 etc., the species 
transport equation 

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜌𝜌𝑔𝑔𝑌𝑌𝑖𝑖� + 𝛻𝛻 ∙ �𝜌𝜌𝑔𝑔𝑢𝑢𝑔𝑔����⃗ 𝑌𝑌𝑖𝑖� = −𝛻𝛻 ∙ 𝐽𝐽𝚤𝚤��⃗ + 𝑅𝑅𝑔𝑔𝑔𝑔 

Equation 2-5 

𝐽𝐽𝚤𝚤��⃗ = −�𝜌𝜌𝑔𝑔𝐷𝐷𝑖𝑖𝑖𝑖 +
𝜇𝜇𝑡𝑡
𝑆𝑆𝑆𝑆𝑡𝑡

� 𝛻𝛻𝑌𝑌𝑖𝑖 

Equation 2-6 

Where: 

• 𝝆𝝆𝒈𝒈 = gas density (kg/m3). 
• P = operating gas pressure (outlet pressure). 
• 𝑴𝑴𝒘𝒘= average molecular weight of gas. 
• R = universal gas constant (8.314 J/mol/K) 
• T = gas phase temperature.  
• 𝒖𝒖𝒈𝒈�����⃗  = gas phase velocity in x, y and z direction respectively. 
• 𝝉𝝉𝒈𝒈��� = stress tensor. 
• 𝒀𝒀𝒊𝒊 = fraction of species i in the gas phase. 
• 𝑹𝑹𝒈𝒈𝒈𝒈 = net rate of production of species i by chemical reaction. 
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• 𝒈𝒈��⃗  = gravity. 
• 𝑱𝑱𝒊𝒊��⃗  = diffusion flux of species due to the gradients of concentration. 
• 𝑫𝑫𝒊𝒊𝒊𝒊 = mass diffusion coefficient for species j in the mixture. 
• 𝝁𝝁𝒆𝒆 = effective viscosity (𝝁𝝁𝒆𝒆 = 𝝁𝝁𝒕𝒕 + 𝝁𝝁). 

• 𝝁𝝁𝒕𝒕 = turbulent viscosity (𝝁𝝁𝒕𝒕 = 𝝆𝝆𝝆𝝆𝝁𝝁
𝒌𝒌𝟐𝟐

𝜺𝜺
). 

**Subscript “g” means the gas phase, subscript “i” means the species i. 

Incompressible ideal gas law is used to calculate the gas density as the temperature changes a lot 
but the pressure changes little. The operating pressure is the pressure at the coal boiler outlet. For 
turbulent flows, the molecular viscosity is much smaller than the turbulent viscosity. 

2.2.1 Turbulence Model 

Realizable k-ε with standard wall functions as realizable k-ε model is more suitable for flow with 
swirling [4] [5] [6] [7] [8] [9] [10]. The realizable k-ε model differs from the standard k-ε model 
in two important ways: the realizable model contains an alternative formulation for the turbulent 
viscosity. A modified transport equation for the dissipation rate, has been derived from an exact 
equation for the transport of the mean-square vorticity fluctuation. The term “realizable” means 
that the model satisfies certain mathematical constraints on the Reynolds stresses, consistent with 
the physics of turbulent flows. Neither the standard k-ε model nor the RNG k-ε model is realizable. 

The difference between the realizable k-ε model and the standard and RNG k-ε models is that 𝐶𝐶𝜇𝜇  
is no longer constant but a function of the mean strain and rotation rates, the angular velocity of 
the system rotation, and the turbulence fields. 

𝑘𝑘 is the turbulence kinetic energy 

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜌𝜌𝑔𝑔𝑘𝑘� + 𝛻𝛻 ∙ �𝜌𝜌𝑔𝑔𝑘𝑘𝑢𝑢𝑔𝑔����⃗ � = 𝛻𝛻 ∙ ��𝜇𝜇 +

𝜇𝜇𝑡𝑡
𝜎𝜎𝑘𝑘
�𝛻𝛻𝛻𝛻� + 𝐺𝐺𝑘𝑘 + 𝐺𝐺𝑏𝑏 − 𝜌𝜌𝜌𝜌 − 𝑌𝑌𝑚𝑚 + 𝑆𝑆𝑘𝑘 

Equation 2-7 

𝜀𝜀 is the dissipation rate of turbulence kinetic energy 

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜌𝜌𝑔𝑔𝜀𝜀� + 𝛻𝛻 ∙ �𝜌𝜌𝑔𝑔𝜀𝜀𝑢𝑢𝑔𝑔����⃗ � = 𝛻𝛻 ∙ ��𝜇𝜇 +

𝜇𝜇𝑡𝑡
𝜎𝜎𝜀𝜀
� 𝛻𝛻𝛻𝛻� + 𝜌𝜌𝐶𝐶1𝑆𝑆𝑆𝑆 − 𝜌𝜌𝐶𝐶2

𝜀𝜀2

𝑘𝑘 + √𝜐𝜐𝜐𝜐
+ 𝐶𝐶1𝜀𝜀

𝜀𝜀
𝑘𝑘
𝐶𝐶3𝜀𝜀𝐺𝐺𝑏𝑏 + 𝑆𝑆𝜀𝜀 

Equation 2-8 

Where: 

• 𝑮𝑮𝒌𝒌 is generation of turbulence kinetic energy due to the mean velocity gradients. 
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• 𝑮𝑮𝒃𝒃 is the generation of turbulence kinetic energy due to buoyancy. 
• 𝒀𝒀𝒎𝒎 is the contribution of the fluctuating dilatation in compressible turbulence to the overall 

dissipation rate. 
• 𝑪𝑪𝟐𝟐 (1.9) and 𝑪𝑪𝟏𝟏𝟏𝟏 (1.44) are constants. 𝝈𝝈𝒌𝒌 (1.0) and 𝝈𝝈𝜺𝜺 (1.2) are the turbulent Prandtl numbers 

for k and ε respectively.  
• 𝑺𝑺𝒌𝒌 and 𝑺𝑺𝜺𝜺 are user-defined source terms. 

2.2.2 CFD Reaction Eddy-Dissipation Model 

Most fuels are fast burning, and the overall rate of reaction is controlled by turbulent mixing. The 
net rate of production of species due to reaction 𝑅𝑅𝑖𝑖,𝑟𝑟, is given by the smaller (that is, limiting value) 
of the two expressions below: 

𝑅𝑅𝑖𝑖,𝑟𝑟 = 𝜐𝜐𝑖𝑖,𝑟𝑟′ 𝑀𝑀𝑤𝑤,𝑖𝑖4.0𝜌𝜌
𝜀𝜀
𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅 �

𝑌𝑌𝑅𝑅
𝜐𝜐𝑅𝑅,𝑟𝑟
′ 𝑀𝑀𝑤𝑤,𝑅𝑅

� 

Equation 2-9 

𝑅𝑅𝑖𝑖,𝑟𝑟 = 𝜐𝜐𝑖𝑖,𝑟𝑟′ 𝑀𝑀𝑤𝑤,𝑖𝑖2.0𝜌𝜌
𝜀𝜀
𝑘𝑘

∑ 𝑌𝑌𝑃𝑃𝑃𝑃

∑ 𝜐𝜐𝑗𝑗,𝑟𝑟
′′ 𝑀𝑀𝑤𝑤,𝑗𝑗

𝑁𝑁
𝑗𝑗

 

Equation 2-10 

Where: 

• 𝒀𝒀𝑷𝑷 = mass fraction of any product species, P 
• 𝒀𝒀𝑹𝑹 = mass fraction of a reactant, R 
• 𝝊𝝊𝒊𝒊,𝒓𝒓′  = stoichiometric coefficient for reactant i in reaction r 
• 𝝊𝝊𝒊𝒊,𝒓𝒓′′  = stoichiometric coefficient for product i in reaction r 

2.2.3 CFD Heat Transfer Model 

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜌𝜌𝑔𝑔𝐻𝐻� + 𝛻𝛻 ∙ �𝜌𝜌𝑔𝑔𝐻𝐻𝑢𝑢𝑔𝑔����⃗ � = 𝛻𝛻 ∙ �

𝑘𝑘𝑡𝑡
𝐶𝐶𝑝𝑝
𝛻𝛻𝛻𝛻� + 𝑆𝑆ℎ 

Equation 2-11 
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𝐻𝐻𝑗𝑗 = � 𝐶𝐶𝑝𝑝,𝑗𝑗𝑑𝑑𝑑𝑑 + 𝐻𝐻𝑗𝑗0�𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟,𝑗𝑗�
𝑇𝑇

𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟

 

Equation 2-12 

H is the total enthalpy defined as 𝐻𝐻 = ∑ 𝑌𝑌𝑗𝑗𝐻𝐻𝑗𝑗𝑗𝑗  where 𝑌𝑌𝑗𝑗 is the mass fraction of species j and 𝐻𝐻𝑗𝑗 is 
the enthalpy of species j. The heat capacity 𝐶𝐶𝑝𝑝,𝑗𝑗 is defined as a function of temperature for each 
species. When the radiation model is being used, the source term 𝑆𝑆ℎ includes radiation source 
terms.  

Both conduction and convection require matter to transfer heat. Radiation is a method of heat 
transfer that does not rely upon any contact between the heat source and the heated object. Thermal 
radiation (often called infrared radiation) is a type of electromagnetic radiation (or light). Radiation 
is a form of energy transport consisting of electromagnetic waves traveling at the speed of light. 
No mass is exchanged, and no medium is required for radiation. 

 

Radiation Model 

Discrete Ordinates (DO) model is used as DO model needs more computational resource than 
other radiation model but the DO model is more complete [4] [11] [12] [5] [6] [7] [13] [9] [10]. 

DO is recommended by Fluent. Emissivity of gas can be calculated from Weighted-sum-of-grey-
gases model (WSGGM), which has been widely used in computational fluid dynamics and reached 
good balance between calculating efficiency and accuracy [14] [15]. WSGGM assumed that the 
emissivity of flue gas was decided by local temperature and partial pressure of gas species 

2.3 Machine Learning 

Artificial intelligence and machine learning are widely known technologies that aim to teach 
machines to learn from input data. Machine learning algorithms can be classified mainly into 
Supervised and Unsupervised learning algorithms. Supervised learning algorithms learn a function 
that, given a sample of data and desired outputs, best approximates the relationship between input 
features and output (also known as ground truth) observable in the data. Unsupervised learning 
algorithms, on the other hand, do not have labeled outputs; so, the goal is to infer the natural 
structure or underlying pattern present within a set of data points. 
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2.3.1 Fuzzy Clustering 

Clustering is a form of unsupervised learning technique which involves assigning data points (or 
objects) to clusters (groups) such that points in the same cluster are as similar as possible. The 
simplest form of cluster analysis is the hard clustering in which a data point exclusively belongs 
to a single cluster. Fuzzy clustering is useful in avoiding the arbitrariness of assigning an object or 
data point to only one cluster when it may be close to several. In fuzzy clustering (also called soft 
clustering), every object or data point belongs to every cluster with a membership weight that is 
between 0 (absolutely does not belong) and 1 (absolutely belongs) [16]. Cluster membership 
weights for any data point must sum up to 1. 

In this project, the skfuzzy package from a popular open-source machine learning library called 
Scikit-learn is used in performing fuzzy clustering tasks. 

2.3.2 Artificial Neural Networks (ANN) 

One of the most common supervised learning algorithms is the Artificial Neural Network (ANN). 
An ANN is a simple mathematical computational algorithm that is capable of learning from input 
data (machine learning) as well as discovering patterns (pattern recognition) [17].   

ANN is biologically inspired by the interconnections that take place between neurons in a human 
brain. Neurons carry and pass information from one neuron to another via synapse. The 
architecture of artificial neural networks consists of an input layer, one or more hidden layers, and 
an output layer. The input layer contains the information provided to the neural network in the 
form of attributes. The hidden layer is responsible for translating the information from the input 
layer to the output layer by a system of weighted connections and non-linear activation functions 
[17]. Figure 2-1 shows a typical ANN with four input attributes, three neurons in the hidden layer 
and a single neuron in the output layer. The strength of information passed from one artificial 
neuron to another is assigned by its “weight”. Optimization of these weights is crucial in the 
development of a well-trained neural network. 

 



Smart Proxy Modeling; Application of Artificial Intelligence & Machine Learning in Computational Fluid Dynamics 

 

West Virginia University  
Laboratory for Engineering Application of Data Science 9 

 

Figure 2-1: Artificial Neural Network Architecture 

 

In this project, a machine learning library in Python called Keras is used in modeling artificial 
neural networks [18]. Keras is an open source high-level neural networks API written in Python 
and capable of running on top of TensorFlow, CNTK, or Theano. In this project, the TensorFlow 
backend is used. 

2.3.3 Artificial Neural Network Performance Evaluation Metrics 

During the ANN training process, the objective function (also called loss function) is used in 
updating the weights of the neurons of the neural network. The performance of a neural network 
is often evaluated in the context of minimizing the total error between the neural network predicted 
values and the actual output values (ground truth). The most commonly used objective function 
(especially for regression tasks) is the Mean Square Error (MSE) which is the sum of squared 
differences between the predicted values and the actual output values, as shown by Equation 2-13. 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑁𝑁
��𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�

2
𝑁𝑁

𝑖𝑖=1

 

Equation 2-13 

 

In practice, while a portion of the entire dataset (called test or blind dataset) is set aside prior to 
training, to test the performance of the neural network on unseen data, a portion of the remaining 
data is usually set aside for calibration of the neural network as it is being trained. An optimization 
of the loss function on the calibration set helps to ensure that the neural network is not over-trained 
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(overfitting) or under-trained. In this project, we have taken a more unique approach to data 
partitioning for the development of neural networks. This approach is described in more detail in 
the body of this report. 

There are various ways to evaluate the performance of a neural network model. In machine 
learning, a very common metric is the percentage error which expresses the difference between 
the predicted value and actual value as a percentage of the actual value as shown in Equation 2-14. 

 

 % 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 −  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
 𝑥𝑥 100  

Equation 2-14 

 

2.3.4 Data Batching 

Artificial neural networks are trained using the gradient descent optimization algorithm in which 
the difference between the ANN predicted values and the actual values is used in estimating the 
error gradient. The error gradient is then used to update the model weights and the process is 
repeated. The estimate of the loss gradient is usually calculated based on all or a subset of the 
training dataset. The number of training samples used in estimating the error gradient is called 
batch size and it is an important hyper parameter that influences how the neural network learns. 
We refer to the concept of controlling the batch size as data batching.  

The error gradient is a statistical estimate. The more training examples used in the estimate, the 
more accurate this estimate will be and the more likely that the weights of the network will be 
adjusted in a way that will improve the performance of the ANN model in fewer number of 
iterations [19]. However, computing the gradient over a very large number of examples could be 
very computationally expensive especially when dealing with a large amount of data. However, 
using too few examples from the training data could result in less accurate and noisy estimates of 
the gradient. Nevertheless, these noisy updates can result in faster learning and sometimes a more 
robust model [19]. Data batching can be used to manage the tradeoff between computational cost 
and neural network performance. 

To manage the large amount of dataset involved (as we will show in this report) during the training 
of neural networks, we have used a combination of computing techniques in python programming 
called data generators and memory-mapping. Memory-mapping is a python computing technique 
used for accessing small segments of large files on disk, without reading the entire file into memory 
[20]. When it is not practical to load entire training dataset into the machine learning library due 
to memory limitation, data generators could be used to generate data in batches and continuously 
feed the data to the machine learning algorithm. In this project, we have memory-mapped very 
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large files containing training datasets and used custom built-in functions called data generators to 
feed the data in batches to the artificial neural networks. 

2.4 Previous Work 

The idea of using Artificial Intelligence in solving petroleum engineering problems was first 
introduced by Mohaghegh and Ameri [21] . They showed that an ANN can be used to automate 
the task of determining formation permeability based on geological well logs, thereby eliminating 
the need to perform the task repeatedly by log analysts. Mohaghegh and Ameri [21] also stated 
that neural network can handle far more complex tasks. Mohaghegh et al. [22] used ANN for 
predicting gas storage well performance after hydraulic fracture in their later investigations. This 
technology has been used to implement a unique approach to petroleum reservoir modeling by 
constructing top-down reservoir models (“TDM”) that use field measurements (i.e. production 
history, hydraulic fracturing, well logs etc.) to predict oil and gas production from shale reservoirs 
[23]. 

Data-driven smart proxy models have been used to take advantage of the “Big Data” solutions 
(machine learning and pattern recognition) to develop highly accurate replicas of numerical 
models with very fast response time [24]. Data-driven smart proxies implement machine learning 
and pattern recognition techniques, using generated numerical simulation data with efforts to 
significantly reduce the computational footprint and the time spent to conduct large complex 
numerical simulation runs [25]. 

Boosari [26] in a study developed a smart proxy model to predict the unsteady state behavior of 
fluid flow resulting from wall collapse in a 2-dimensonal rectangular water tank, using dataset 
generated from OpenFOAM CFD simulations. The results from the study showed that a smart 
proxy model can predict the CFD simulation results with less than 10% error, within a significantly 
reduced amount of time compared to the large computational footprint of the CFD simulations. 
Ansari et al. [3] used AI and machine learning to construct a smart proxy model to replicate the 
flow and particle behavior for a gas-solid multiphase flow in a non-reacting rectangular fluidized 
bed. The smart proxy was developed using cell-level data generated from CFD simulation runs 
using MFiX CFD simulation software. The work performed by Ansari et al. [3] showed that this 
technology can reproduce CFD simulation results with less than 10% error within just a few 
seconds.  
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3 B6 COMBUSTOR MODEL 

The objective of this chapter of the report is to provide a general overview of the end-to-end 
workflow involved in developing the smart proxy model for the B6 Combustor simulation models. 
This chapter provides a detailed description of the simulation data received including the boundary 
conditions, a brief description of descriptive analytical techniques used to develop the smart proxy 
model and a detailed description of the different machine learning algorithms used in the 
development process. A more detailed description of specific steps taken to develop the smart 
proxy model is provided in the next chapter, together with the results of the smart proxy model at 
each step of the development process. 

3.1 B6 Combustor Problem Definition 

It is known that relatively small changes in turbine engine ambient conditions and fuel composition 
can affect the combustion dynamics of operating engines. Combustion dynamics are a form of 
oscillating combustion that produces pressure oscillations at hundreds of cycles per second. If left 
uncontrolled, these oscillations can be very damaging, cracking metal combustion liners, 
triggering flashback, and producing thermal failure from enhanced heat transfer. A combination 
of numerical models and experimental testing have been used at NETL to investigate the effects 
of changing ambient conditions and fuel interchangeability (the volume fraction of propane 
addition to natural gas) on combustion dynamics (instabilities) [27].  

The B6 combustor has been used to study the effect of fuel composition on premix turbine 
combustion as well as to develop a Combustion Control and Diagnostic Sensor (CCADS) to in-
situ monitor the combustion phenomena. The experimental test rig has a propane blending facility 
which is used to vary the natural gas composition. The resultant pollutant and dynamic response 
from lean-premixed gas turbine systems relies heavily on adequate mixing of the fuel and air prior 
to reaching the reacting zones within the combustor [27]. The objective is to develop a smart proxy 
model capable of replicating the B6 combustor CFD simulation results of Pressure, Temperature, 
Nitrogen, Carbon-di-oxide and Oxygen distribution in the system, for varying composition and 
flow rates of air and fuel. Figure 3-1 shows a picture of the combustor rig [27]. 
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Figure 3-1: NETL's B6 Combustion Rig 

3.2 B6 Combustor CFD Simulation Model 

NETL’s High-Pressure Combustion Facility test rig is roughly 17.8cm (7.0in) diameter 
combustion chamber and the length of combustion zone is 0.91m (36in). It has been used to 
investigate the effect of fuel interchangeability on combustor performance (the volume fraction of 
propane addition to the natural gas) by testing different fuel-air equivalence ratios (0.42~0.48) on 
combustion performances.  

The B6 CFD simulation model is 17.8cm in diameter, and 0.91m in length, with a total of 
9,291,712 grid cells. Figure 3-2 shows the schematic of the simulation model. The B6 combustor 
is a steady state single phase (gas only) combustion model. Pre-heated air and pre-mixed fuel (main 
and pilot fuel at room temperature) is injected through the inlet. A set of nozzles at the inlet provide 
swirling effect for turbulent mixing of the gas as it enters the combustion chamber. A total of 8 
CFD simulation runs were initially generated with which the smart proxy model was developed. 
An additional 2 simulation runs were provided as a blind test following the development of the 
smart proxy model. CFD simulation runs were generated using the Ansys FLUENT software. 
Table 3-1 and Table 3-2 show the percent fuel composition, and other boundary conditions 
respectively for the initial 8 CFD simulation runs. Four of the eight simulation runs have methane 
composition ranging from 88.96% to 89.13%, these were tagged as the “Base” composition 
simulation cases. The other four cases were blended with more propane and have methane 
composition ranging from 84.15% to 84.425%, and these were tagged as the “Blend” cases. The 
gas composition of air at inlet and the fuel temperature at inlet remained the same across all cases.  
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Figure 3-2:Schematic of the B6 Combustion Simulation Model 

 

Table 3-1: Boundary Conditions for Development Cases – Inlet Fuel Composition 
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Table 3-2: Other Boundary Conditions for Development Cases 

 

 

Table 3-3 and Table 3-4 show the percent fuel composition, and other boundary conditions 
respectively for the additional 2 CFD simulation runs. One of the simulation runs is a “Base” case 
and the other a “Blind” case. These two simulation runs are sometimes referred to as “Extra Base” 
and “Extra Blind” respectively in this report. The gas composition of air at inlet and the fuel 
temperature at inlet used are the same as was used in the development simulation case runs. 

 

Table 3-3: Boundary Conditions for Blind Validation Cases – Inlet Fuel Composition 
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Table 3-4: Other Boundary Conditions for Blind Validation Cases 

 

 

The simulation results (solution data) generated from Fluent for each CFD run includes cell-level 
distribution of five attributes of interest: Pressure, Temperature, Nitrogen, Carbon-dioxide and 
Oxygen.  

3.3 B6 Smart Proxy Development Overview 

Development of the smart proxy model for the Simplified B6 Combustor model was carried out in 
three stages with multiple tasks performed in each stage. The general overview of these stages is 
shown in Figure 3-3 below. The first stage involves performing data quality check and building a 
data visualization tool for the project. In the second stage, a detailed exploratory and descriptive 
analysis of the data was performed, and the predictive model developed in the last stage. 
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Figure 3-3: Smart Proxy Development Framework for the B6 Combustion Model 

It is important to note that the descriptive and predictive modeling tasks of the framework were 
carried out in multiple steps, such that the modeling approach was continuously refined based on 
the resulting performance of the smart proxy model at each step. At each step, new features were 
generated and added to the database. A summary of the features that were added at each modeling 
step is provided in the Descriptive Analytics section of this chapter (3.3.3). A more detail 
description of these features with the corresponding smart proxy model results at each step is 
provided in the next chapter. 

3.3.1 Data Received from CFD Simulation Runs 

In addition to the B6 model boundary condition information described in Section 3.2, other data 
received from NETL include the solution data and model geometry data. The solution data contains 
cell level information on the distribution of each of the five transport variables of interest. The 
model geometry data contained the cell id, cell center coordinates (x, y, z), adjacent cell ids (i.e. 
ID of neighboring cells), and node ids of each cell in the simulation model. Data received for each 
simulation run contained a total of 21 files in *.txt file format with a total hard disk storage size of 
about 1.7 GB per simulation run. The boundary condition data was received in a single *.csv file. 
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3.3.2 Data Visualization Tool 

In order to check the quality of data received and for the purpose of validating the results of the 
B6 Smart Proxy model to be developed, a python script was developed to transform the data 
received (originally stored in *.txt file format) into a file format in which the model results can be 
visualized in three dimensions. As illustrated in Figure 3-4 below, the data was processed into 
*.vtk (Visualization Tool Kit) format files which were then imported into ParaView for 
visualization. ParaView is an open-source data analysis and visualization application which allows 
for 3D interactive data exploration. 

 

 

Figure 3-4: ParaView image generated from *.vtk files built from CFD Simulation Data 

 

The B6 Combustor model simulation mesh contains a total of 9,291,712 elements (i.e. cells) with 
about 8 million tetrahedral cells and approximately 950,000 wedge cells. Figure 3-5 provides a 
brief description of these cell types in terms of the number of faces and points. 
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Figure 3-5: B6 Combustor Simulation Mesh Cell Types 

 

Based on the entire simulation dataset collected from Fluent and the model boundary conditions 
described in Section 3.2, a structured database was generated for each CFD simulation case (for a 
total of 8 development cases). The following provides a description of the data received for each 
case run as shown in Figure 3-4. 

a. Fluent Solution Data: These set of files contain the output of CFD simulation calculations 
performed by Fluent for the five different transport variables of interest, at the cell level: 
Pressure (P), Temperature (T), Oxygen concentration (O2), Nitrogen concentration (N2) 
and Carbon-dioxide concentration (CO2). 
 

b. Cell IDs and Coordinates: These files contain the ID and cell center coordinates (x, y, z) 
for each element (i.e. focal cell) in the mesh.  

c. Cell Volume: File contains the volume of each focal cell in the mesh.  
d. Adjacent Cell IDs:  These files contain the ID of face-bounding (adjacent by face) cells for 

every focal cell in the mesh.  
e. Node IDs and Coordinates: These files contain the ID and coordinates of points (nodes) 

defining each focal cell in the mesh.  
f. Cells Adjacent to Walls: These files contain the ID of cells that are adjacent to the external 

walls of the model.   
g.  Cells Adjacent to Inlet: These files contain the ID of cells that are adjacent to the inlet 

wall.  
h. Cells Adjacent to Outlet: These files contain ID of cells that are adjacent to the outlet wall. 
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3.3.3 Descriptive Analytics 

Machine learning algorithms cannot work without data. Little to nothing can be achieved if there 
are too few features to represent the underlying pattern in the data to a machine learning algorithm. 
Comprehensive descriptive analytics of the simulation model dataset was performed and more 
features that further represents the underlying physics and dynamics of the combustion phenomena 
were generated into the project database. The descriptive analytics process was completed in four 
iterative steps. Below is a brief summary of features added at each step. More detail information 
and results at each step is provided in chapter four. 

In the first step of the descriptive analytics process, features added include information that 
represent the geometry of the cells and their distances to wall boundaries. Based on the 
performance of the smart proxy at this step, more features were generated and added to the 
database in step 2 of the process. In step 2, features representing the location of each focal cell and 
its neighborhood were generated into the database. This included information on the volumes of 
neighboring (face-bounding) cells, and information indicating if the focal cell was bounding a wall 
or not. In a realistic combustor, the overall rate of reaction is controlled by turbulent mixing. 
Mixing does not only occur as a result of a jet crossflow of the preheated air and fuel at the inlet 
but typically through some additional mechanism such as swirling flow which increases the 
turbulence intensity [27]. Features generated in step 3 of the process included a representation of 
this swirling effect on the combustion process. These include distances of each focal cell in the 
system to each of the swirler nozzles (see detail in chapter four). In step 4, an unsupervised 
machine learning technique called fuzzy clustering was applied to the entire system in order to 
group the over 9 million cells into classes based on the distribution of each transport variable of 
interest across all development simulation cases. This technique helps to provide more information 
to the training algorithm regarding the behavior of the B6 combustor simulation models. More 
detail regarding fuzzy clustering is provided in the Predictive Analytics section (Section 3.3.4) of 
this chapter. 

 

B6 Combustor Model Sectioning 

The computer machine available to the research team at the time of the project had 500GB hard 
disk storage, and 24GB of memory. Generating dataset required to train the smart proxy from the 
database required a significant amount of memory larger than the computer memory that was 
available to the research team. In fact, in steps 1 and 2 of the descriptive analytics process, the 
smart proxy model was developed for a small section of the B6 Combustor model at each step. 
This made it possible to complete the training of the model in a shorter length of time and quickly 
assess the contribution of newly added features at each step of the process. Due to this limitation 
in compute resource (memory and speed), the B6 Combustor simulation model was divided into 
seven sections in step 3, based on a detailed analysis of the distribution of the transport variables 
across all simulation runs. Figure 3-6 shows the model sectioning and naming convention for each 
section. Table 3-5 shows the number of cells by section for a single CFD simulation run. For each 
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transport variable of interest, an artificial neural network was trained for each section of the model 
and these networks were later combined to form the smart proxy model for the B6 Combustor. 
More information is provided in Section 3.3.4 regarding the setup of neural networks that were 
developed.  

 

 

Figure 3-6: B6 Combustor Model Sectioning 

 

Table 3-5: Total Number of Cells by Model Section 

 

 

 



Smart Proxy Modeling; Application of Artificial Intelligence & Machine Learning in Computational Fluid Dynamics 

 

West Virginia University  
Laboratory for Engineering Application of Data Science 22 

3.3.4 Predictive Analytics 

This section of the report presents the details of the machine learning algorithms used in learning 
the underlying pattern in the dataset, and the approach taken to validate the performance of the 
developed smart proxy model. 

Both supervised and unsupervised learning methods were used to meet the objective of the project. 
The unsupervised learning technique involves a cluster analysis of the dataset based on the cell-
level distribution of each CFD simulation output of interest across multiple simulation runs, while 
the supervised learning technique involves the use of artificial neural networks to learn the pattern 
in the dataset. 

 

Data Partitioning 

Before any learning (that is model training) was performed (whether supervised or unsupervised), 
data partitioning approach was decided and carefully implemented to avoid data leakage and 
ensure true confidence in the performance of the smart proxy to be developed. The importance of 
data partitioning has been highlighted in Section 2.3.1 in the background section of this report.  

Figure 3-7 illustrates the data partitioning approach used in the development of the smart proxy. 
We have taken a “double blind” approach. To successfully validate the performance of the 
proposed smart proxy, the two blind validation runs (referenced as Blind Validation Base - Case 
9 and Blind Validation Blend – Case 10 in Section 3.2) were completely kept out for double blind 
validation of the neural networks to be developed. During the development phase (i.e. neural 
network training), two (Base Case 1 and Blend Case 5) out of the eight development simulation 
cases were used as validation to assess the performance of the neural network before adjudging it 
as being completely developed. So only a total of six CFD simulation runs was used in training 
the final smart proxy model. The smart proxy was deployed on the blind validation cases 9 and 10 
only after completing all of the four development steps identified in the Descriptive Analytics 
section. The detail smart proxy results for the blind validation cases (9 and 10) is provided in 
chapter four, as well as the results of performance on the validation cases (1 and 5) at every step 
of the development process. 
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Figure 3-7: Data Partitioning 

 

Table 3-6: Boundary Conditions for B6 Combustor Simulation Model – Fuel Composition 
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Table 3-7: Additional Boundary Conditions for B6 Combustor Simulation Model 

 

 

Fuzzy Clustering 

A background to fuzzy clustering is already provided in Section 2.3.1(in the background section 
of this report). Fuzzy clustering helps to discover distribution of patterns in datasets. When 
meaningful patterns are identified, it can be very valuable input for a neural network to learn. The 
objective of the fuzzy clustering analysis performed in this project is to find the distribution pattern 
of each transport variable (i.e. CFD simulation output) of interest (for example Pressure) across 
the simulation case runs at the cell level in the system. Clustering involves assigning the cells to 
clusters (groups) such that cells in the same cluster are as similar as possible, in terms of the 
distribution of each transport variable of interest. Table 3-8 shows an example of the inputs and 
output information used in the analysis for n number of cells, where n is the total number of cells 
in the specific model section being developed or trained. The input to the clustering algorithm is 
the number of clusters to group the cells into, and cell-level values of the attribute of interest across 
the training and calibration Cases. For example, P3,2 refers to the pressure value in cell 3, 
simulation case 2. For this problem we have used three clusters and only the six training and 
calibration cases identified in Data Partitioning section above as input. The output is the degree of 
membership (membership weight) of each cell in each of the clusters (shown in cluster 
membership columns CM1, CM2, CM3 in Table 3-7). In practice, fuzzy clustering is often 
converted to an exclusive clustering by assigning each data point to the cluster in which its 
membership weight is highest. For this problem, we have added the exclusive clustering 
information (Cluster ID column in Table 3-8) to the fuzzy clustering information (CM1, CM2, 
CM3 columns) by assigning each cell to the cluster in which it has the highest membership. As 
mentioned in the Descriptive Analytics section (Section 3.3.3), clustering analysis was applied in 
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the last step of the development process and so, these two pieces of information (total four 
attributes) were included as input to every neural network model that was developed for the final 
B6 Smart Proxy model. 

 

Table 3-8: Input and Output Data to the Fuzzy Clustering Algorithm  

 

 

Artificial Neural Network Setup 

A neural network was trained, calibrated and validated for each model section and transport 
variable (a total of 35 neural networks). These neural networks were then coupled together to form 
the B6 smart proxy model. 80% of the samples (randomly selected) from the six training and 
calibration cases (base cases 3,4,7 and blend cases 2,6,8) identified in the Data Partitioning section 
was used to train the neural networks while the remaining 20% was used to continuously calibrate 
the neural network and check when to stop training in order to avoid overfitting. Neural network 
hyper-parameters were continuously tuned for better performance on validation cases 1 and 5. 

All neural networks trained were single hidden layer, one output networks. The rectilinear 
activation function was used in all neural network models. The number of hidden neurons used 
varied from 15 to 2500 and the total number of training epochs completed for any attribute and 
model section varied from 15 to 100. The smart proxy model was developed for Pressure, 
Temperature, Carbon-dioxide, Oxygen and Nitrogen. 

 

Data Batching 

Though dividing the model into seven smaller sections helped in managing the compute resource 
limitation by preparing the training dataset section by section, the total number of training samples 

Cell ID 2 3 4 6 7 8 CM1 CM2 CM3 Cluster ID
1 P1,2 P1,3 P1,4 P1,6 P1,7 P1,8 CM1,1 CM1,2 CM1,3 f (Max(CM1,1,CM1,2,CM1,3)
2 P2,2 P2,3 P2,4 P2,6 P2,7 P2,8 CM2,1 CM2,2 CM2,3 f (Max(CM2,1,CM2,2,CM2,3)
3 P3,2 P3,3 P3,4 P3,6 P3,7 P3,8 CM3,1 CM3,2 CM3,3 f (Max(CM3,1,CM3,2,CM3,3)
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
n Pn,2 Pn,3 Pn,4 Pn,6 Pn,7 Pn,8 CMn,1 CMn,2 CMn,3 f (Max(CMn,1,CMn,2,CMn,3)

Cell Pressure Values by CFD Case Cluster Memberships & ID
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by section was still too large to fit into the computer memory to train a neural network. This 
problem was addressed by using a combination of computing techniques called memory-mapping 
and data generators. The basis for these techniques has been described in Section 2.3.4 in the 
background section of this report. For each section of the model, file containing the training dataset 
was memory-mapped to the virtual memory of the machine and the data fed in batches to the neural 
network for training. Memory-mapping is a python computing technique used for accessing small 
segments of large files on disk, without reading the entire file into memory [20]. When it is not 
practical to load entire training dataset into the machine learning library due to memory limitation, 
data generators could be used to generate data in batches and continuously feed the data to the 
machine learning algorithm. Different training data batch sizes (ranging from 5,000 to about 
200,000 samples) were tested in other to optimize the performance of the neural networks. 
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4 SMART PROXY DEVELOPMENT STEPS 

In the previous chapter, we presented a general overview of the tasks performed at different stages 
in the project – Data quality check and visualization, Descriptive analytics, and Predictive 
analytics. Data received directly from the CFD simulation runs does not have enough information 
for the neural network to train as-is in the predictive analytics stage. Multiple steps were taken to 
generate features that represents the flow, reaction and heat transfer phenomenon occurring in the 
combustion chamber, so as to assist the neural network to learn the underlying pattern in the 
distribution of the transport and species variables (Pressure, Temperature, Nitrogen, Oxygen and 
Carbon-dioxide) throughout the combustor system. 

The descriptive and predictive modeling stages of the process were carried out in multiple steps, 
such that the modeling approach was continuously refined based on the resulting performance of 
the smart proxy model following the inclusion of newly generated features at each step. These 
steps are summarized into four main steps listed below and are labelled based on the description 
of what features were generated into the database and included in the neural network training at 
each step. 

• Step 1 – Cell Geometry and Distances to Wall Boundaries 
• Step 2 – Cell neighborhood, Location and Euclidian Distances to Wall Boundaries 
• Step 3 – Swirler Distances 
• Step 4 – Fuzzy Clustering 

Detail description of work performed and smart proxy results for each step are presented in this 
chapter. 

4.1 Model Development Step 1: Cell Geometry and Distances to Wall 
Boundaries 

In gas combustion chambers such as the B6 combustor, a large proportion of the total heat flux to 
the walls of the combustor is by radiation from the flame [28]. Radiation exchange between 
surfaces in addition to their radiative properties and temperatures strongly depends on the surface’s 
geometries, orientations and separations distance [29]. The closer a cell is to the source of heat in 
the combustor, the greater the intensity of radiation energy received.  

In step 1 of the development process, features representing the geometry and location of each cell 
were generated into the database. The cell geometry attribute is represented by the number of nodes 
bounding each focal cell in the model, which specifies if a cell is a tetrahedron or a wedge. The 
cell location attribute specifies in which section of the system each focal cell is located (whether 
in Inlet, Combustor or Exhaust) and additionally specifies how close to the wall the focal cell is. 
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To generate these features, four boundaries were identified as Inlet, Outlet, inlet-to-combustor, 
combustor-to-exhaust. The inlet and outlet boundaries refer to the walls bounding the inlet and 
outlet of the system respectively. The inlet-to-combustor refers to the boundary where the system 
geometry transitions from the inlet into the combustion chamber while the combustor-to-exhaust 
refers to the boundary where the system geometry transitions from the combustion chamber into 
the exhaust section. Since the 3 main sections of the system have different diameters, the radial 
distance of each focal cell to the radial boundary must be accounted for. The distances of each 
focal cell to the nearest radial boundary and farthest radial boundary was calculated and added to 
the database. A total of 7 new features were added to the database in step 1. 

Figure 4-1, Figure 4-2, and Figure 4-3 illustrate how the distances of cells to the boundaries, were 
calculated for arbitrary cells located at the inlet, combustion chamber, and exhaust respectively.  

 

 

Figure 4-1: Calculated distances of cells located at the inlet 

 

 

Figure 4-2: Calculated distances of cells located at the combustion chamber 
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Figure 4-3: Calculated distances of cells located at the exhaust 

 

A 500 GB storage, 4 cores and 24 GB RAM desktop computer was used in preparing the training 
dataset and training the neural networks. In order to address the limitations in compute memory 
and speed considering the large amount of data being processed, only the inlet section of the system 
(as shown in Figure 4-4) was used in model development in Step 1. The total number of cells at 
the inlet section is approximately 2,389,668. In order to further address the memory limitation 
problem and increase the processing and development time, 2 million cells were randomly selected 
from the inlet section for processing. The same random set of cells were selected for each of the 
six training and calibration cases already identified in data partitioning (See Section 3.3.4). As a 
first trial step in the development process, only two attributes (Pressure and Carbon-dioxide) were 
modeled and analyzed. 

 

 

Figure 4-4: Step 1 – Target section for training and development of the neural network 
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4.1.1 Model Development Step 1 – Model Training Information 

For each attribute, a total of 23 input features were used in training a neural network for the 
randomly selected cells at the inlet section of the system. Table 4-1 shows the list of input 
attributes. 16 out of the 23 features were originally provided as part of data exported from 
FLUENT software. These includes focal cell location and geometry information (X, Y, and Z 
coordinates and cell volume), and simulation model boundary conditions (fuel composition, air 
and fuel flow rates and temperature, and pressure at the outlet). The other seven attributes were 
generated in Step 1, and these include the number of nodes on each focal cell, and distances to the 
boundaries described in Section 4.1. 

Only the eight development cases (cases 1 through 8) were used in Step 1. The six training and 
calibration cases (base cases 3, 4, 7 and blended cases 2, 6, 8) identified in Section 3.3.4 were used 
in training the neural network. A total of 12 million samples (2 million cells from inlet section 
across all six cases) were used in training and calibration. Specifically, 80% of the samples 
(selected at random) were used in training while the remaining 20% were used as calibration 
samples. The base case 1 and blind case 5 were used for validating each neural network after each 
training attempt. The neural network hyper-parameters were continuously tuned for better 
performance on the validation cases 1 and 5.  

For each attribute, a single hidden-layer neural network with one output was built. The size of the 
training dataset (approximately 6.39GB) could not fit in memory of the desktop machine being 
used to train the neural networks and therefore, computing techniques mentioned in Section 2.3.4 
(Data Batching) in the background section of this report, were used to address this challenge. File 
containing the training dataset (for an attribute) was memory-mapped to the virtual memory of the 
machine and the data fed in batches to the neural network for training. Different training data batch 
sizes were tested in other to optimize the performance of the neural networks. Batch sizes tested 
range from about 10,000 samples/batch to 100,000 samples/batch). The rectilinear activation 
function was used in the hidden and output layers. Different number of hidden neurons were also 
tested to optimize neural network performance. Number hidden neurons tested ranged from about 
50 – 200 neurons. 
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Table 4-1: Training Input Attributes in Development Step 1 

 

4.1.2 Model Development Step 1 – Presentation of Results 

In this section, the smart proxy results for the distribution of carbon-dioxide in the inlet section for 
the two validation cases (Base Case 1 and Blend Case 5) are presented. Two figures are displayed 
in which the first figure shows the distribution of carbon-dioxide in the exterior of the inlet section 
while the second figure shows a cross-section of the inlet when cut in half. The second figure 
shows the distribution of carbon-dioxide in the interior parts of the inlet section. In both figures, 
the first image (on left) shows the result from the CFD simulation model as obtained from 
FLUENT, followed by the results of the smart proxy model (middle) while the last image (on right) 
is the percent error plot comparing the CFD simulation result with the smart proxy result. For the 
carbon-dioxide and other gas species, percent error is calculated by taking the absolute difference 
between the CFD simulation result and the smart proxy result.  
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Inlet Exterior 

 

 

Inlet Interior 

Figure 4-5: Step 1 Smart Proxy Results for Validation Case 1 – Carbon Dioxide 
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Inlet Exterior 

 

 

Inlet Interior 

Figure 4-6: Step 1 Smart Proxy Results for Validation Case 5 – Carbon Dioxide 

4.2 Model Development Step 2: Cell neighborhood, Location and Euclidian 
Distances to Wall Boundaries 

Results obtained in Step 1 showed that there was still not enough information for the neural 
network to learn the underlying pattern in the system. In FLUENT software, as with many other 
numerical simulation applications, the value of a dynamic variable or properties in any given grid 
or cell is mostly impacted by the value of the variable in neighboring cells. In addition to already 
existing features, more features further representing the location of each cell and its neighborhood 
were therefore generated into the database.  

In Step 1, the calculated distances to the inlet, inlet-combustor, combustor-exhaust and outlet 
boundaries were straight horizontal distances. In order to further communicate focal cell locations 
to the neural network, the Euclidean distances to a fixed point (center) on these boundaries were 
calculated and added to the database. Figure 4-7 is an illustration of how the Euclidean distance 
was calculated for an arbitrary cell at position x,y,z (represented by the yellow circle) to the center 
(represented by the red circle) of the inlet-combustor boundary. The closest and farthest radial 
distances were calculated in Step 1, the ratio of these distances was calculated and added to the 
database in Step 2. 
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Figure 4-7: Euclidean Distances to a Fixed Point on a given Boundary 

 

In order to represent focal cell neighborhood information, the volume of up to any four face 
surrounding cells were included for each focal cell. In addition to the volume of surrounding cell 
attributes, the total number of adjacent (face-bounding) cells were added and features representing 
whether a focal cell is bounding the inlet, outlet or any surrounding wall were also added to the 
database. A total of thirteen new features (as shown in Table 4-2) were generated and added to the 
database in Step 2. 

Recall that random sampling of cells in the inlet section was necessary to address the compute 
resource limitation challenge in order to train the neural networks in Step 1. In order to avoid 
having to train with a sampled dataset, it was decided to perform the next development analysis 
with a section of the model where a sizeable portion of the system can be analyzed without 
exceeding the memory capacity of the machine being used. The first half combustion chamber 
portion of the system has approximately 2 million cells while it has about the same length along 
the Z-axis as the inlet section. As shown in Figure 4-8, the first half of the combustion chamber 
was therefore selected for analysis in Step 2 of the development process. 
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Figure 4-8: Step 2 – Target section for training and development of the neural network 

 

4.2.1 Model Development Step 2 – Model Training Information 

In Step 2 of the development process, only the pressure distribution was modeled. The data 
partitioning approach is as described in the model development Step 1. Six cases (2, 3, 4, 6, 7, 8) 
were used for training and calibration of the neural network while 2 cases (base case 1 and blend 
case 5) were used as validation after each training attempt.  

The total number of training and calibration samples was 12,034,230 (6 cases x 2,005,705) while 
4,011,410 (2 cases x 2,005,705) samples was used to validate the neural network. As mentioned 
in Step 1, the data batching technique was used at this step to feed data in batches to the training 
algorithm, and a single hidden-layer neural network with one output was built. A total of 36 input 
attributes were used in training the neural network as shown in Table 4-2. 
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Table 4-2: Training Input Attributes in Development Step 2 

 

 

4.2.2 Model Development Step 2 – Presentation of Results 

The following figures show the results of the smart proxy model developed in Step 2. The results 
presented include the pressure distribution for the validation cases (1 and 5) and two of the training 
cases (2 and 6).  

Each figure contains a total of 12 images: the first six images show an exterior view of the model 
for two cases while the following six images show an interior view of the model for the same two 
cases. Moreover, the left-hand side images represent the actual CFD model simulation generated 
from Ansys Fluent, the middle images represent the smart proxy model, and the right-hand side 
images show the error difference between the actual CFD model and the smart proxy model.  

Results for the remaining attributes of interest were not generated as the objective was to evaluate 
the performance of the developed neural network. 
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Half Combustor Exterior 

 

Half Combustor Exterior 

Figure 4-9: Step 2 Smart Proxy Results for Training Cases 1&5 – Pressure 
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Half Combustor Exterior 

 

Half Combustor Interior 

Figure 4-10: Step 2 Smart Proxy Results for Training Cases 2&6 – Pressure 
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4.3 Model Development Step 3: Swirler Distances 

In a realistic combustor, the overall rate of reaction is controlled by turbulent mixing. Mixing does 
not only occur as a result of a jet crossflow of the preheated air and fuel at the inlet but typically 
through some additional mechanism such as swirling flow which increases the turbulence intensity 
[27]. The results obtained in Step 2 showed that the neural network was missing the reaction flow 
pattern (especially at the inlet-combustor boundary) created by the air-fuel mixing effect of the 
swirlers at the inlet. The newly generated features in Step 3 included a representation of this 
swirling effect on the combustion process. These includes calculating the distances of each focal 
cell in the system to each of the thirteen swirler nozzles. Figure 4-11 illustrates how these distances 
are calculated for an arbitrary cell in the system. 

 

 

Figure 4-11: Distance to Swirler Nozzles 

 

Based on what was learned in Steps 1 and 2 of the development process, the total number of 
samples that the available desktop machine could handle in development was already known. This 
information, coupled with a detail analysis of the distribution of the transport variables of interest 
(pressure, temperature, oxygen, nitrogen and carbon-dioxide) across all development cases was 
used in dividing the system into sections for development purpose. The B6 Combustor model was 
divided into seven different development sections. Figure 4-12 shows the model sectioning and 
naming convention for each section. Table 4-3 shows the number of cells by section for a single 
CFD simulation run. 
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Figure 4-12: Model Sectioning 

 

Table 4-3: Total Number of Cells by Model Section 

 

 

Once the model was properly sectioned, the section with the smallest number of cells, the first 
Quarter Combustor (Q1-Combustor) as shown in Figure 4-13 was selected as the section to be 
modeled in the third step of the development process. The number of cells and the combustion 
activity occurring at the Q1-Combustor section were some of the factors considered to effectively 
evaluate the effect of the newly generated features on the performance of the neural network in a 
timely manner.  
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Figure 4-13: Step 2 – Target section for training and development of the neural network 

 

4.3.1 Model Development Step 3 – Model Training Information 

The same data partitioning used in earlier steps was implemented in Step 3. Six cases (2, 3, 4, 6, 
7, 8) were used for training and calibration while two cases (1 and 5) were used as validation after 
each training attempt. All five attributes of interest (P, T, N2, O2, CO2) were modeled in this step. 
Furthermore, a single hidden-layer neural network with one output was built for each attribute. 
The list of training input attributes in Step 3 is provided in Table 4-4. 

Table 4-4: Training Input Attributes in Development Step 3 
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4.3.2 Model Development Step 3 – Presentation of Results 

All attributes were modeled for the Q1 Combustor section, but we only present the results for 
pressure, temperature, and carbon dioxide distributions for the two validation cases base case 1 
and blend case 5. Similar quality of results was obtained for nitrogen and oxygen and these are 
presented in Appendix 7. The results for each attribute are presented in two figures. The first figure 
shows the result for the entire Q1 Combustor section while the second figure shows a quarter of 
the Q1 Combustor. Each figure contains a total of 4 images for a single case. The images on the 
left represent the CFD model simulation. The images on the right represent the smart proxy model. 
The top and bottom images show the front and the back of the Q1 combustor section respectively.  

 

 
Figure 4-14: Step 3 Results (Q1 Combustor Full View) for Validation Case 1 – Pressure 
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Figure 4-15: Step 3 Results (Q1 Combustor Quarter View) for Validation Case 1 – Pressure
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Figure 4-16: Step 3 Results (Q1 Combustor Full View) for Validation Case 5 – Pressure 

 

Figure 4-17: Step 3 Results (Q1 Combustor Quarter View) for Validation Case 5 – Pressure
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Figure 4-18: Step 3 Results (Q1 Combustor Full View) for Validation Case 1 – Temperature 

 

 

Figure 4-19: Step 3 Results (Q1 Combustor Quarter View) for Validation Case 1 – Temperature



46 

 

 

Figure 4-20: Step 3 Results (Q1 Combustor Full View) for Validation Case 5 – Temperature 

 

 

Figure 4-21: Step 3 Results (Q1 Combustor Quarter View) for Validation Case 5 – Temperature 
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Figure 4-22: Step 3 Results (Q1 Combustor Full View) for Validation Case 1 – Carbon 
dioxide 

 

Figure 4-23: Step 3 Results (Q1 Combustor Quarter View) for Validation Case 1 – Carbon 
Dioxide 
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Figure 4-24: Step 3 Results (Q1 Combustor Full View) for Validation Case 5 – Carbon 
Dioxide 

 

 

Figure 4-25: Step 3 Results (Q1 Combustor Quarter View) for Validation Case 5 – Carbon 
Dioxide 
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4.4 Model Development Step 4: Fuzzy Clustering 

While the results obtained in step 3 showed significant improvement in smart proxy performance 
compared to the results obtained in Step 1 and Step 2, there were still opportunities to be explored 
for improvement.  

In the last step of the model development process, new features were generated to further represent 
the physics of the reaction flow occurring in the combustion process. This involved clustering cells 
in each of the seven development sections of the system such that for each attribute, cells with 
similar distribution of the attribute are grouped together. Detail description of this technique has 
been provided in Chapter 3 and in the background section of this report. 

In addition to the clustering information that was added to the database, a new feature representing 
the extent of propane blend was added. This was specified by taking the ratio of methane flow rate 
to propane flow rate in the simulation model. A total of five new features were added in Step 4. 
Table 4-5 shows the list of added features in this step. 

In Step 4a, neural networks were trained, calibrated, and validated for all sections of the B6 
combustor. Details of each section are summarized in Table 4-3 and graphically illustrated in 
Figure 4-12. 

4.4.1 Model Development Step 4 – Model Training Information 

The same data partitioning approach as used in previous steps was used. Six cases (Cases 2, 3, 4, 
6, 7, and 8) were used for training (80% randomly selected samples in the six cases) and calibration 
(remaining 20% of samples in the six cases) of the neural network. Base case 1 and blend case 5 
were used for validation of each neural network at the end of each training attempt. The size of 
each development dataset is summarized in Table 4-3. As shown in Table 4-5, a total of 54 input 
attributes were used in training the neural networks. 

A neural network was developed for each attribute in each of the seven development sections, 
therefore a total of 35 neural networks was trained in Step 4. Each fully trained neural network 
was finally deployed on the Extra Base Case 9 and Extra Blend Case 10, as a blind test of the 
performance of the neural networks. For each attribute, results for all seven development sections 
were combined for better visualization of the entire system. 
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Table 4-5: Training Input Attributes in Development Step 4 

 

 

4.4.2 Model Development Step 4 – Presentation of Results 

This section presents the smart proxy results of the distribution of all attributes in the entire B6 
Combustor system. Each attribute result is graphically and numerically presented by (a) a 
histogram describing the percent error distribution (all attributes shown under a 5% error with the 
exception of Temperature shown in a 10% error scale), (b) two tables; one table suggesting the 
number of cells within a 100% error scale and the second table providing a more detailed insight 
of the error distribution below 10%, and (c) two 3-Dimensional images showing distribution of 
the attribute in the entire system and a half cross-section view of the system.  
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Figure 4-26: Step 4 Error Histogram for Blind Validation Case 9 – Pressure 

 

Table 4-6: No. of Cells Under 100% Error 
for Blind Validation Case 9 – Pressure 

 

 

 

 

 

Table 4-7: No. of Cells Under 10% Error for 
Blind Validation Case 9 – Pressure 
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Figure 4-27: Step 4 Results (Entire System) for Blind Validation Case 9 – Pressure 

 

Figure 4-28: Step 4 Results (Half View) for Blind Validation Case 9 – Pressure 
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Figure 4-29: Step 4 Error Histogram for Blind Validation Case 9 – Temperature  

 

Table 4-8: No. of Cells Under 100% Error for 
Blind Validation Case 9 – Temperature 

 

 

 

 

Table 4-9:No. of Cells Under 10% Error for 
Blind Validation Case 9 – Temperature 
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Figure 4-30: Step 4 Results (Entire System) for Blind Validation Case 9 – Temperature 

 

Figure 4-31: Step 4 Results (Half View) for Blind Validation Case 9 – Temperature 



Smart Proxy Modeling; Application of Artificial Intelligence & Machine Learning in Computational Fluid Dynamics 

 

West Virginia University  
Laboratory for Engineering Application of Data Science 55 

 

Figure 4-32: Step 4 Error Histogram for Blind Validation Case 9 – Carbon Dioxide 

 

Table 4-10:No. of Cells Under 100% Error 
for Blind Validation Case 9 – Carbon Dioxide 

 

 

 

 

Table 4-11: No. of Cells Under 10% Error for 
Blind Validation Case 9 – Carbon Dioxide 
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Figure 4-33: Step 4 Results (Entire System) for Blind Validation Case 9 – Carbon Dioxide 

 

Figure 4-34: Step 4 Results (Half View) for Blind Validation Case 9 – Carbon Dioxide 
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Figure 4-35: Step 4 Error Histogram for Blind Validation Case 9 – Nitrogen 

 

Table 4-12: No. of Cells Under 100% Error 
for Blind Validation Case 9 – Nitrogen 

 

 

 

 

Table 4-13: No. of Cells Under 10% Error for 
Blind Validation Case 9 – Nitrogen 
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Figure 4-36: Step 4 Results (Entire System) for Blind Validation Case 9 – Nitrogen 

 

Figure 4-37: Step 4 Results (Half View) for Blind Validation Case 9 – Nitrogen 



Smart Proxy Modeling; Application of Artificial Intelligence & Machine Learning in Computational Fluid Dynamics 

 

West Virginia University  
Laboratory for Engineering Application of Data Science 59 

 

Figure 4-38: Step 4 Error Histogram for Blind Validation Case 9 – Oxygen 

 

Table 4-14: No. of Cells Under 100% Error 
for Blind Validation Case 9 – Oxygen 

 

 

 

 

Table 4-15: No. of Cells Under 10% Error for 
Blind Validation Case 9 – Oxygen 
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Figure 4-39: Step 4 Results (Entire System) for Blind Validation Case 9 – Oxygen 

 

Figure 4-40: Step 4 Results (Half View) for Blind Validation Case 9 – Oxygen 
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Figure 4-41: Step 4 Error Histogram for Blind Validation Case 10 – Pressure 

 

Table 4-16: No. of Cells Under 100% Error 
for Blind Validation Case 10 – Pressure 

 

 

 

 

Table 4-17: No. of Cells Under 10% Error for 
Blind Validation Case 10 – Pressure 
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Figure 4-42: Step 4 Results (Entire System) for Blind Validation Case 10 – Pressure 

 

Figure 4-43: Step 4 Results (Half View) for Blind Validation Case 10 – Pressure 
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Figure 4-44: Step 4 Error Histogram for Blind Validation Case 10 – Temperature 

 

Table 4-18: No. of Cells Under 100% Error 
for Blind Validation Case 10 – Temperature 

 

 

 

 

Table 4-19: No. of Cells Under 10% Error for 
Blind Validation Case 10 – Temperature 
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Figure 4-45: : Step 4 Results (Entire System) for Blind Validation Case 10 – Temperature 

 

Figure 4-46: Step 4 Results (Half View) for Blind Validation Case 10 – Temperature 
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Figure 4-47: Step 4 Error Histogram for Blind Validation Case 10 – Carbon Dioxide 

 

Table 4-20: No. of Cells Under 100% Error 
for Blind Validation Case 10 – Carbon 

Dioxide 

 

 

 

 

Table 4-21: No. of Cells Under 10% Error for 
Blind Validation Case 10 – Carbon Dioxide 
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Figure 4-48: Step 4 Results (Entire System) for Blind Validation Case 10 – Carbon Dioxide 

 

Figure 4-49: Step 4 Results (Half View) for Blind Validation Case 10 – Carbon Dioxide 



Smart Proxy Modeling; Application of Artificial Intelligence & Machine Learning in Computational Fluid Dynamics 

 

West Virginia University  
Laboratory for Engineering Application of Data Science 67 

 

Figure 4-50: Step 4 Error Histogram for Blind Validation Case 10 –Nitrogen 

Table 4-22: No. of Cells Under 100% Error 
for Blind Validation Case 10 – Nitrogen 

 

Table 4-23: No. of Cells Under 10% Error for 
Blind Validation Case 10 – Nitrogen 
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Figure 4-51: Step 4 Results (Entire System) for Blind Validation Case 10 –Nitrogen 

 

Figure 4-52: Step 4 Results (Half View) for Blind Validation Case 10 –Nitrogen 
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Figure 4-53: Step 4 Error Histogram for Blind Validation Case 10 –Oxygen 

Table 4-24: No. of Cells Under 100% Error 
for Blind Validation Case 10 – Oxygen 

 

Table 4-25: No. of Cells Under 10% Error for 
Blind Validation Case 10 – Oxygen 
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Figure 4-54: Step 4 Results (Entire System) for Blind Validation Case 10 –Oxygen 

 

Figure 4-55: Step 4 Results (Half View) for Blind Validation Case 10 –Oxygen
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5 CONCLUSIONS 

It has been successfully demonstrated that a data driven predictive model can reproduce the results 
of CFD simulation of natural gas combustion in a high-pressure combustor system. The developed 
smart proxy replicates the thermal-flow patterns of pressure, temperature, and species 
concentrations (nitrogen, oxygen and carbon-dioxide) with a percent error of not more than 10%, 
and a faster execution time compared to the numerical CFD simulation approach. A single CFD 
simulation run of the B6 Combustor model takes about 24 hours or more to complete on the NETL 
HPC with single node 196GB RAM, 40 cores while the smart proxy generates results in about 5 -
6 minutes when executed on the same HPC configuration. This time can be further reduced if the 
compute resource limitations (computer memory and speed) are properly addressed and the system 
is modeled without having to divide into smaller development sections.  

More importantly, the smart proxy model achieved this level of accuracy using a very minimal 
amount of data; only six CFD simulation runs of the B6 Combustor model was used in developing 
the B6 smart proxy model. While CFD simulations require extensive compute resources, the 
developed smart proxy can be deployed on commodity computers (inexpensive laptop or desktop 
machines). This proves that this technology can contribute significantly to research studies that are 
targeted at determining optimal design and operating conditions that would maximize the 
efficiency of complex power generation systems. 

5.1 RECOMMENDATIONS 

The final modeling results shown in Section 4.4.2 of this report shows that the smart proxy 
development framework applied can replicate the results of CFD simulation of a single-phase 
reaction flow in a high-pressure combustor to a reasonable degree of accuracy. The results however 
could be improved, especially for a thermal flow field variable such as temperature. Apart from 
the simulation model boundary conditions, no reaction data from FLUENT software was used in 
developing the smart proxy model. It might be worth identifying potential contribution of the other 
successfully modeled transport and specie variables (pressure, oxygen, nitrogen and carbon-
dioxide) to the modeling of the thermal flow field. Perhaps, the neural networks may further learn 
the reaction flow characteristics if transport data such as the turbulent kinetic energy and 
dissipation rate are also modeled. 

Training a single neural network on the entire system for each attribute will increase the amount 
of information provided to any single neural network in the smart proxy model and improve 
performance as opposed to a total of seven networks currently built for each attribute. In order to 
efficiently fulfill the objective of the next phase of the project, which is a more complex multi-
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phase reaction flow in a coal-fired boiler, an access to a high-performance-computing (HPC) 
facility is highly recommended.



73 

 

6 REFERENCES 

 

[1]  W. Fullmer and C. Hrenva, "Quantitative assessment of fine-grid kinetic theory based 
predictions of mean-slip in unbounded fluidization," AIChE Journal, vol. DOI 10.1002/aic. 
62, pp. 11-17, 2016.  

[2]  M. Shahnam, A. Gel, J.-F. Dietiker, A. K. Subramaniyan and J. Musser, " The Effect of Grid 
Resolution and Reaction Models in Simulation of a Fluidized Bed Gasifier through 
Nonintrusive Uncertainty Quantification Techniques," ASME Journal of Verification, 
Validation and Uncertainty Quantification, 2016.  

[3]  A. Ansari, S. Mohaghegh, M. Shahnam, J. F. Dietiker and T. Li, "Data Driven Smart Proxy 
for CFD Application of Big Data Analytics & Machine Learning in Computational Fluid 
Dynamics, Part Two: Model Building at the Cell Level," NETL-PUB-21634, NETL 
Technical Report Series; U.S. Department of Energy, National Energy Technology 
Laboratory, Morgantown, WV, 2017. 

[4]  ANSYS Inc., ANSYS Fluent User's Guide, Release 16.1, Southpointe 2600 ANSYS Drive, 
Canonsburg, PA 15317, April 2015.  

[5]  S. Gubba, D. Ingham, K. Larsen, L. Ma and M. Pourkashanian, "Numerical modelling of the 
co-firing of pulverised coal and straw in a 300MWe tangentially fired boiler," Fuel 
processing technology, vol. 104, pp. 181-188, 2012.  

[6]  H. Zhou, Y. Yang, H. Liu and Qi. Hang, "Numerical simulation of the combustion 
characteristics of a low NOx swirl burner: Influence of the primary air pipe," Fuel, vol. 130, 
pp. 168 - 176, 2014.  

[7]  N. Modliński, P. Madejski, T. Janda, K. Szczepanek and W. Kordylewski, "A validation of 
computational fluid dynamics temperature distribution prediction in a pulverized coal boiler 
with acoustic temperature measurement," Energy, vol. 92, pp. 77 - 86, 2015.  

[8]  W. Sun, W. Zhong, A. Yu, L. Liu and Y. Qian, "Numerical investigation on the flow, 
combustion, and NOX emission characteristics in a 660 MWe tangential firing ultra-
supercritical boiler," Advances in Mechanical Engineering, vol. 8, 2016.  



Smart Proxy Modeling; Application of Artificial Intelligence & Machine Learning in Computational Fluid Dynamics 

 

West Virginia University  
Laboratory for Engineering Application of Data Science 74 

[9]  S. Chen, B. He, D. He, Y. Cao, G. Ding, X. Liu, Z. Duan, X. Zhang, J. Song and X. Li, 
"Numerical investigations on different tangential arrangements of burners for a 600 MW 
utility boiler," Energy, vol. 122, pp. 287 - 300, 2017.  

[10]  X. Ge, J. Dong., H. Fan, Z. Zhang, X. Shang, X. Hu and J. Zhang, "Numerical investigation 
of oxy-fuel combustion in 700 °C-ultra-supercritical boiler," Fuel, vol. 207, pp. 602 - 614, 
2017.  

[11]  C. Choi and C. Kim, "Numerical investigation on the flow, combustion and NOx emission 
characteristics in a 500 MWe tangentially fired pulverized-coal boiler; Fuel," vol. 88, pp. 
1720 - 1731, 2009.  

[12]  P. Edge, P. Heggs, M. Pourkashanian and A. Williams, "An integrated computational fluid 
dynamics–process model of natural circulation steam generation in a coal-fired power plant," 
Computers and Chemical Engineering , vol. 35, no. 12, pp. 2618 - 2631, 2011.  

[13]  L. Shi, Z. Fu, X. Duan, C. Cheng, Y. Shen, B. Liu and R. Wang, "Influence of combustion 
system retrofit on NOx formation characteristics in a 300 MW tangentially fired furnace," 
Applied Thermal Engineering, vol. 98, pp. 766 - 777, 2016.  

[14]  T.F. Smith, Z.F. Shen and J.N. Friedman, "Evaluation of Coefficients for the Weighted Sum 
of Gray Gases Model," Heat Transfer, vol. 104, no. 4, pp. 602 - 608, 1982.  

[15]  C. Yin, "Refined Weighted Sum of Gray Gases Model for Air-Fuel Combustion and Its 
Impacts," Energy Fuels, vol. 27, p. 2013, 6287 - 6294.  

[16]  P.-N. Tan, M. Steinbach, A. Karpatne and V. Kumar, "Cluster Analysis: Basic Concepts and 
Algorithms," in Introduction to Data Mining, Pearson, 2018, pp. 487 - 493. 

[17]  S. Sharma, "Artificial Neural Network (ANN)," 8 August 2017. [Online]. Available: 
https://www.datasciencecentral.com/profiles/blogs/artificial-neural-network-ann-in-
machine-learning. 

[18]  F. Chollet, "Keras," https://keras.io, 2015. 

[19]  J. Brownlee, "How to Control the Stability of Training Neural Networks With the Batch 
Size," Machine Learning Mastery Pty. Ltd, 21 January 2019. [Online]. Available: 



Smart Proxy Modeling; Application of Artificial Intelligence & Machine Learning in Computational Fluid Dynamics 

 

West Virginia University  
Laboratory for Engineering Application of Data Science 75 

https://machinelearningmastery.com/how-to-control-the-speed-and-stability-of-training-
neural-networks-with-gradient-descent-batch-size/. [Accessed 10 March 2020]. 

[20]  T. E. Oliphant, Guide to NumPy, 2006.  

[21]  S. Mohaghegh and S. Ameri, "Artificial Neural Network As A Valuable Tool For Petroleum 
Engineers," SPE 29220, 1995.  

[22]  S. Mohaghegh, R. Arefi, S. Ameri and D. Rose, "Design and Development of an Artificial 
Neural Network for Estimation of Formation Permeability," SPE Computer Applications, 
doi:10.2118/28237-PA, vol. 7, no. 6, pp. 151 - 155, 1995.  

[23]  S. Mohaghegh, "Top-down, intelligent reservoir modeling of oil and gas producing shale 
reservoirs: Case studies," International Journal of Oil Gas and Coal Technology, p. 12, 2012.  

[24]  S. Mohaghegh, "Smart Proxy Modeling for Numerical Reservoir Simulations - Big Data 
Analytics in E&P," 6 October 2015. [Online]. Available: 
https://webevents.spe.org/products/smart-proxy-modeling-for-numerical-reservoir-
simulations-big-data-analytics-in-ep. 

[25]  F. Alenezi and S. Mohaghegh, "A data-driven smart proxy model for a comprehensive 
reservoir simulation," IEEE, Riyadh, 2016. 

[26]  S. Boosari, "Predicting the Dynamic Parameters of Multiphase Flow in CFD (Dam-Break 
Simulation) Using Artificial Intelligence - (Cascading Deployment)," Fluids, 2019.  

[27]  Geo. Richards, Douglas L. Straub, Donald H. Ferguson and Edward H. Robey, "LNG 
Interchangeability/Gas Quality: Results of the National Energy Technology Laboratory's 
Research for the FERC on Natural Gas Quality and Interchangeability," U.S. Department of 
Energy, National Energy Technology Laboratory (NETL), 2007. 

[28]  M. G. Carvalho and P. J. Coelho, "Heat Transfer in Gas Turbine Combustors," J. 
Thermophysics, vol. 3, no. 2, 1989.  

[29]  L. Klobucar, "Thermal Radiation Heat Transfer between Surfaces," University of Ljubljana, 
2016. 



Smart Proxy Modeling; Application of Artificial Intelligence & Machine Learning in Computational Fluid Dynamics 

 

West Virginia University  
Laboratory for Engineering Application of Data Science 76 

[30]  U.S. Energy Information, "What is the efficiency of different types of power plants?," 8 
August 2019. [Online]. Available: https://www.eia.gov/tools/faqs/faq.php?id=107&t=3. 

[31]  National Association of Clean Air Agencies, "Optimize Power Plant Operations," [Online]. 
Available: http://www.4cleanair.org/sites/default/files/Documents/Chapter_1.pdf. 

[32]  Duke Energy, "Electricity from coal," [Online]. Available: https://www.duke-
energy.com/energy-education/how-energy-works/electricity-from-coal. 

[33]  G. Hoffman, "New Mexico's Coal and Electricity Industries," 2014. [Online]. Available: 
https://geoinfo.nmt.edu/publications/periodicals/litegeology/36/lg_v36.pdf. 

[34]  H. Gu, H. Zhu, Y. Cui, F. Si, R. Xue, H. Xi and J. Zhang, "Optimized scheme in coal-fired 
boiler combustion based on information," Elsevier, 2018.  

[35]  T. Sanpasertparnich and A. Aroonwilas, "Simulation and optimization of coal-fired power 
plants," Elsevier, 2009.  

[36]  R. Saripalli, T. Wang and B. Day, "SIMULATION OF COMBUSTION AND THERMAL 
FLOW," in Industrial Energy Technology Conference, New Orleans, 2005.  

[37]  U.S. Department of Energy, National Energy Technology Laboratory, "The Advanced 
Tangentially Fired Combustion Techniques for the Reduction of Nitrogen Oxides (NO ) 
Emissions From Coal-Fired Boilers Demonstration Project: A DOE Assessment," 
DOE/NETL-2000/1122, 2000. 

[38]  B. Miller, "Nitrogen oxides formation and control," in Fossil Fuel Emissions Control 
Technologies, Elsevier, 2015, pp. 243 - 280. 

[39]  J. Mahato, "Boiler in Thermal Power Plant," 2013. [Online]. Available: 
https://www.coalhandlingplants.com/boiler-in-thermal-power-plant/. [Accessed 15 March 
2020]. 

[40]  A.H. Al-Abbas, J. Naser and D. Dodds, "CFD modelling of air-fired and oxy-fuel 
combustion in a large-scale furnace at Loy Yang A brown coal power station, Fuel," Fuel, 
vol. 102, pp. 646 - 665, 2012.  



Smart Proxy Modeling; Application of Artificial Intelligence & Machine Learning in Computational Fluid Dynamics 

 

West Virginia University  
Laboratory for Engineering Application of Data Science 77 

[41]  A.H. Al-Abbas, J. Naser., D. Dodds and A. Blicblau, "Numerical Modelling of Oxy-Fuel 
Combustion in a Full-Scale Tangentially-Fired Pulverised Coal Boiler," Procedia 
Engineering, vol. 56, pp. 375 - 380, 2013.  

[42]  D. Tian, L. Zhong, P. Tan, L. Ma, Q. Fang, C. Zhang, D. Zhang and G. Chen, "Influence of 
vertical burner tilt angle on the gas temperature deviation in a 700 MW low NOx tangentially 
fired pulverised-coal boiler," Fuel Processing Technology, vol. 138, pp. 616 - 628, 2015.  

[43]  S. Li, Z. Chen, E. He, B. Jiang, Z. Li and Q. Wang, "Combustion characteristics and NOx 
formation of a retrofitted low-volatile coal-fired 330 MW utility boiler under various loads 
with deep-air-staging," Applied Thermal Engineering, vol. 110, pp. 223 - 233, 2017.  

[44]  A.A. Bhuiyan and J. Naser, "CFD modelling of co-firing of biomass with coal under oxy-
fuel combustion in a large scale power plant," Fuel, vol. 159, pp. 150 - 168, 2015.  

 

 

 



78 

 

7 APPENDIX 

7.1 Model Development Step 3: Q1 Combustor Results – Nitrogen 

Nitrogen – Case 1 

 

Figure 7-1: Step 3 Results (Q1 Combustor Full View) for Validation Case 1 – Nitrogen 

 

 
Figure 7-2: Step 3 Results (Q1 Combustor Full View) for Validation Case 1 – Nitrogen 
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Nitrogen – Case 5 

 

Figure 7-3: Step 3 Results (Q1 Combustor Full View) for Validation Case 5 – Nitrogen 

 

 

Figure 7-4: Step 3 Results (Q1 Combustor Full View) for Validation Case 5 – Nitrogen 
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7.2 Model Development Step 3: Q1 Combustor Results – Oxygen 
 

Oxygen – Case 1 

 

Figure 7-5: Step 3 Results (Q1 Combustor Full View) for Validation Case 1 – Oxygen 

 

 

Figure 7-6: Step 3 Results (Q1 Combustor Full View) for Validation Case 1 – Oxygen 
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Oxygen – Case 5 

 

Figure 7-7: Step 3 Results (Q1 Combustor Full View) for Validation Case 5 – Oxygen 

 

 

Figure 7-8: Step 3 Results (Q1 Combustor Full View) for Validation Case 5 – Oxygen 
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