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EXECUTIVE SUMMARY

Smart proxy technology leverages the art of artificial intelligence and machine learning in order
to build accurate and very fast proxy models for highly complex numerical simulation models. In
this project, smart proxy technology is used to replicate the results of a highly complex single
phase CFD simulation with reasonable degree of accuracy while reducing the computational cost
associated with such CFD simulations.

The CFD model under study simulates the combustion of natural gas under various conditions
such as varying natural gas composition and flow rate, inlet air flow rate and temperature, and
outlet pressure in a High-Pressure Combustion Facility (B6 Combustor) with more than 4 million
simulation cells. Only eight CFD simulation runs were used to create a smart proxy model that
replicates the detail distribution of Pressure, Temperature, Nitrogen, Oxygen and Carbon-dioxide
concentration in the CFD simulation model in seconds with less than 10% error. Following figure
shows a validation example of the smart proxy results for the distribution of Pressure, comparing
the CFD simulation result (left) to the smart proxy result (middle) and the error plot (right) showing
the difference between the two simulation runs (Fluent vs. Smart Proxy).

NETL Model Smart Proxy Model Error

wX ‘7_»)(

Actual Pressure Pressure Error (frac)
623778 640000 660000 680000 700000 720000 740000 759420 623778640000 6GE0000 680000 700000 720000 740000 759420 0.0 0.005 001 0015 002 0.025 003 0035 004 0045 0.1

Blind Validation Smart Proxy Results for Pressure — Blend Case 10
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1. INTRODUCTION

DOE-NETL is supporting projects to develop technologies that will improve the efficiency, cost,
and environmental performance of complex power generation systems such as gas turbines and
coal-fired power plants. In-situ monitoring of combustion phenomena is a critical need for optimal
operation and control of such systems. CFD is an important tool currently being used to investigate
and understand the dynamics of the combustion process in these systems. Gas turbine combustion
is a complex process, and it can be a challenge to achieve accurate and reliable CFD simulation
results at a reasonable computational cost.

The challenge in CFD simulation of complex reaction flows is to adequately resolve the structures
that exist at different spatial and temporal scales in an inherently transient flow. Additionally, in
reacting gas-solid flow simulations, small time steps are needed in order to not only resolve the
temporal scales of the flow, but also ensure numerical stability of the solution. A rule of thumb for
adequate spatial resolution is for the grid spacing to be about 10 times the particle diameter [1].
The grid requirement for maintaining such a ratio of grid size to particle diameter for smaller size
particles makes such simulations computationally costly and impractical [2]. Recent work at NETL
[2] has shown the number of simulations, which is required for non-intrusive uncertainty
quantification, can easily exceed many tens of simulations. The spatial and temporal resolution
requirements for multiphase flows make CFD simulations computationally expensive and
potentially beyond the reach of many design analysts [3].

The goal of this research work is to develop a data driven predictive model capable of replicating
the thermal-flow pattern and species distribution results of CFD simulation of natural gas
combustion in a High-Pressure Combustion Facility (B6 Combustor). Achieving this goal will
significantly reduce the typical long time-to-solution characteristics of CFD simulations while
preserving traditional CFD solver accuracy for the CFD simulation model under study. The
developed smart proxy will contribute greatly to the development of technologies that improve the
efficiency, cost, and environmental performance of complex power generation systems.

1.1 Structure of the Work

The report presented in this document details the research work performed in building a data driven
predictive model that replicates transport variables in the CFD simulation of the combustion of
natural gas in a High-Pressure Combustion Facility (B6 Combustor). The data driven modeling
framework presented for the B6 Combustor model in this report will ultimately be applied to a
more complex system (the Tri-State Coal-fired Boiler) in a separate project.

In chapter one (this chapter), the problem was defined, and the final objective of the research was
articulated. In chapter two, a brief background information is provided on key elements of the

1
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research work. A brief description of the reaction flow and governing equations used in the
numerical CFD simulation software is provided in order to lay the groundwork for understanding
the engineering and scientific details associated with the CFD model being studied. A summary of
the different machine learning and computing techniques used on the project is included in chapter
two to provide a background to the solution methodology utilized. Also, a brief literature review
on the use of Al and Machine learning relating to fluid dynamics is provided.

In chapter three, a general overview of the end-to-end workflow of the smart proxy development
process is introduced with a description of the design and implementation of the framework used
for the development of the smart proxy model. This chapter provides a description of B6
Combustor CFD simulation model, a detailed description of the simulation data received including
the boundary conditions, a brief description of steps taken to develop the smart proxy model and
a detailed description of the different machine learning algorithms used in the development
process.

Chapter four provides a lot more detail on every step taken to meet the objective of the research.
Detail information is provided regarding the input training dataset and the neural network setup at
each step of the development process. This chapter includes results and discussions for each step
taken towards building the smart proxy model. Conclusions and recommendations for the next
phase of the research are presented in chapter five.

West Virginia University
Laboratory for Engineering Application of Data Science 2



2 BACKGROUND

This section of the report provides some basic but necessary background on some key components
of this research work.

2.1 NETL’s High-Pressure Combustor Facility (B6 Combustor)

Unconventional gas supplies, like shale gas, are expected to grow which will make U.S. natural
gas composition more variable and the composition of fuel sources may vary significantly from
existing domestic natural gas supplies. The effect of gas composition on combustion behavior is
of interest to allow end-use equipment to accommodate the widest possible gas composition. The
B6 Combustor is a high-pressure facility used at NETL to study both research and commercial gas
turbine fuel injectors. B6 combustor experiments have been conducted at NETL to investigate the
effect of varying fuel composition on combustion dynamics.

The CFD simulation model was first validated with available experimental data which had been
collected from the pressurized single injector combustion test rig. The tests were conducted at 7.5
atm with a 589K preheated air. A propane blending facility was used to vary the site natural gas
composition. The CFD simulation model predicted results were within the experimental error bar.
After the CFD simulation model was validated with experimental results, a much wider range of
gas composition was simulated to investigate the effect of gas composition on combustion.
Another purpose of the high-pressure combustion facility is to develop a Combustion Control and
Diagnostic Sensor (CCADS) to in-situ monitor the combustion phenomena which is based on the
mechanisms for ion formation and electrical properties of a flame.

2.2 Ansys Fluent

The CFD model is based on the mass, momentum and energy balance equations with some other
constitutive equations such as the equation of state to calculate the gas phase density.
PM,,q4
Pg = Q%7
RT,

Equation 2-1
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Continuity equation:

N

a —_—

a(/{q) +V- (pgug) = z Rgi
i=1

Equation 2-2
Momentum equation:
d N s - -
a(pgug) + V- (pgtigity) = VP + V- T3 + pyg
Equation 2-3
= — —T 2 R
Tg = Ue [(Vug + Vuy, ) —§l7 : ugl]
Equation 2-4

As the gas phase is composed of several components such as the Oz, N2, CO- etc., the species
transport equation

a - g
a(ﬂgyi) + 7 (pgtighi) = =V -], + Ry;

Equation 2-5

7 He
Ji = = (poDim +55) 7

Equation 2-6

Where:

e p, =gas density (kg/m®).

e P =operating gas pressure (outlet pressure).

e M, = average molecular weight of gas.

e R =universal gas constant (8.314 J/mol/K)

e T = gas phase temperature.

e u, = gas phase velocity in x, y and z direction respectively.
e T, =stress tensor.

e Y, =fraction of species i in the gas phase.
e Ry, = netrate of production of species i by chemical reaction.

West Virginia University
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e g =gravity.

. ]_{ = diffusion flux of species due to the gradients of concentration.
e D;,, = mass diffusion coefficient for species j in the mixture.

e u, = effective viscosity (4, = u; + n).

2
e u, =turbulent viscosity (u, = pC, k?).
**Subscript “g” means the gas phase, subscript “i” means the species i.

Incompressible ideal gas law is used to calculate the gas density as the temperature changes a lot
but the pressure changes little. The operating pressure is the pressure at the coal boiler outlet. For
turbulent flows, the molecular viscosity is much smaller than the turbulent viscosity.

2.2.1 Turbulence Model

Realizable k-¢ with standard wall functions as realizable k-& model is more suitable for flow with
swirling [4] [5] [6] [7] [8] [9] [10]. The realizable k-¢ model differs from the standard k- model
in two important ways: the realizable model contains an alternative formulation for the turbulent
viscosity. A modified transport equation for the dissipation rate, has been derived from an exact
equation for the transport of the mean-square vorticity fluctuation. The term “realizable” means
that the model satisfies certain mathematical constraints on the Reynolds stresses, consistent with
the physics of turbulent flows. Neither the standard k-& model nor the RNG k-& model is realizable.

The difference between the realizable k- model and the standard and RNG k-e models is that C,,
is no longer constant but a function of the mean strain and rotation rates, the angular velocity of
the system rotation, and the turbulence fields.

k is the turbulence kinetic energy
d — Mt
a(pgk)+\7-(pg,kug,) =V- y+0—k Vk|+ G, + G, — pe — Y, + S,

Equation 2-7

€ Is the dissipation rate of turbulence kinetic energy

2

& &
—+ C;.—C3.G, + S
k+\/E 1£k 3eYb &

d
a(pgs) +V-(pgeuy) =0+ [(u + ?) \78] + pC,Se — pC,
&

Equation 2-8

Where:

e G, is generation of turbulence kinetic energy due to the mean velocity gradients.
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e G, is the generation of turbulence kinetic energy due to buoyancy.
e Y, is the contribution of the fluctuating dilatation in compressible turbulence to the overall
dissipation rate.

e (5 (1.9 and C4, (1.44) are constants. oy, (1.0) and o, (1.2) are the turbulent Prandtl numbers
for k and ¢ respectively.
e S, and S, are user-defined source terms.

2.2.2 CFD Reaction Eddy-Dissipation Model

Most fuels are fast burning, and the overall rate of reaction is controlled by turbulent mixing. The
net rate of production of species due to reaction R;,, is given by the smaller (that is, limiting value)
of the two expressions below:

, S Yr
Ri,rzvi,rMW,A.OpEmmR —v’ M,
Rr*tw,

Equation 2-9

e Xplp
Riy = v{,.M,,;2. Opkw
j Yir

Equation 2-10

Where:

e Yp =mass fraction of any product species, P

e Y, =mass fraction of a reactant, R

e v;, = stoichiometric coefficient for reactant i in reaction r
e v}, = stoichiometric coefficient for product i in reaction r

2.2.3 CFD Heat Transfer Model

0 . k
a(PgH) + V'(PgHug) = V'<C_tVH> + Sh
p

Equation 2-11
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T
_ 0
H; = f Cp ;AT + HP (Trey,)
Tref

Equation 2-12

H is the total enthalpy defined as H = }.; Y;H; where Y; is the mass fraction of species j and H; is
the enthalpy of species j. The heat capacity C, ; is defined as a function of temperature for each

species. When the radiation model is being used, the source term S;, includes radiation source
terms.

Both conduction and convection require matter to transfer heat. Radiation is a method of heat
transfer that does not rely upon any contact between the heat source and the heated object. Thermal
radiation (often called infrared radiation) is a type of electromagnetic radiation (or light). Radiation
is a form of energy transport consisting of electromagnetic waves traveling at the speed of light.
No mass is exchanged, and no medium is required for radiation.

Radiation Model

Discrete Ordinates (DO) model is used as DO model needs more computational resource than
other radiation model but the DO model is more complete [4] [11] [12] [5] [6] [7] [13] [9] [10].

DO is recommended by Fluent. Emissivity of gas can be calculated from Weighted-sum-of-grey-
gases model (WSGGM), which has been widely used in computational fluid dynamics and reached
good balance between calculating efficiency and accuracy [14] [15]. WSGGM assumed that the
emissivity of flue gas was decided by local temperature and partial pressure of gas species

2.3 Machine Learning

Artificial intelligence and machine learning are widely known technologies that aim to teach
machines to learn from input data. Machine learning algorithms can be classified mainly into
Supervised and Unsupervised learning algorithms. Supervised learning algorithms learn a function
that, given a sample of data and desired outputs, best approximates the relationship between input
features and output (also known as ground truth) observable in the data. Unsupervised learning
algorithms, on the other hand, do not have labeled outputs; so, the goal is to infer the natural
structure or underlying pattern present within a set of data points.
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2.3.1 Fuzzy Clustering

Clustering is a form of unsupervised learning technique which involves assigning data points (or
objects) to clusters (groups) such that points in the same cluster are as similar as possible. The
simplest form of cluster analysis is the hard clustering in which a data point exclusively belongs
to a single cluster. Fuzzy clustering is useful in avoiding the arbitrariness of assigning an object or
data point to only one cluster when it may be close to several. In fuzzy clustering (also called soft
clustering), every object or data point belongs to every cluster with a membership weight that is
between 0 (absolutely does not belong) and 1 (absolutely belongs) [16]. Cluster membership
weights for any data point must sum up to 1.

In this project, the skfuzzy package from a popular open-source machine learning library called
Scikit-learn is used in performing fuzzy clustering tasks.

2.3.2 Artificial Neural Networks (ANN)

One of the most common supervised learning algorithms is the Artificial Neural Network (ANN).
An ANN is a simple mathematical computational algorithm that is capable of learning from input
data (machine learning) as well as discovering patterns (pattern recognition) [17].

ANN is biologically inspired by the interconnections that take place between neurons in a human
brain. Neurons carry and pass information from one neuron to another via synapse. The
architecture of artificial neural networks consists of an input layer, one or more hidden layers, and
an output layer. The input layer contains the information provided to the neural network in the
form of attributes. The hidden layer is responsible for translating the information from the input
layer to the output layer by a system of weighted connections and non-linear activation functions
[17]. Figure 2-1 shows a typical ANN with four input attributes, three neurons in the hidden layer
and a single neuron in the output layer. The strength of information passed from one artificial
neuron to another is assigned by its “weight”. Optimization of these weights is crucial in the
development of a well-trained neural network.
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Input Hidden Output
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Output
Input #3
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Figure 2-1: Artificial Neural Network Architecture

In this project, a machine learning library in Python called Keras is used in modeling artificial
neural networks [18]. Keras is an open source high-level neural networks API written in Python
and capable of running on top of TensorFlow, CNTK, or Theano. In this project, the TensorFlow
backend is used.

2.3.3 Artificial Neural Network Performance Evaluation Metrics

During the ANN training process, the objective function (also called loss function) is used in
updating the weights of the neurons of the neural network. The performance of a neural network
is often evaluated in the context of minimizing the total error between the neural network predicted
values and the actual output values (ground truth). The most commonly used objective function
(especially for regression tasks) is the Mean Square Error (MSE) which is the sum of squared
differences between the predicted values and the actual output values, as shown by Equation 2-13.

N
1 2
MSE = NZ(yactual _ypredicted)

=1

Equation 2-13

In practice, while a portion of the entire dataset (called test or blind dataset) is set aside prior to
training, to test the performance of the neural network on unseen data, a portion of the remaining
data is usually set aside for calibration of the neural network as it is being trained. An optimization
of the loss function on the calibration set helps to ensure that the neural network is not over-trained
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(overfitting) or under-trained. In this project, we have taken a more unique approach to data
partitioning for the development of neural networks. This approach is described in more detail in
the body of this report.

There are various ways to evaluate the performance of a neural network model. In machine
learning, a very common metric is the percentage error which expresses the difference between
the predicted value and actual value as a percentage of the actual value as shown in Equation 2-14.

CFD — Smart Prox
% Error = value =5 Vvalue x 100
value

Equation 2-14

2.3.4 Data Batching

Artificial neural networks are trained using the gradient descent optimization algorithm in which
the difference between the ANN predicted values and the actual values is used in estimating the
error gradient. The error gradient is then used to update the model weights and the process is
repeated. The estimate of the loss gradient is usually calculated based on all or a subset of the
training dataset. The number of training samples used in estimating the error gradient is called
batch size and it is an important hyper parameter that influences how the neural network learns.
We refer to the concept of controlling the batch size as data batching.

The error gradient is a statistical estimate. The more training examples used in the estimate, the
more accurate this estimate will be and the more likely that the weights of the network will be
adjusted in a way that will improve the performance of the ANN model in fewer number of
iterations [19]. However, computing the gradient over a very large number of examples could be
very computationally expensive especially when dealing with a large amount of data. However,
using too few examples from the training data could result in less accurate and noisy estimates of
the gradient. Nevertheless, these noisy updates can result in faster learning and sometimes a more
robust model [19]. Data batching can be used to manage the tradeoff between computational cost
and neural network performance.

To manage the large amount of dataset involved (as we will show in this report) during the training
of neural networks, we have used a combination of computing techniques in python programming
called data generators and memory-mapping. Memory-mapping is a python computing technique
used for accessing small segments of large files on disk, without reading the entire file into memory
[20]. When it is not practical to load entire training dataset into the machine learning library due
to memory limitation, data generators could be used to generate data in batches and continuously
feed the data to the machine learning algorithm. In this project, we have memory-mapped very
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large files containing training datasets and used custom built-in functions called data generators to
feed the data in batches to the artificial neural networks.

2.4 Previous Work

The idea of using Artificial Intelligence in solving petroleum engineering problems was first
introduced by Mohaghegh and Ameri [21] . They showed that an ANN can be used to automate
the task of determining formation permeability based on geological well logs, thereby eliminating
the need to perform the task repeatedly by log analysts. Mohaghegh and Ameri [21] also stated
that neural network can handle far more complex tasks. Mohaghegh et al. [22] used ANN for
predicting gas storage well performance after hydraulic fracture in their later investigations. This
technology has been used to implement a unique approach to petroleum reservoir modeling by
constructing top-down reservoir models (“TDM?”) that use field measurements (i.e. production
history, hydraulic fracturing, well logs etc.) to predict oil and gas production from shale reservoirs
[23].

Data-driven smart proxy models have been used to take advantage of the “Big Data” solutions
(machine learning and pattern recognition) to develop highly accurate replicas of numerical
models with very fast response time [24]. Data-driven smart proxies implement machine learning
and pattern recognition techniques, using generated numerical simulation data with efforts to
significantly reduce the computational footprint and the time spent to conduct large complex
numerical simulation runs [25].

Boosari [26] in a study developed a smart proxy model to predict the unsteady state behavior of
fluid flow resulting from wall collapse in a 2-dimensonal rectangular water tank, using dataset
generated from OpenFOAM CFD simulations. The results from the study showed that a smart
proxy model can predict the CFD simulation results with less than 10% error, within a significantly
reduced amount of time compared to the large computational footprint of the CFD simulations.
Ansari et al. [3] used Al and machine learning to construct a smart proxy model to replicate the
flow and particle behavior for a gas-solid multiphase flow in a non-reacting rectangular fluidized
bed. The smart proxy was developed using cell-level data generated from CFD simulation runs
using MFiX CFD simulation software. The work performed by Ansari et al. [3] showed that this
technology can reproduce CFD simulation results with less than 10% error within just a few
seconds.
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3 B6 COMBUSTOR MODEL

The objective of this chapter of the report is to provide a general overview of the end-to-end
workflow involved in developing the smart proxy model for the B6 Combustor simulation models.
This chapter provides a detailed description of the simulation data received including the boundary
conditions, a brief description of descriptive analytical techniques used to develop the smart proxy
model and a detailed description of the different machine learning algorithms used in the
development process. A more detailed description of specific steps taken to develop the smart
proxy model is provided in the next chapter, together with the results of the smart proxy model at
each step of the development process.

3.1 B6 Combustor Problem Definition

It is known that relatively small changes in turbine engine ambient conditions and fuel composition
can affect the combustion dynamics of operating engines. Combustion dynamics are a form of
oscillating combustion that produces pressure oscillations at hundreds of cycles per second. If left
uncontrolled, these oscillations can be very damaging, cracking metal combustion liners,
triggering flashback, and producing thermal failure from enhanced heat transfer. A combination
of numerical models and experimental testing have been used at NETL to investigate the effects
of changing ambient conditions and fuel interchangeability (the volume fraction of propane
addition to natural gas) on combustion dynamics (instabilities) [27].

The B6 combustor has been used to study the effect of fuel composition on premix turbine
combustion as well as to develop a Combustion Control and Diagnostic Sensor (CCADS) to in-
situ monitor the combustion phenomena. The experimental test rig has a propane blending facility
which is used to vary the natural gas composition. The resultant pollutant and dynamic response
from lean-premixed gas turbine systems relies heavily on adequate mixing of the fuel and air prior
to reaching the reacting zones within the combustor [27]. The objective is to develop a smart proxy
model capable of replicating the B6 combustor CFD simulation results of Pressure, Temperature,
Nitrogen, Carbon-di-oxide and Oxygen distribution in the system, for varying composition and
flow rates of air and fuel. Figure 3-1 shows a picture of the combustor rig [27].
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Figure 3-1: NETL's B6 Combustion Rig

3.2 B6 Combustor CFD Simulation Model

NETL’s High-Pressure Combustion Facility test rig is roughly 17.8cm (7.0in) diameter
combustion chamber and the length of combustion zone is 0.91m (36in). It has been used to
investigate the effect of fuel interchangeability on combustor performance (the volume fraction of
propane addition to the natural gas) by testing different fuel-air equivalence ratios (0.42~0.48) on
combustion performances.

The B6 CFD simulation model is 17.8cm in diameter, and 0.91m in length, with a total of
9,291,712 grid cells. Figure 3-2 shows the schematic of the simulation model. The B6 combustor
is a steady state single phase (gas only) combustion model. Pre-heated air and pre-mixed fuel (main
and pilot fuel at room temperature) is injected through the inlet. A set of nozzles at the inlet provide
swirling effect for turbulent mixing of the gas as it enters the combustion chamber. A total of 8
CFD simulation runs were initially generated with which the smart proxy model was developed.
An additional 2 simulation runs were provided as a blind test following the development of the
smart proxy model. CFD simulation runs were generated using the Ansys FLUENT software.
Table 3-1 and Table 3-2 show the percent fuel composition, and other boundary conditions
respectively for the initial 8 CFD simulation runs. Four of the eight simulation runs have methane
composition ranging from 88.96% to 89.13%, these were tagged as the “Base” composition
simulation cases. The other four cases were blended with more propane and have methane
composition ranging from 84.15% to 84.425%, and these were tagged as the “Blend” cases. The
gas composition of air at inlet and the fuel temperature at inlet remained the same across all cases.
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Figure 3-2:Schematic of the B6 Combustion Simulation Model

Table 3-1: Boundary Conditions for Development Cases — Inlet Fuel Composition

Case 1 2 3 4 5 6 7 8
Number

Base Blend Base Base Blend Blend Base Blend

vol.% vol.% vol.% vol.% vol.% vol.% vol.% vol.%
CH, 89.025 84.425 89.113 89.130 84.283 84.153 88.961 84.235
Csz 7.727 7.488 7.636 7.622 7.450 7.510 7.728 7.500
C;Hg 1.223 6.415 1.197 1.182 6.273 6.329 1.213 6.264
C4Hyg 0.468 0.455 0.471 0.472 0.457 0.462 0.479 0.463
C.Hy, 0.130 0.125 0.132 0.132 0.126 0.127 0.135 0.128
N, 1.061 1.006 1.067 1.075 1.047 1.060 1.106 1.051
Cco, 0.366 0.356 0.384 0.387 0.364 0.358 0.378 0.359
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Table 3-2: Other Boundary Conditions for Development Cases

1 2 3 4 5 1] 7 8

Boundary Condition Description Unit Base Blend Base Base Blend Blend Base Blend
N2_Air_Inlet % 78.08 78.08 78.08 78.08 78.08 78.08 78.08 78.08
02 _Air_Inlet Inlet Air Gas % 20.95 20.95 20.95 20.95 20.95 20.95 20.95 20.95
Ar_Air_Inlet Composition % 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93
CO2_Air_Inlet % 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
Air_Flow Rate Air Flow Rate scffhr |66269.58 |66222.6 |66272.97 |66315.72 |66241.71 |66241.83 |66244.22 |66253.56
Main_Fuel_Flow 2592,92 |2783.134 |2948.073 |2592.51 |2783.444 (2448.18 |2947.512 |2448.165

— Fuel Flow Rate scf/hr
Pilot_Fuel_Flow 137.099 |146.068 |155.573 (136.815 |146.725 ([129.074 |155.804 |128.781
Air_Inlet Temp AirTemp. atinlet |deg.K |[589.046 |588.824 |588.515 |588.543 |588.666 [588.579 |588.579 |588.579
Main_Fuel_Inlet Temp 293.15 293.15 293.15 293.15 293.15 293.15 293.15 293.15

= = = Fuel Temp. at Inlet
Pilot_Fuel_Inlet Temp deg. K |293.15 293.15 293.15 293.15 293.15 293.15 293.15 293.15
Pressure QOutlet Pressure at Qutlet |kPa 95.4662 |95.4687 |[95.5355 |(95.4484 [95.5262 |95.4461 |95.5731 |95.5846

Table 3-3 and Table 3-4 show the percent fuel composition, and other boundary conditions
respectively for the additional 2 CFD simulation runs. One of the simulation runs is a “Base” case
and the other a “Blind” case. These two simulation runs are sometimes referred to as “Extra Base”
and “Extra Blind” respectively in this report. The gas composition of air at inlet and the fuel
temperature at inlet used are the same as was used in the development simulation case runs.

Table 3-3: Boundary Conditions for Blind Validation Cases — Inlet Fuel Composition

West Virginia University
Laboratory for Engineering Application of Data Science

Case

Number

CH,
CHg
ClHE
CiHyp

CbHH

co,

Va

9
Blind
lidation
Run
Base
vol.%

89.122

7.600
1.200
0.471
0.132
1.102

0.373

10

Blind
Validation
Run

Blend
vol.%

84.225
7.600
6.200
0.468
0.130
1.009

0.368
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Table 3-4: Other Boundary Conditions for Blind Validation Cases

9 10
Boundary Condition Description Unit Blind Base |Blind Blend
M2_Air_Inlet % 78.08 78.08
02 Air_Inlet Inlet Air Gas % 20.95 20.95
Ar_Air_Inlet Compaosition % 0.93 0.93
CO2_Air_Inlet % 0.04 0.04
Air_Flow_Rate Air Flow Rate scf/hr  |66280 66240
Main_Fuel Flow Fuel Flow Rate scf/hr 2750 2599
Pilot_Fuel_Flow 142 135
Air_Inlet_Temp AirTemp. atInlet |deg. K [588.772  |58B.66
l'-.-’_laln_FueI_InIet_Temp Fuel Temp. at Inlet 293.15 293,15
Pilot_Fuel Inlet Temp deg. K |[293.15 293.15
Pressure_QOutlet Pressure at Qutlet [kPa 95.5 95.5

Smart Proxy Modeling; Application of Artificial Intelligence & Machine Learning in Computational Fluid Dynamics

The simulation results (solution data) generated from Fluent for each CFD run includes cell-level
distribution of five attributes of interest: Pressure, Temperature, Nitrogen, Carbon-dioxide and

Oxygen.

3.3 B6 Smart Proxy Development Overview

Development of the smart proxy model for the Simplified B6 Combustor model was carried out in
three stages with multiple tasks performed in each stage. The general overview of these stages is
shown in Figure 3-3 below. The first stage involves performing data quality check and building a
data visualization tool for the project. In the second stage, a detailed exploratory and descriptive

analysis of the data was performed, and the predictive model developed in the last stage.

West Virginia University
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Figure 3-3: Smart Proxy Development Framework for the B6 Combustion Model

It is important to note that the descriptive and predictive modeling tasks of the framework were
carried out in multiple steps, such that the modeling approach was continuously refined based on
the resulting performance of the smart proxy model at each step. At each step, new features were
generated and added to the database. A summary of the features that were added at each modeling
step is provided in the Descriptive Analytics section of this chapter (3.3.3). A more detail
description of these features with the corresponding smart proxy model results at each step is
provided in the next chapter.

3.3.1 Data Received from CFD Simulation Runs

In addition to the B6 model boundary condition information described in Section 3.2, other data
received from NETL include the solution data and model geometry data. The solution data contains
cell level information on the distribution of each of the five transport variables of interest. The
model geometry data contained the cell id, cell center coordinates (X, y, z), adjacent cell ids (i.e.
ID of neighboring cells), and node ids of each cell in the simulation model. Data received for each
simulation run contained a total of 21 files in *.txt file format with a total hard disk storage size of
about 1.7 GB per simulation run. The boundary condition data was received in a single *.csv file.

West Virginia University
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3.3.2 Data Visualization Tool

In order to check the quality of data received and for the purpose of validating the results of the
B6 Smart Proxy model to be developed, a python script was developed to transform the data
received (originally stored in *.txt file format) into a file format in which the model results can be
visualized in three dimensions. As illustrated in Figure 3-4 below, the data was processed into
*.vtk (Visualization Tool Kit) format files which were then imported into ParaView for
visualization. ParaView is an open-source data analysis and visualization application which allows
for 3D interactive data exploration.

/ N

Data from FLUENT

_;] Fluent Solution Data
,;j Cell IDs & Coordinates
_‘j Cell Volume

_-n Adjacent Cell IDs
ﬂ Node 1Ds & Coordinates

___.n Cells Adjacent to Walls

;.] Cells Adjacent Inlet

;] Cells Adjacent Qutlet

Figure 3-4: ParaView image generated from *.vtk files built from CFD Simulation Data

The B6 Combustor model simulation mesh contains a total of 9,291,712 elements (i.e. cells) with
about 8 million tetrahedral cells and approximately 950,000 wedge cells. Figure 3-5 provides a
brief description of these cell types in terms of the number of faces and points.
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Figure 3-5: B6 Combustor Simulation Mesh Cell Types

Based on the entire simulation dataset collected from Fluent and the model boundary conditions
described in Section 3.2, a structured database was generated for each CFD simulation case (for a
total of 8 development cases). The following provides a description of the data received for each
case run as shown in Figure 3-4.

a.

Fluent Solution Data: These set of files contain the output of CFD simulation calculations
performed by Fluent for the five different transport variables of interest, at the cell level:
Pressure (P), Temperature (T), Oxygen concentration (Oz), Nitrogen concentration (Nz)
and Carbon-dioxide concentration (CO>).

Cell IDs and Coordinates: These files contain the 1D and cell center coordinates (X, Yy, z)
for each element (i.e. focal cell) in the mesh.

Cell Volume: File contains the volume of each focal cell in the mesh.

Adjacent Cell IDs: These files contain the ID of face-bounding (adjacent by face) cells for
every focal cell in the mesh.

Node IDs and Coordinates: These files contain the ID and coordinates of points (nodes)
defining each focal cell in the mesh.

Cells Adjacent to Walls: These files contain the ID of cells that are adjacent to the external
walls of the model.

Cells Adjacent to Inlet: These files contain the ID of cells that are adjacent to the inlet
wall.

Cells Adjacent to Outlet: These files contain ID of cells that are adjacent to the outlet wall.
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3.3.3 Descriptive Analytics

Machine learning algorithms cannot work without data. Little to nothing can be achieved if there
are too few features to represent the underlying pattern in the data to a machine learning algorithm.
Comprehensive descriptive analytics of the simulation model dataset was performed and more
features that further represents the underlying physics and dynamics of the combustion phenomena
were generated into the project database. The descriptive analytics process was completed in four
iterative steps. Below is a brief summary of features added at each step. More detail information
and results at each step is provided in chapter four.

In the first step of the descriptive analytics process, features added include information that
represent the geometry of the cells and their distances to wall boundaries. Based on the
performance of the smart proxy at this step, more features were generated and added to the
database in step 2 of the process. In step 2, features representing the location of each focal cell and
its neighborhood were generated into the database. This included information on the volumes of
neighboring (face-bounding) cells, and information indicating if the focal cell was bounding a wall
or not. In a realistic combustor, the overall rate of reaction is controlled by turbulent mixing.
Mixing does not only occur as a result of a jet crossflow of the preheated air and fuel at the inlet
but typically through some additional mechanism such as swirling flow which increases the
turbulence intensity [27]. Features generated in step 3 of the process included a representation of
this swirling effect on the combustion process. These include distances of each focal cell in the
system to each of the swirler nozzles (see detail in chapter four). In step 4, an unsupervised
machine learning technique called fuzzy clustering was applied to the entire system in order to
group the over 9 million cells into classes based on the distribution of each transport variable of
interest across all development simulation cases. This technique helps to provide more information
to the training algorithm regarding the behavior of the B6 combustor simulation models. More
detail regarding fuzzy clustering is provided in the Predictive Analytics section (Section 3.3.4) of
this chapter.

B6 Combustor Model Sectioning

The computer machine available to the research team at the time of the project had 500GB hard
disk storage, and 24GB of memory. Generating dataset required to train the smart proxy from the
database required a significant amount of memory larger than the computer memory that was
available to the research team. In fact, in steps 1 and 2 of the descriptive analytics process, the
smart proxy model was developed for a small section of the B6 Combustor model at each step.
This made it possible to complete the training of the model in a shorter length of time and quickly
assess the contribution of newly added features at each step of the process. Due to this limitation
in compute resource (memory and speed), the B6 Combustor simulation model was divided into
seven sections in step 3, based on a detailed analysis of the distribution of the transport variables
across all simulation runs. Figure 3-6 shows the model sectioning and naming convention for each
section. Table 3-5 shows the number of cells by section for a single CFD simulation run. For each
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transport variable of interest, an artificial neural network was trained for each section of the model
and these networks were later combined to form the smart proxy model for the B6 Combustor.
More information is provided in Section 3.3.4 regarding the setup of neural networks that were
developed.

INLET

COMBUSTOR

EXHAUST

Q1| Q2| H2 Exhaust

Figure 3-6: B6 Combustor Model Sectioning

Table 3-5: Total Number of Cells by Model Section

Total No. of Cells by Model Section
Section Name Convention Name No. Cells Z-axis BGN | Z-axis END
1st Quarter Inlet Q1 Inlet 1,623,745 -0.83058| -0.78868
2nd QuarterInlet Q2 Inlet 1,662,119 -0.78868| -0.74678
2nd Half Inlet H2_Inlet 344,757 -0.74678| -0.66298
1st Quarter Combustor |Q1l Combustor 962,001 -0.66298| -0.58981
2nd Quarter Combustor{Q2 _Combustor 971,256 -0.58981| -0.51664
2nd Half Combustor H2_Combustor 1,898,924 -0.516642( -0.37030
Exhaust Exhaust 1,903,951 -0.37030 0.0762
Entire Model CFD 9,291,712 -0.83058 0.0762
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3.3.4 Predictive Analytics

This section of the report presents the details of the machine learning algorithms used in learning
the underlying pattern in the dataset, and the approach taken to validate the performance of the
developed smart proxy model.

Both supervised and unsupervised learning methods were used to meet the objective of the project.
The unsupervised learning technique involves a cluster analysis of the dataset based on the cell-
level distribution of each CFD simulation output of interest across multiple simulation runs, while
the supervised learning technique involves the use of artificial neural networks to learn the pattern
in the dataset.

Data Partitioning

Before any learning (that is model training) was performed (whether supervised or unsupervised),
data partitioning approach was decided and carefully implemented to avoid data leakage and
ensure true confidence in the performance of the smart proxy to be developed. The importance of
data partitioning has been highlighted in Section 2.3.1 in the background section of this report.

Figure 3-7 illustrates the data partitioning approach used in the development of the smart proxy.
We have taken a “double blind” approach. To successfully validate the performance of the
proposed smart proxy, the two blind validation runs (referenced as Blind Validation Base - Case
9 and Blind Validation Blend — Case 10 in Section 3.2) were completely kept out for double blind
validation of the neural networks to be developed. During the development phase (i.e. neural
network training), two (Base Case 1 and Blend Case 5) out of the eight development simulation
cases were used as validation to assess the performance of the neural network before adjudging it
as being completely developed. So only a total of six CFD simulation runs was used in training
the final smart proxy model. The smart proxy was deployed on the blind validation cases 9 and 10
only after completing all of the four development steps identified in the Descriptive Analytics
section. The detail smart proxy results for the blind validation cases (9 and 10) is provided in
chapter four, as well as the results of performance on the validation cases (1 and 5) at every step
of the development process.
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Development

Training & Calibration
6 Cases

Base Cases: 3,4,7
Blend Case: 2,6.8

Validation

2 Cases

Base Case: 1
Blend Case: 5

Test

Blind Validation

2 Cases

Base Case: 9
Blend Case: 10

Figure 3-7: Data Partitioning

Table 3-6: Boundary Conditions for B6 Combustor Simulation Model — Fuel Composition

Case
Number

CH,
C,Hg
C;Hs
C4H].D

CsH,,

co,

Base
Vol. (%)

89.025
1.727
1.223
0.468
0.130
1.061

0.366

2

Blend
Vol. (%)

84.425
7.488
6.415
0.455
0.125
1.006

0.356

[ ] Vvalidation Case

West Virginia University
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3

Base
Vol. (%)

89.113
7.636
1.197
0.471
0.132
1.067

0.384

4 5 6 7 8 9 10

Base Blend Blend Base Blend Base Blend
Vol. (%) |Vol.(%) | Vol.(%) Veol.(%) Vol.(%) |Vel. (%) || Vol. (%)

89.130 |84.283 | 84.153 88961 84.235 |89.122 || 84.225
7.622 7.450 7.510 7.728 7.500 7.600 7.6
1.182 6.273 6.329 1.213 6.264 1.200 6.2
0.472 0.457 0.462 0.479 0.463 0.471 0.468
0.132 0.126 0.127 0.135 0.128 0.132 0.130
1.075 1.047 1.060 1.106 1.051 1.102 1.009

0.387 0.364 0.358 0.378 0.359 0.373 0.368

[ ] Blind Validation Case
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Table 3-7: Additional Boundary Conditions for B6 Combustor Simulation Model

10

Blind
Blend

78.08
20.95
0.93
0.04
66240.00
2599

135
588.66
203.15

203.15

k=]
(¥
n

Case Number 1 2 3 4 5 6 7 3 9
Blind
Base Blend Base Base Blend Blend Base Blend Base
N2 Air Inlet (%) 78.08 78.08 78.08 78.08 78.08 78.08 78.08 78.08 78.08
02 Air Inlet (%) 20.95 20.95 20.95 20.95 20.95 2095 20095 2095  [20.95
Argon Air Inlet (%) 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93
CO2 Air Inlet (%) 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
Air Flow Rate (scf/h) 66269.58 [66222.59 66272.97 66315.71 [66241.711 |66241.8 66244.22 66253.56 |66280.00
Main Fuel Flow Rate (scf/h) 259292 [2783.134 2948.073 2592.51 [2783.444 |(2448.18 2947.512 2448.165 [2750
Pilot Fuel Flow Rate (scf'h) 137.099 [146.068 155.573 136.815 |146.725 |129.074 155.804 128.781 |[142
Air Inlet Temperature (°K) 589.046 |588.824 588.615 588.543 |588.666 |588.579 588.579 588.579 [588.772
Main Fuel Inlet Temperature (°K) 503 15 [203.15  203.15  293.15  [93.15 203.15 293.15 293.15 [293.15
Pilot Fuel Inlet Temperature (°K) 503,15 |203.15  203.15  293.15  [93.15 203.15 293.15 293.15 [293.15
Pressure Outlet (psi) 95.4662  |95.4687 95.5355 954484 [95.5262  |95.4461 95.5731 95.5846 [95.5
[ validation Case [ ] Blind Validation Case

Fuzzy Clustering

A background to fuzzy clustering is already provided in Section 2.3.1(in the background section
of this report). Fuzzy clustering helps to discover distribution of patterns in datasets. When
meaningful patterns are identified, it can be very valuable input for a neural network to learn. The
objective of the fuzzy clustering analysis performed in this project is to find the distribution pattern
of each transport variable (i.e. CFD simulation output) of interest (for example Pressure) across
the simulation case runs at the cell level in the system. Clustering involves assigning the cells to
clusters (groups) such that cells in the same cluster are as similar as possible, in terms of the
distribution of each transport variable of interest. Table 3-8 shows an example of the inputs and
output information used in the analysis for n number of cells, where n is the total number of cells
in the specific model section being developed or trained. The input to the clustering algorithm is
the number of clusters to group the cells into, and cell-level values of the attribute of interest across
the training and calibration Cases. For example, Pz, refers to the pressure value in cell 3,
simulation case 2. For this problem we have used three clusters and only the six training and
calibration cases identified in Data Partitioning section above as input. The output is the degree of
membership (membership weight) of each cell in each of the clusters (shown in cluster
membership columns CM1, CM2, CM3 in Table 3-7). In practice, fuzzy clustering is often
converted to an exclusive clustering by assigning each data point to the cluster in which its
membership weight is highest. For this problem, we have added the exclusive clustering
information (Cluster ID column in Table 3-8) to the fuzzy clustering information (CM1, CM2,
CM3 columns) by assigning each cell to the cluster in which it has the highest membership. As
mentioned in the Descriptive Analytics section (Section 3.3.3), clustering analysis was applied in
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the last step of the development process and so, these two pieces of information (total four
attributes) were included as input to every neural network model that was developed for the final
B6 Smart Proxy model.

Table 3-8: Input and Output Data to the Fuzzy Clustering Algorithm

Cell Pressure Values by CFD Case Cluster Memberships & ID
CellID| 2 3 4 6 7 8 CM1 CM2 CM3 Cluster ID

1 I31,2 P1,3 I31,4 P1,6 I:)1,7 Pl,8 CMl,l CMl,Z CMl,S f(MaX(CMl,l’CMl,Z’CMlB)
2 P2,2 P2,3 P2,4 P2,6 P2,7 P2,8 CMZ,l CMZ,Z CMZ,B f(MaX(CMZ,lnCMZ,ZnCMZ,S)
3 I:)3,2 P3,3 I:)3,4 P3,6 P3,7 P3,8 CM3,1 CM3,2 CM3,3 f(MaX(CMB,LCMS,ZyCMBB)

n I:’n,2 Pn,3 I:’n,4 Pn,e Pn,7 I:’n,8 CMn,l CMn,Z CMn,B f(MaX(CMn,LCMn,z'CMnB)

Artificial Neural Network Setup

A neural network was trained, calibrated and validated for each model section and transport
variable (a total of 35 neural networks). These neural networks were then coupled together to form
the B6 smart proxy model. 80% of the samples (randomly selected) from the six training and
calibration cases (base cases 3,4,7 and blend cases 2,6,8) identified in the Data Partitioning section
was used to train the neural networks while the remaining 20% was used to continuously calibrate
the neural network and check when to stop training in order to avoid overfitting. Neural network
hyper-parameters were continuously tuned for better performance on validation cases 1 and 5.

All neural networks trained were single hidden layer, one output networks. The rectilinear
activation function was used in all neural network models. The number of hidden neurons used
varied from 15 to 2500 and the total number of training epochs completed for any attribute and
model section varied from 15 to 100. The smart proxy model was developed for Pressure,
Temperature, Carbon-dioxide, Oxygen and Nitrogen.

Data Batching

Though dividing the model into seven smaller sections helped in managing the compute resource
limitation by preparing the training dataset section by section, the total number of training samples
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by section was still too large to fit into the computer memory to train a neural network. This
problem was addressed by using a combination of computing techniques called memory-mapping
and data generators. The basis for these techniques has been described in Section 2.3.4 in the
background section of this report. For each section of the model, file containing the training dataset
was memory-mapped to the virtual memory of the machine and the data fed in batches to the neural
network for training. Memory-mapping is a python computing technique used for accessing small
segments of large files on disk, without reading the entire file into memory [20]. When it is not
practical to load entire training dataset into the machine learning library due to memory limitation,
data generators could be used to generate data in batches and continuously feed the data to the
machine learning algorithm. Different training data batch sizes (ranging from 5,000 to about
200,000 samples) were tested in other to optimize the performance of the neural networks.
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4 SMART PROXY DEVELOPMENT STEPS

In the previous chapter, we presented a general overview of the tasks performed at different stages
in the project — Data quality check and visualization, Descriptive analytics, and Predictive
analytics. Data received directly from the CFD simulation runs does not have enough information
for the neural network to train as-is in the predictive analytics stage. Multiple steps were taken to
generate features that represents the flow, reaction and heat transfer phenomenon occurring in the
combustion chamber, so as to assist the neural network to learn the underlying pattern in the
distribution of the transport and species variables (Pressure, Temperature, Nitrogen, Oxygen and
Carbon-dioxide) throughout the combustor system.

The descriptive and predictive modeling stages of the process were carried out in multiple steps,
such that the modeling approach was continuously refined based on the resulting performance of
the smart proxy model following the inclusion of newly generated features at each step. These
steps are summarized into four main steps listed below and are labelled based on the description
of what features were generated into the database and included in the neural network training at
each step.

e Step 1 — Cell Geometry and Distances to Wall Boundaries

e Step 2 — Cell neighborhood, Location and Euclidian Distances to Wall Boundaries
e Step 3 — Swirler Distances

e Step 4 — Fuzzy Clustering

Detail description of work performed and smart proxy results for each step are presented in this
chapter.

4.1 Model Development Step 1: Cell Geometry and Distances to Wall
Boundaries

In gas combustion chambers such as the B6 combustor, a large proportion of the total heat flux to
the walls of the combustor is by radiation from the flame [28]. Radiation exchange between
surfaces in addition to their radiative properties and temperatures strongly depends on the surface’s
geometries, orientations and separations distance [29]. The closer a cell is to the source of heat in
the combustor, the greater the intensity of radiation energy received.

In step 1 of the development process, features representing the geometry and location of each cell
were generated into the database. The cell geometry attribute is represented by the number of nodes
bounding each focal cell in the model, which specifies if a cell is a tetrahedron or a wedge. The
cell location attribute specifies in which section of the system each focal cell is located (whether
in Inlet, Combustor or Exhaust) and additionally specifies how close to the wall the focal cell is.
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To generate these features, four boundaries were identified as Inlet, Outlet, inlet-to-combustor,
combustor-to-exhaust. The inlet and outlet boundaries refer to the walls bounding the inlet and
outlet of the system respectively. The inlet-to-combustor refers to the boundary where the system
geometry transitions from the inlet into the combustion chamber while the combustor-to-exhaust
refers to the boundary where the system geometry transitions from the combustion chamber into
the exhaust section. Since the 3 main sections of the system have different diameters, the radial
distance of each focal cell to the radial boundary must be accounted for. The distances of each
focal cell to the nearest radial boundary and farthest radial boundary was calculated and added to
the database. A total of 7 new features were added to the database in step 1.

Figure 4-1, Figure 4-2, and Figure 4-3 illustrate how the distances of cells to the boundaries, were
calculated for arbitrary cells located at the inlet, combustion chamber, and exhaust respectively.

Cells Located Within Inlet

Distance to Inlet

Distance to Outlet

Distance to Inlet/Combustor

Distance to Combustor/Exhaust

Closest Radial Boundary

v
esfll ool Ml ) [Boo

Farthest Radial Boundary

Figure 4-1: Calculated distances of cells located at the inlet

Cells Located Within Combustor

Distance to Inlet

Distance to Outlet

Distance to Inlet/Combustor

Distance to Combustor/Exhaust

Closest Radial Boundary
Farthest Radial Boundary

|
= iE o 8 = B2

Figure 4-2: Calculated distances of cells located at the combustion chamber
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Cells Located Within Exhaust

Distance to Inlet

Distance to Outlet

Distance to Inlet/Combustor

Distance to Combustor/Exhaust

Closest Radial Boundaty

o fml o8 o B

Farthest Radial Boundary

Figure 4-3: Calculated distances of cells located at the exhaust

A 500 GB storage, 4 cores and 24 GB RAM desktop computer was used in preparing the training
dataset and training the neural networks. In order to address the limitations in compute memory
and speed considering the large amount of data being processed, only the inlet section of the system
(as shown in Figure 4-4) was used in model development in Step 1. The total number of cells at
the inlet section is approximately 2,389,668. In order to further address the memory limitation
problem and increase the processing and development time, 2 million cells were randomly selected
from the inlet section for processing. The same random set of cells were selected for each of the
six training and calibration cases already identified in data partitioning (See Section 3.3.4). As a
first trial step in the development process, only two attributes (Pressure and Carbon-dioxide) were
modeled and analyzed.

Inlet Section
Used in training

Figure 4-4: Step 1 — Target section for training and development of the neural network
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4.1.1 Model Development Step 1 — Model Training Information

For each attribute, a total of 23 input features were used in training a neural network for the
randomly selected cells at the inlet section of the system. Table 4-1 shows the list of input
attributes. 16 out of the 23 features were originally provided as part of data exported from
FLUENT software. These includes focal cell location and geometry information (X, Y, and Z
coordinates and cell volume), and simulation model boundary conditions (fuel composition, air
and fuel flow rates and temperature, and pressure at the outlet). The other seven attributes were
generated in Step 1, and these include the number of nodes on each focal cell, and distances to the
boundaries described in Section 4.1.

Only the eight development cases (cases 1 through 8) were used in Step 1. The six training and
calibration cases (base cases 3, 4, 7 and blended cases 2, 6, 8) identified in Section 3.3.4 were used
in training the neural network. A total of 12 million samples (2 million cells from inlet section
across all six cases) were used in training and calibration. Specifically, 80% of the samples
(selected at random) were used in training while the remaining 20% were used as calibration
samples. The base case 1 and blind case 5 were used for validating each neural network after each
training attempt. The neural network hyper-parameters were continuously tuned for better
performance on the validation cases 1 and 5.

For each attribute, a single hidden-layer neural network with one output was built. The size of the
training dataset (approximately 6.39GB) could not fit in memory of the desktop machine being
used to train the neural networks and therefore, computing techniques mentioned in Section 2.3.4
(Data Batching) in the background section of this report, were used to address this challenge. File
containing the training dataset (for an attribute) was memory-mapped to the virtual memory of the
machine and the data fed in batches to the neural network for training. Different training data batch
sizes were tested in other to optimize the performance of the neural networks. Batch sizes tested
range from about 10,000 samples/batch to 100,000 samples/batch). The rectilinear activation
function was used in the hidden and output layers. Different number of hidden neurons were also
tested to optimize neural network performance. Number hidden neurons tested ranged from about
50 — 200 neurons.
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Table 4-1: Training Input Attributes in Development Step 1

Attributes Attributes
Provided from Generated in
FLUENT Step 1
¥ Coord Node Count
Y Coord Dist To Inlet
Z Coord Dist To Outlet
volume Dist To Inlet Combustor
CH4 Inlet |Dist To Combustor Exhaust
C2H6 Inlet Closest_Radial Boundary
C3HS Inlet Farthest Radial Boundary
CAH10_Inlet
CSH12_Inlet
N2 Inlet
CO2_Tnlet
Air Flow Rate
Main Fuel Flow
Pilot_Fuel Flow
Air Inlet Temp
Pressure Outlet
Total =16 Total =7

4.1.2 Model Development Step 1 — Presentation of Results

In this section, the smart proxy results for the distribution of carbon-dioxide in the inlet section for
the two validation cases (Base Case 1 and Blend Case 5) are presented. Two figures are displayed
in which the first figure shows the distribution of carbon-dioxide in the exterior of the inlet section
while the second figure shows a cross-section of the inlet when cut in half. The second figure
shows the distribution of carbon-dioxide in the interior parts of the inlet section. In both figures,
the first image (on left) shows the result from the CFD simulation model as obtained from
FLUENT, followed by the results of the smart proxy model (middle) while the last image (on right)
is the percent error plot comparing the CFD simulation result with the smart proxy result. For the
carbon-dioxide and other gas species, percent error is calculated by taking the absolute difference
between the CFD simulation result and the smart proxy result.
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CFD Model - Case 1 Smart Proxy Model - Case 1 Error —Case 1
Carbon Dioxide Carbon Dioxide Carbon Dioxide
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Figure 4-5: Step 1 Smart Proxy Results for Validation Case 1 — Carbon Dioxide
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Figure 4-6: Step 1 Smart Proxy Results for Validation Case 5 — Carbon Dioxide

4.2 Model Development Step 2: Cell neighborhood, Location and Euclidian
Distances to Wall Boundaries

Results obtained in Step 1 showed that there was still not enough information for the neural
network to learn the underlying pattern in the system. In FLUENT software, as with many other
numerical simulation applications, the value of a dynamic variable or properties in any given grid
or cell is mostly impacted by the value of the variable in neighboring cells. In addition to already
existing features, more features further representing the location of each cell and its neighborhood
were therefore generated into the database.

In Step 1, the calculated distances to the inlet, inlet-combustor, combustor-exhaust and outlet
boundaries were straight horizontal distances. In order to further communicate focal cell locations
to the neural network, the Euclidean distances to a fixed point (center) on these boundaries were
calculated and added to the database. Figure 4-7 is an illustration of how the Euclidean distance
was calculated for an arbitrary cell at position x,y,z (represented by the yellow circle) to the center
(represented by the red circle) of the inlet-combustor boundary. The closest and farthest radial
distances were calculated in Step 1, the ratio of these distances was calculated and added to the
database in Step 2.
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Euclidean Distances to Boundaries

Figure 4-7: Euclidean Distances to a Fixed Point on a given Boundary

In order to represent focal cell neighborhood information, the volume of up to any four face
surrounding cells were included for each focal cell. In addition to the volume of surrounding cell
attributes, the total number of adjacent (face-bounding) cells were added and features representing
whether a focal cell is bounding the inlet, outlet or any surrounding wall were also added to the
database. A total of thirteen new features (as shown in Table 4-2) were generated and added to the
database in Step 2.

Recall that random sampling of cells in the inlet section was necessary to address the compute
resource limitation challenge in order to train the neural networks in Step 1. In order to avoid
having to train with a sampled dataset, it was decided to perform the next development analysis
with a section of the model where a sizeable portion of the system can be analyzed without
exceeding the memory capacity of the machine being used. The first half combustion chamber
portion of the system has approximately 2 million cells while it has about the same length along
the Z-axis as the inlet section. As shown in Figure 4-8, the first half of the combustion chamber
was therefore selected for analysis in Step 2 of the development process.
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Half Combustor
Used in training

I P SR 7

Figure 4-8: Step 2 — Target section for training and development of the neural network

4.2.1 Model Development Step 2 — Model Training Information

In Step 2 of the development process, only the pressure distribution was modeled. The data
partitioning approach is as described in the model development Step 1. Six cases (2, 3, 4, 6, 7, 8)
were used for training and calibration of the neural network while 2 cases (base case 1 and blend
case 5) were used as validation after each training attempt.

The total number of training and calibration samples was 12,034,230 (6 cases x 2,005,705) while
4,011,410 (2 cases x 2,005,705) samples was used to validate the neural network. As mentioned
in Step 1, the data batching technique was used at this step to feed data in batches to the training
algorithm, and a single hidden-layer neural network with one output was built. A total of 36 input
attributes were used in training the neural network as shown in Table 4-2.
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Table 4-2: Training Input Attributes in Development Step 2

Attributes Attributes Attributes
Provided from Generated in Generated in
FLUENT Step 1 Step 2
X Coord Node Count Euclidean Dist Inlet
Y Coord Dist To Inlet Euclidean Dist Inlet Comb
Z Coord Dist To Outlet Euclidean Dist Comb Exhaust
volume Dist To Inlet Combustor Euclidean Dist Outlet
CH4 Inlet Dist To Combustor Exhaust Radial Boundary Ratio
C2HG Inlet Closest Radial Boundary Adjacent Cell Volume 1
CIHE Inlet Farthest Radial Boundary Adjacent Cell Volume 2
C4H10 Inlet Adjacent Cell Volume 3
C5H12 Inlet Adjacent Cell Volume 4
N2 Inlet Total Adjacent Cells
CO2_Inlet Cell_Adjacent_Inlet
Air Flow Rate Cell Adjacent Outlet
Main Fuel Flow Cell Adjacent Wall
Pilot_Fuel Flow
Air Inlet Temp
Pressure Qutlet
Total =16 Total=7 Total=13

4.2.2 Model Development Step 2 — Presentation of Results

The following figures show the results of the smart proxy model developed in Step 2. The results
presented include the pressure distribution for the validation cases (1 and 5) and two of the training
cases (2 and 6).

Each figure contains a total of 12 images: the first six images show an exterior view of the model
for two cases while the following six images show an interior view of the model for the same two
cases. Moreover, the left-hand side images represent the actual CFD model simulation generated
from Ansys Fluent, the middle images represent the smart proxy model, and the right-hand side
images show the error difference between the actual CFD model and the smart proxy model.

Results for the remaining attributes of interest were not generated as the objective was to evaluate
the performance of the developed neural network.
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Figure 4-9: Step 2 Smart Proxy Results for Training Cases 1&5 — Pressure
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Original Model Case 2 Training Case 2
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Figure 4-10: Step 2 Smart Proxy Results for Training Cases 2&6 — Pressure
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4.3 Model Development Step 3: Swirler Distances

In a realistic combustor, the overall rate of reaction is controlled by turbulent mixing. Mixing does
not only occur as a result of a jet crossflow of the preheated air and fuel at the inlet but typically
through some additional mechanism such as swirling flow which increases the turbulence intensity
[27]. The results obtained in Step 2 showed that the neural network was missing the reaction flow
pattern (especially at the inlet-combustor boundary) created by the air-fuel mixing effect of the
swirlers at the inlet. The newly generated features in Step 3 included a representation of this
swirling effect on the combustion process. These includes calculating the distances of each focal
cell in the system to each of the thirteen swirler nozzles. Figure 4-11 illustrates how these distances
are calculated for an arbitrary cell in the system.

Cell ID

Figure 4-11: Distance to Swirler Nozzles

Based on what was learned in Steps 1 and 2 of the development process, the total number of
samples that the available desktop machine could handle in development was already known. This
information, coupled with a detail analysis of the distribution of the transport variables of interest
(pressure, temperature, oxygen, nitrogen and carbon-dioxide) across all development cases was
used in dividing the system into sections for development purpose. The B6 Combustor model was
divided into seven different development sections. Figure 4-12 shows the model sectioning and
naming convention for each section. Table 4-3 shows the number of cells by section for a single
CFD simulation run.
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INLET COMBUSTOR EXHAUST

Q1 Q2| H2 Exhaust

Figure 4-12: Model Sectioning

Table 4-3: Total Number of Cells by Model Section

Total No. of Cells by Model Section
Section Name Convention Name No. Cells Z-axis BGN | Z-axis END
1st Quarter Inlet Ql Inlet 1,623,745 -0.83058| -0.78868
2nd Quarter Inlet Q2 Inlet 1,662,119 -0.78868| -0.74678
2nd Half Inlet H2 Inlet 344,757 -0.74678| -0.66298
1st Quarter Combustor |Q1_Combustor 962,001 -0.66298| -0.58981
2nd Quarter Combustor|Q2_Combustor 971,256 -0.58981| -0.51664
2nd Half Combustor H2_Combustor 1,898,924 -0.516642| -0.37030
Exhaust Exhaust 1,903,951 -0.37030 0.0762
Entire Model CFD 9,291,712 -0.83058 0.0762

Once the model was properly sectioned, the section with the smallest number of cells, the first
Quarter Combustor (Q1-Combustor) as shown in Figure 4-13 was selected as the section to be
modeled in the third step of the development process. The number of cells and the combustion
activity occurring at the Q1-Combustor section were some of the factors considered to effectively
evaluate the effect of the newly generated features on the performance of the neural network in a
timely manner.
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First Quarter Combustor

Used in training

Figure 4-13: Step 2 — Target section for training and development of the neural network

4.3.1 Model Development Step 3 — Model Training Information

The same data partitioning used in earlier steps was implemented in Step 3. Six cases (2, 3, 4, 6,
7, 8) were used for training and calibration while two cases (1 and 5) were used as validation after
each training attempt. All five attributes of interest (P, T, N2, Oz, CO2) were modeled in this step.
Furthermore, a single hidden-layer neural network with one output was built for each attribute.
The list of training input attributes in Step 3 is provided in Table 4-4.

Table 4-4: Training Input Attributes in Development Step 3

Attributes Attributes Attributes Attributes
Provided from Generated in Generated in Generated in
FLUENT Step 1 Step 2 Step 3
X _Coord Node Count Euclidean Dist_Inlet Swirler 1 dist
Y Coord Dist To Inlet Euclidean Dist Inlet Comb Swirler 2 dist
Z Coord Dist To Ouilet Euclidean Dist Comb Exhaust| Swirler 3 dist
vohume Dist To Imlet Combustor Euclidean Dist Qutlet Swirler 4 dist
CH4 TInlet |Dist To Combustor Exhaust Radial Boundary Ratio Switler 5_dist
C2HG Inlet Closest_Radial Boundary Adjacent_Cell Volume 1 Switler 6 dist
C3IHS_Inlet Farthest Radial Boundary Adjacent_Cell Volume 2 Swirler_7_dist
C4H10_Inlet Adjacent_Cell Volume 3 Swirler_8_dist
C5H12_Inlet Adjacent_Cell Volume 4 Swirler 9 dist
N2_TInlet Total_Adjacent_Cells Swirler_10_dist
CO2_Tnlet Cell Adjacent Inlet Swirler 11 dist
Air Flow_Rate Cell Adjacent Outlet Swirler 12 dist
Main Fuel Flow Cell Adjacent Wall Swirler Center dist
Pilot_Fuel Flow
Air Inlet Temp
Pressure_Quilet
Total = 16 Total =7 Total =13 Total =13
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4.3.2 Model Development Step 3 — Presentation of Results

All attributes were modeled for the Q1 Combustor section, but we only present the results for
pressure, temperature, and carbon dioxide distributions for the two validation cases base case 1
and blend case 5. Similar quality of results was obtained for nitrogen and oxygen and these are
presented in Appendix 7. The results for each attribute are presented in two figures. The first figure
shows the result for the entire Q1 Combustor section while the second figure shows a quarter of
the Q1 Combustor. Each figure contains a total of 4 images for a single case. The images on the
left represent the CFD model simulation. The images on the right represent the smart proxy model.
The top and bottom images show the front and the back of the Q1 combustor section respectively.

Pressure - Case 1

CFD Model

CFD Model

Figure 4-14: Step 3 Results (Q1 Combustor Full View) for Validation Case 1 — Pressure
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CFD Model Smart Proxy

CFD Model Smart Proxy

Figure 4-15: Step 3 Results (Q1 Combustor Quarter View) for Validation Case 1 — Pressure
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Pressure - Case 5
CFD Model Smart Proxy

CFD Model

Figure 4-16: Step 3 Results (Q1 Combustor Full View) for Validation Case 5 — Pressure

CFD Model Smart Proxy

CFD Model Smart Proxy

Figure 4-17: Step 3 Results (Q1 Combustor Quarter View) for Validation Case 5 — Pressure
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Temperature - Case 1
CFD Model Smart Proxy

CFD Model A

Figure 4-18: Step 3 Results (Q1 Combustor Full View) for Validation Case 1 — Temperature

CFD Model Smart Proxy

CFD Model Smart Proxy

Figure 4-19: Step 3 Results (Q1 Combustor Quarter View) for Validation Case 1 — Temperature
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Temperature - Case 5
CFD Model

CFD Model

CFD Model Smart Proxy

Figure 4-21: Step 3 Results (Q1 Combustor Quarter View) for Validation Case 5 — Temperature
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Carbon Dioxide - Case 1
CFD Model Smart Proxy

CFD Model , Smart Proxy

Figure 4-22: Step 3 Results (Q1 Combustor Full View) for Validation Case 1 — Carbon
dioxide

CFD Model

CFD Model

Figure 4-23: Step 3 Results (Q1 Combustor Quarter View) for Validation Case 1 — Carbon
Dioxide
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Carbon Dioxide - Case 5
CFD Model _ Smart Proxy

CFD Model . Smart Proxy

Figure 4-24: Step 3 Results (Q1 Combustor Full View) for Validation Case 5 — Carbon
Dioxide

CFD Model D Smart Proxy

CFD Model : Smart Proxy

Figure 4-25: Step 3 Results (Q1 Combustor Quarter View) for Validation Case 5 — Carbon
Dioxide
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4.4 Model Development Step 4: Fuzzy Clustering

While the results obtained in step 3 showed significant improvement in smart proxy performance
compared to the results obtained in Step 1 and Step 2, there were still opportunities to be explored
for improvement.

In the last step of the model development process, new features were generated to further represent
the physics of the reaction flow occurring in the combustion process. This involved clustering cells
in each of the seven development sections of the system such that for each attribute, cells with
similar distribution of the attribute are grouped together. Detail description of this technique has
been provided in Chapter 3 and in the background section of this report.

In addition to the clustering information that was added to the database, a new feature representing
the extent of propane blend was added. This was specified by taking the ratio of methane flow rate
to propane flow rate in the simulation model. A total of five new features were added in Step 4.
Table 4-5 shows the list of added features in this step.

In Step 4a, neural networks were trained, calibrated, and validated for all sections of the B6
combustor. Details of each section are summarized in Table 4-3 and graphically illustrated in
Figure 4-12.

4.4.1 Model Development Step 4 — Model Training Information

The same data partitioning approach as used in previous steps was used. Six cases (Cases 2, 3, 4,
6, 7, and 8) were used for training (80% randomly selected samples in the six cases) and calibration
(remaining 20% of samples in the six cases) of the neural network. Base case 1 and blend case 5
were used for validation of each neural network at the end of each training attempt. The size of
each development dataset is summarized in Table 4-3. As shown in Table 4-5, a total of 54 input
attributes were used in training the neural networks.

A neural network was developed for each attribute in each of the seven development sections,
therefore a total of 35 neural networks was trained in Step 4. Each fully trained neural network
was finally deployed on the Extra Base Case 9 and Extra Blend Case 10, as a blind test of the
performance of the neural networks. For each attribute, results for all seven development sections
were combined for better visualization of the entire system.
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Table 4-5: Training Input Attributes in Development Step 4

Attributes
Attributes Attributes Attributes Attributes Generated
Provided from Generated in Generated in Generated in in
FLUENT Step 1 Step 2 Step 3 Step 4
X _Coord Node Count Euclidean Dist Inlet Swirler 1 dist CM 1
Y Coord Dist_To_Inlet Euclidean Dist Inlet Comb Swirler 2 dist CM 2
Z Coord Dist To Ouilet Euchdean Dist Comb Exhaust| Swirler 3 dist CM 3
volume Dist_To_Inlet Combustor Euclidean Dist Outlet Swirler 4 dist Cluster Td
CH4 Inlet |Dist To Combustor Exhaust Radial Boundary Ratio Swirler 5 dist | Blend Ratio
C2H6 Inlet Closest Radial Boundary Adjacent Cell Volume 1 Swirler 6 dist
C3IHE Inlet Farthest Radial Boundary Adjacent Cell Volime 2 Swirler 7 dist
C4HI10 Inlet Adjacent Cell Volume 3 Swirler 8 dist
C3H12 Inlet Adjacent Cell Volume 4 Swirler 9 dist
N2 Inlet Total Adjacent Cells Swirler 10_dist
CO2_Inlet Cell Adjacent Inlet Swirler 11 dist
Air Flow_ Rate Cell Adjacent Outlet Swirler 12 dist
Main Fuel Flow Cell Adjacent Wall Swirler Center dist
Pilot_Fuel Flow
Air Inlet Temp
Pressure_Outlet
Total = 16 Total =7 Total =13 Total =13 Total =5

4.4.2 Model Development Step 4 — Presentation of Results

This section presents the smart proxy results of the distribution of all attributes in the entire B6
Combustor system. Each attribute result is graphically and numerically presented by (a) a
histogram describing the percent error distribution (all attributes shown under a 5% error with the
exception of Temperature shown in a 10% error scale), (b) two tables; one table suggesting the
number of cells within a 100% error scale and the second table providing a more detailed insight
of the error distribution below 10%, and (c) two 3-Dimensional images showing distribution of
the attribute in the entire system and a half cross-section view of the system.
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Pressure - Error Histogram

Case 9
BN Step 4

1,600,000
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0
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Figure 4-26: Step 4 Error Histogram for Blind Validation Case 9 — Pressure

0.02

Table 4-6: No. of Cells Under 100% Error
for Blind Validation Case 9 — Pressure

Percent Ranges Number of Cells

Perc. Cells

0.03

Error (Fraction)

0.04

Table 4-7: No. of Cells Under 10% Error for

West Virginia University

Laboratory for Engineering Application of Data Science

<10% 9,291,730 100.0% Blind Validation Case 9 — Pressure
10% - 20% 0.0%
20% - 30% 0 0.0% Percent Ranges Number of Cells Perc. Cells
30% - 40% 0 0.0% <2% 9,291,730 100.0%
40% - 50% 0 0.0% 2% - 4% 0 0.0%
50% - 60% 0 0.0% 4% - 6% 0 0.0%
60% - 70% 0 0.0% 6% - 8% 0 0.0%
70% - 80% 0 0.0% 8% - 10% 0 0.0%
80% - 90% 0 0.0% ~ 10% 0 0.0%

>90% 0 0.0%
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NETL Model Smart Proxy Model Error
wX 2«}/
Actual Pressure Pressure Error (frac)
623778 640000 660000 680000 700000 720000 740000 759420 623776640000 660000 680000 700000 720000 740000 759420 0.0 0005 001 0015 002 0025 003 0035 004 0045 0.1

Figure 4-27: Step 4 Results (Entire System) for Blind Validation Case 9 — Pressure

NETL Model Smart Proxy Model Error
Actual Pressure Pressure Error (frac)
623777.6 660000 680000 700000 720000 740000 759420.1 623777.6 660000 680000 700000 720000 740000 759420.1 0.0 0.005 001 0015 0.02 0.025 0.03 0035 004 0045 0.1

Figure 4-28: Step 4 Results (Half View) for Blind Validation Case 9 — Pressure
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Temperature - Error Histogram

Case 9
N Step 4

2,500,000

2,000,000

1,500,000
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500,000

0.050 0.075 0.100

Error (Fraction)

Figure 4-29: Step 4 Error Histogram for Blind Validation Case 9 — Temperature

Table 4-8: No. of Cells Under 100% Error for
Blind Validation Case 9 — Temperature

Percent Ranges Number of Cells Pere. Cells Table 4-9:No. of Cells Under 10% Error for
< 10% 9,021,129 97.088% Blind Validation Case 9 — Temperature
10% - 20% 222,291 2.392%
20% - 30% 38,699 0.416% Percent Ranges Number of Cells Perc. Cells
30% - 40% 8,919 0.096% <2% 2,579,897 27.766%
40% - 50% 625 0.007% 2% -4% 4,465,385 48.058%
50% - 60% 51 0.001% 4% - 6% 1,647,540 17.731%
60% - T0% 13 0.0% 6% - 8% 199,023 2.142%
70% - 80% 2 0.0% 8% - 10% 129,284 1.391%
80% -90% 1 0.0% > 10% 270,601 2.912%
> 90% 0 0.0%
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NETL Model Smart Proxy Model Error
wX 2
Actual Temperature Temperature Error (frac)

287 600 800 1000 1200 1400 1600 1800 2000 2200 2568 1000 1500 2000 00 001 002 003 004 005 006 007 008 009 01
. ! . ! i

Figure 4-30: Step 4 Results (Entire System) for Blind Validation Case 9 — Temperature

NETL Model Smart Proxy Model Error

Actual Temperature Temperature Error (frac)
287.1 500 1000 1500 2000 2568.3 287.1 500 1000 1500 2000 2568.3 0.0 001 002 003 004 005 006 007 008 009 0.1

Figure 4-31: Step 4 Results (Half View) for Blind Validation Case 9 — Temperature
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Carbon Dioxide - Error Histogram

Case 9
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Figure 4-32: Step 4 Error Histogram for Blind Validation Case 9 — Carbon Dioxide

Table 4-10:No. of Cells Under 100% Error
for Blind Validation Case 9 — Carbon Dioxide

Percent Ranges Number of Cells Pere. Cells Table 4-11- No. of Cells Under 10% Error for
< 10% 9,291,730 100.0% | Blind Validation Case 9 — Carbon Dioxide
10% - 20% 0 0.0%
20% - 30% 0 0.0% Percent Ranges Number of Cells Perc. Cells
30% - 40% 0 0.0% <2% 9,222,507 99.255%
40% - 50% 0 0.0% 2% -4% 53,275 0.573%
50% - 60% 0 0.0% 4% - 6% 13,526 0.146%
60% - 70% 0 0.0% 6% - 8% 2,422 0.026%
70% - 80% 0 0.0% 8% - 10% 0 0.0%
80% - 90% 0 0.0% >10% 0 0.0%
> 90% 0 0.0%
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NETL Model Smart Proxy Model Error
wX .z)’(
Actual Carbon Dioxide Carbon Dioxide Error (frac)
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Figure 4-33: Step 4 Results (Entire System) for Blind Validation Case 9 — Carbon Dioxide

NETL Model Smart Proxy Model Error
’ ’ wX z,y ’
Actual Carbon Dioxide Carbon Dioxide Error (frac)
00 002 004 006 008 01 012 0.14 02 00 002 004 006 008 01 012 014 0.2 0.0 0.005 001 0.015 0.02 0.025 0.03 0035 0.04 0.045 0.1

Figure 4-34: Step 4 Results (Half View) for Blind Validation Case 9 — Carbon Dioxide
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Nitrogen - Error Histogram
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Figure 4-35: Step 4 Error Histogram for Blind Validation Case 9 — Nitrogen
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Table 4-12: No. of Cells Under 100% Error
for Blind Validation Case 9 — Nitrogen

0.04

Percent Ranges Number of Cells Pere. Cells Table 4-13: No. of Cells Under 10% Error for

< 10% 9,252,113 99.574% Blind Validation Case 9 — Nitrogen

10% - 20% 35,122 0.378%

20% - 30% 4,429 0.048% Percent Ranges Number of Cells Perc. Cells

30% - 40% 66 0.001% <2% 9,130,895 98.269%

40% - 50% 0 0.0% 2% -4% 67,842 0.73%

50% - 60% 0 0.0% 4% - 6% 28,232 0.304%

60% - T0% 0 0.0% 6% - 8% 15,280 0.164%

70% - 80% 0 0.0% 8% - 10% 9,864 0.106%

80% -90% 0 0.0% > 10% 39,617 0.426%
> 90% 0 0.0%
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NETL Model Smart Proxy Model Error

2'/
Actual Nitrogen Nitrogen Error (frac)
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Figure 4-36: Step 4 Results (Entire System) for Blind Validation Case 9 — Nitrogen

NETL Model Smart Proxy Model Error

Actual Nitrogen Nitrogen Error (frac)
0.0 0.1 02 0.3 0.4 0.5 0.6 0.7 08 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 0.005 001 0015 0.02 0.025 0.03 0035 0.04 0045 0.1

Figure 4-37: Step 4 Results (Half View) for Blind Validation Case 9 — Nitrogen
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Oxygen - Error Histogram

Case 9
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Figure 4-38: Step 4 Error Histogram for Blind Validation Case 9 — Oxygen
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Table 4-14: No. of Cells Under 100% Error
for Blind Validation Case 9 — Oxygen

0.04

Percent Ranges Number of Cells Pere. Cells Table 4-15° No. of Cells Under 10% Error for

< 10% 9,291,728 100.0% Blind Validation Case 9 — Oxygen

10% - 20% 2 0.0%

20% - 30% 0 0.0% Percent Ranges Number of Cells Perc. Cells

30% - 40% 0 0.0% <2% 9,113,681 98.084%

40% - 50% 0 0.0% 2% -4% 144,830 1.559%

50% - 60% 0 0.0% 4% - 6% 25,853 0.278%

60% - 70% 0 0.0% 6% - 8% 7,246 0.078%

70% - 80% 0 0.0% 8% - 10% 118 0.001%

80% - 90% 0 0.0% >10% 2 0.0%
> 90% 0 0.0%
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NETL Model Smart Proxy Model Error

wX 2
Z X
Actual Oxygen Oxygen Error (frac)
o 0.05 01 0.15 0.2 o a 0.05 0.1 0.15 0.2 0 0.0 0005 001 0015 002 0025 0.03 0035 004 0045 0.1
E - | - . ; e

Figure 4-39: Step 4 Results (Entire System) for Blind Validation Case 9 — Oxygen

NETL Model Smart Proxy Model Error

Actual Oxygen Oxygen Error (frac)
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Figure 4-40: Step 4 Results (Half View) for Blind Validation Case 9 — Oxygen
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Pressure - Error Histogram
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Figure 4-41: Step 4 Error Histogram for Blind Validation Case 10 — Pressure

0.02

0.03

Error (Fraction)

Table 4-16: No. of Cells Under 100% Error
for Blind Validation Case 10 — Pressure

Percent Ranges Number of Cells

Perc. Cells

0.04

Table 4-17: No. of Cells Under 10% Error for
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<10% 9,291,730 100.0% Blind Validation Case 10 — Pressure
10% - 20% 0 0.0%
20% - 30% 0 0.0% Percent Ranges Number of Cells Perc. Cells
30% - 40% 0 0.0% <2% 9,291,730 100.0%
40% - 50% 0 0.0% 2% - 4% 0 0.0%
50% - 60% 0 0.0% 4% - 6% 0 0.0%
60% - 70% 0 0.0% 6% - 8% 0 0.0%
70% - 80% 0 0.0% 8% - 10% 0 0.0%
80% - 90% 0 0.0% >10% 0 0.0%

>90% 0 0.0%
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NETL Model Smart Proxy Model Error
wX 2«}/
Actual Pressure Pressure Error (frac)
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Figure 4-42: Step 4 Results (Entire System) for Blind Validation Case 10 — Pressure

NETL Model Smart Proxy Model Error
‘ ‘
W z X
Actual Pressure Pressure Error (frac)
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Figure 4-43: Step 4 Results (Half View) for Blind Validation Case 10 — Pressure
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Temperature - Error Histogram
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Figure 4-44: Step 4 Error Histogram for Blind Validation Case 10 — Temperature

Table 4-18: No. of Cells Under 100% Error
for Blind Validation Case 10 — Temperature

Percent Ranges Number of Cells Pere. Cells Table 4-19° No. of Cells Under 10% Error for
< 10% 9,033,161 97.432% Blind Validation Case 10 — Temperature
10% - 20% 187,203 2.015%
20% - 30% 40,293 0.434% Percent Ranges Number of Cells Perc. Cells
30% - 40% 9,600 0.103% <2% 1,748,053 18.813%
40% - 50% 1,052 0.011% 2% -4% 4,973,509 53.526%
50% - 60% 308 0.003% 4% - 6% 2,002,154 21.548%
60% - 70% 78 0.001% 6% - 8% 207,036 2.228%
70% - 80% 20 0.0% 8% - 10% 122,409 1.317%
80% -90% 9 0.0% > 10% 238,569 2.568%
> 90% 6 0.0%
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NETL Model Smart Proxy Model Error
wX 2
Actual Temperature Temperature Error (frac)
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Figure 4-45: : Step 4 Results (Entire System) for Blind Validation Case 10 — Temperature

NETL Model Smart Proxy Model Error
Actual Temperature Temperature Error (frac)
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Figure 4-46: Step 4 Results (Half View) for Blind Validation Case 10 — Temperature
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Carbon Dioxide - Error Histogram
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Figure 4-47: Step 4 Error Histogram for Blind Validation Case 10 — Carbon Dioxide

Table 4-20: No. of Cells Under 100% Error
for Blind Validation Case 10 — Carbon

Dioxide
Percent Ranges Number of Cells Perc. Cells Tgﬁlne d4\-/2a::-i: dggoﬁfgaiéslgrldéraigzz Iérll(;?(rlg(e)r

<10% 9,291,730 100.0%
10% - 20% 0 0.0% Percent Ranges Number of Cells  Perc. Cells
20% - 30% 0 0.0% <2% 9,252,938 99.583%
30% - 40% 0 0.0% 2% - 4% 33,072 0.356%
40% - 50% 0 0.0% 4% - 6% 5,699 0.061%
50% - 60% 0 0.0% 6% - 8% 20 0.0%
60% - 70% 0 0.0% 8% - 10% 1 0.0%
70% - 80% 0 0.0% > 10% 0 0.0%
80% - 90% 0 0.0%

>90% 0 0.0%
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NETL Model Smart Proxy Model Error
o
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Figure 4-48: Step 4 Results (Entire System) for Blind Validation Case 10 — Carbon Dioxide

NETL Model Smart Proxy Model Error
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Figure 4-49: Step 4 Results (Half View) for Blind Validation Case 10 — Carbon Dioxide
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Figure 4-50: Step 4 Error Histogram for Blind Validation Case 10 —Nitrogen
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Table 4-22: No. of Cells Under 100% Error
for Blind Validation Case 10 — Nitrogen

0.04

Table 4-23: No. of Cells Under 10% Error for
Blind Validation Case 10 — Nitrogen

Percent Ranges Number of Cells Perc. Cells Percent Ranges Number of Cells Perc. Cells
<10% 9,256,463 99.62% <2% 8.222,525 88.493%
10% - 20% 27,707 0.298% 2% -4% 982,487 10.574%
20% - 30% 7.209 0.078% 4% - 6% 25,745 0.277%
30% - 40% 350 0.004% 6% - 8% 15,571 0.168%
40% - 50% 1 0.0% 8% -10% 10,135 0.109%
50% - 60% 0 0.0% >10% 35,267 0.38%
60% - 70% 0 0.0%
70% - 80% 0 0.0%
80% - 90% 0 0.0%
> 90% 0 0.0%
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Figure 4-51: Step 4 Results (Entire System) for Blind Validation Case 10 —Nitrogen
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Figure 4-52: Step 4 Results (Half View) for Blind Validation Case 10 —Nitrogen
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Figure 4-53: Step 4 Error Histogram for Blind Validation Case 10 —-Oxygen

Table 4-25: No. of Cells Under 10% Error for
Blind Validation Case 10 — Oxygen

Table 4-24: No. of Cells Under 100% Error
for Blind Validation Case 10 — Oxygen

Percent Ranges Number of Cells Perc. Cells Percent Ranges Number of Cells Perc. Cells
<10% 9,291,730 100.0% <2% 9,178,770 98.784%
10% - 20% 0 0.0% 2% -4% 86,990 0.936%
20% - 30% 0 0.0% 4% - 6% 23,215 0.25%
30% - 40% 0 0.0% 6% - 8% 2,726 0.029%
40% - 50% 0 0.0% 8% -10% 29 0.0%
50% - 60% 0 0.0% > 10% 0 0.0%
60% - 70% 0 0.0%
70% - 80% 0 0.0%
80% - 90% 0 0.0%
> 90% 0 0.0%

West Virginia University
Laboratory for Engineering Application of Data Science 69



Smart Proxy Modeling; Application of Artificial Intelligence & Machine Learning in Computational Fluid Dynamics

NETL Model Smart Proxy Model Error
o
Actual Oxygen Oxygen Error (frac)

Figure 4-54: Step 4 Results (Entire System) for Blind Validation Case 10 —-Oxygen
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Figure 4-55: Step 4 Results (Half View) for Blind Validation Case 10 —Oxygen
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5 CONCLUSIONS

It has been successfully demonstrated that a data driven predictive model can reproduce the results
of CFD simulation of natural gas combustion in a high-pressure combustor system. The developed
smart proxy replicates the thermal-flow patterns of pressure, temperature, and species
concentrations (nitrogen, oxygen and carbon-dioxide) with a percent error of not more than 10%,
and a faster execution time compared to the numerical CFD simulation approach. A single CFD
simulation run of the B6 Combustor model takes about 24 hours or more to complete on the NETL
HPC with single node 196GB RAM, 40 cores while the smart proxy generates results in about 5 -
6 minutes when executed on the same HPC configuration. This time can be further reduced if the
compute resource limitations (computer memory and speed) are properly addressed and the system
is modeled without having to divide into smaller development sections.

More importantly, the smart proxy model achieved this level of accuracy using a very minimal
amount of data; only six CFD simulation runs of the B6 Combustor model was used in developing
the B6 smart proxy model. While CFD simulations require extensive compute resources, the
developed smart proxy can be deployed on commodity computers (inexpensive laptop or desktop
machines). This proves that this technology can contribute significantly to research studies that are
targeted at determining optimal design and operating conditions that would maximize the
efficiency of complex power generation systems.

5.1 RECOMMENDATIONS

The final modeling results shown in Section 4.4.2 of this report shows that the smart proxy
development framework applied can replicate the results of CFD simulation of a single-phase
reaction flow in a high-pressure combustor to a reasonable degree of accuracy. The results however
could be improved, especially for a thermal flow field variable such as temperature. Apart from
the simulation model boundary conditions, no reaction data from FLUENT software was used in
developing the smart proxy model. It might be worth identifying potential contribution of the other
successfully modeled transport and specie variables (pressure, oxygen, nitrogen and carbon-
dioxide) to the modeling of the thermal flow field. Perhaps, the neural networks may further learn
the reaction flow characteristics if transport data such as the turbulent Kkinetic energy and
dissipation rate are also modeled.

Training a single neural network on the entire system for each attribute will increase the amount
of information provided to any single neural network in the smart proxy model and improve
performance as opposed to a total of seven networks currently built for each attribute. In order to
efficiently fulfill the objective of the next phase of the project, which is a more complex multi-
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phase reaction flow in a coal-fired boiler, an access to a high-performance-computing (HPC)
facility is highly recommended.
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7 APPENDIX

7.1 Model Development Step 3: O1 Combustor Results — Nitrogen

Nitrogen — Case 1

CFD Model

CFD Model

Figure 7-1: Step 3 Results (Q1 Combustor Full View) for Validation Case 1 — Nitrogen

CFD Model

CFD Model

Figure 7-2: Step 3 Results (Q1 Combustor Full View) for Validation Case 1 — Nitrogen
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Nitrogen — Case 5

CFD Model

CFD Model

Figure 7-3: Step 3 Results (Q1 Combustor Full View) for Validation Case 5 — Nitrogen

CFD Model

CFD Model _ Smart Proxy

Figure 7-4: Step 3 Results (Q1 Combustor Full View) for Validation Case 5 — Nitrogen
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7.2 Model Development Step 3: Q1 Combustor Results — Oxygen

Oxygen — Case 1

CFD Model

CFD Model

Figure 7-5: Step 3 Results (Q1 Combustor Full View) for Validation Case 1 — Oxygen

CFD Model

CFD Model

Figure 7-6: Step 3 Results (Q1 Combustor Full View) for Validation Case 1 — Oxygen
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Oxygen — Case 5

CFD Model

CFD Model

Figure 7-7: Step 3 Results (Q1 Combustor Full View) for Validation Case 5 — Oxygen

CFD Model
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Figure 7-8: Step 3 Results (Q1 Combustor Full View) for Validation Case 5 — Oxygen
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