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Abstract 

Design and operation decisions of manufacturing plants can often be expressed within a hierarchical 
structure, where optimal decisions at lower operating level provide constraints for the decision making at 
a higher decision level. In this work, we are addressing the case of a hierarchical design and scheduling 
optimization problem. The integration of design and scheduling decisions can play a big role in designing 
economically profitable plants and improving their operational performance. This problem can be 
expressed as a bi-level problem, where design related decisions occur at the upper level and operational 
scheduling decisions at the lower level. Since discrete decisions are involved in both optimization levels, 
the resulting formulation typically corresponds to bi-level mixed-integer programming problems (B-MIP). 
The solution of B-MIP problems is very challenging, and typically requires the use of global optimization 
techniques, with many algorithms not able to guarantee of feasibility.  To overcome the challenges in 
solving this class of problems we propose the use of a multi-parametric based algorithm for the solution 
of bi-level mixed-integer linear and quadratic programming problems, capable of providing the exact and 
global solution.  The main idea of this approach is to treat the lower scheduling problem as a multi-
parametric programming problem in which the design decisions are considered as parameters. The 
resulting parametric solutions can then be substituted into the upper level design problem, which can be 
solved as a set of single-level deterministic programming problems. Through the developed formulation 
and algorithm we are able to supply the decision makers with the exact solution of the integrated design 
and scheduling problem. 
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Introduction

The integration of design and scheduling decisions can 
play a big role in designing economically profitable plants 
and improving their operational performance 
(Pistikopoulos and Diangelakis, 2016).  

Design decisions involve the decisions that must be 
taken before the plant is operational and are the less likely 
to change while a possible change usually requires not only 
a considerable investment but also the permanent cease of 
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operation. Such decisions include the location and capacity 
of the production plant, the choice of raw materials and 
products, and the number and capacity of different units in 
the plant. At the operating level, scheduling decisions 
optimize the plant performance and involve the detailed 
timing of operations and sequencing for a fixed process 
design (Edririk-Dogan et al., 2007).  



  
 

 

In this work we are focusing on the integration of 
process design decisions and operation decisions of 
processing plants. The design and scheduling problem can 
be expressed as a hierarchical decision problem, where 
design related decisions occur at the upper level and 
operational scheduling decisions at the lower level (Lukszo 
and Heijnen, 2007), (Yue and You, 2015).  We formulate 
this mixed-integer bilevel optimization problem and solve 
it through a multi-parametric bi-level solution algorithm to 
arrive to the exact global optimum of the integrated 
problem.  

The remainder of this paper is organized as follows. Bi-
level programming is introduced and the challenges in 
solving such problems are explained, and the solution 
algorithm used in this work is summarized. A generic bi-
level formulation of a design and scheduling problem is 
then presented. Finally, a small case study is formulated and 
solved to illustrate the capabilities of the suggested 
formulation and solution algorithm. 
 
Bi-level programming 

Optimization problems that involve two decision 
makers at two decision levels, such as the design and 
scheduling problem, can be formulated as bi-level 
programming problem.  Both the design optimization level 
and the scheduling level involve both continuous and 
integer variables. In the design level integer decisions 
include the decision on the choice of products and raw 
materials, or the number and type of processing units, while 
continuous decisions involve the capacity of the processing 
plant. In the scheduling level, integer decision can include 
the sequence of operations, while continuous decisions can 
include the detailed timing of this operations.  

The general form of a mixed-integer bi-level 
programing problem is as follows: 

 
min
$%,'%

			𝐹*(𝑥, 𝑦) 

𝑠. 𝑡.					𝐺*(𝑥, 𝑦) ≤ 0 
											𝐻*(𝑥, 𝑦) = 0 
										𝑥7, 𝑦7 ∈ argmin$<,'<

	{𝐹7(𝑥, 𝑦): 𝐺7(𝑥, 𝑦) ≤ 0,

																																													𝐻7(𝑥, 𝑦) = 0}	    (1) 
𝑥 ∈ [𝑥*A		𝑥7A]A,			𝑦 = [𝑦*A		𝑦7A]A 
𝑥 ∈ ℝD,				𝑦 ∈ ℤF 

 
,where 𝑥* is a vector of the upper level problem 

continuous optimization variables, 𝑦*is a vector of the upper 
level integer variables, 𝑥7 is a vector of the lower level 
problem continuous optimization variables, 𝑦7is a vector of 
the lower level integer variables, 𝑥 is a vector of all 
continuous variables and 𝑦 is a vector of all integer 
variables. 

Bi-level programming problems are very challenging 
to solve, even in the linear case (shown to be NP-hard by 
Hansen et al. (1992) and Deng (1998)). For classes of 
problems where the lower level problem also involves 

discrete variables, such as the case of design and scheduling 
integration where the scheduling problem involves integer 
variables, the complications are further increased, typically 
requiring global optimization methods for their solution and 
often result to approximate solutions that does not guarantee 
feasibility.  

To overcome the difficulties Avraamidou et al. (2017a) 
presented an algorithm for the global and exact solution of 
linear and quadratic bilevel mixed-integer problems. This is 
described in the following section. 

Bi-level mixed-integer optimization through multi-
parametric programming 

The integration of process design and operation 
formulated in the previous section corresponds to a bi-level 
mixed-integer programming (B-MIP) problem, Eq. (1). The 
multi-parametric based algorithm for the solution of B-
MILP and B-MIQP problems suggested by Avraamidou et 
al. (2017) will be used in this work for the solution of B-
MIP problems. The main idea behind this approach is to 
treat the lower level problem (operation level) as a multi-
parametric mixed-integer linear programming (mp-MILP) 
problem, where the upper level variables (design decisions) 
are considered as parameters.  

This approach has been applied for the solution of an 
array of hierarchical process systems engineering 
applications, such as the integration of Planning and 
Scheduling (Avraamidou and Pistikopoulos 2018a), supply 
chain optimization (Avraamidou and Pistikopoulos, 
2017b), and hierarchical model predictive control (Faisca et 
al. 2007) (Avraamidou and Pistikopoulos, 2017c). It has 
been also implemented in a MATLABÒ based toolbox, the 
Bi-level Parametric Optimization (B-POP) toolbox 
(Avraamidou and Pistikopoulos, 2018b). The main steps of 
the algorithm for the solution of B-MIP problems with 
linear lower level problem are summarized in Table 1. 

Table 1. Multi-Parametric based algorithm for 
the solution of B-MIP problems 

Step 1 Establish integer and continuous variable 
bounds. 

Step 2 Transform the B-MIP into a binary B-MIP.  
Step 3 Recast the lower level problem as a mp-MILP, 

in which the optimization variables of the upper 
level problem are considered as parameters. 

Step 4 Solve the resulting mp-MILP problem to obtain 
the optimal solution of the lower level as 
explicit functions of the upper level variables 

Step 5 Substitute each multi-parametric solution into 
the upper level problem to formulate k single 
level MIP problems.  

Step 6 Solve all k single level problems and compare 
their solutions to select the exact and global 
optimum. 



  

 

Table 2. Notation 

Sets and indices  
i	 Time slot (1, …, N) 
k	 Product (1, …, N) 
j Stage (1, …, M))  
Upper level Variables 
𝑛J Integer variable for the number of units in 

stage	j 
𝑃L Production target of product k 
𝐶𝑎 Plant capacity 
Lower level Variables 
𝑐P,J	 Completion time of ith product in stage	j 
𝑦P,L Binary variable to denote if product k is made 

at ith time slot (sequence) 
𝑤P,L Auxiliary variable 

Constants 
𝐴J,L Processing time factor of product k in stage j 
𝑑L Demand of product k 
𝐶JTDUV Capacity investment cost 
𝐶JTDUW Unit investment cost for stage j 
𝐶LXYU Selling price of product k 
𝐶L
Z[Y\ Operating cost of product k 
𝑃L] Lower bound on the production target of 

product k 
𝑃LW Upper bound on the production target of 

product k 

Bi-level formulation for the integration of Process 
Design and Scheduling 

Bi-level formulations have been used extensively in 
operations research for several years. In this section, we will 
present a bi-level formulation for the integration of process 
design and scheduling, where design-related decisions 
occur at the upper level, and scheduling-related decisions at 
the lower level optimization problem.  The notation used 
throughout the formulation can be found in Table 2.  

 
Upper level problem – Design 

A design problem generally aims at designing a 
profitable plant by making long term decisions. Those 
decisions include the location or capacity of the plant, the 
type of products it is producing, the pathways to produce 
these products, and the type and number of units needed.   

Equation (2) presents a simplified objective function 
example of a plant design optimization problem. 

 

min
D^,_`,Va	

−c𝐶LXYU𝑃L

d

Le*

+c𝐶L
Z[Y\𝑃L

d

Le*

+c𝐶JTDUW𝑛J𝐶𝑎
g

Je*

	(2) 

 

,where the first term corresponds to the revenue gained 
from selling the products, the second term to corresponds to 
the operating costs and the final term to the investment costs 
required to purchase process units. Note that the objective 
function here is not linear as the last term (investment costs) 
is bilinear. 

The design decisions for this example include the 
choice of the number of units in each processing stage, and 
the production target of each product. 

 
Lower  level problem – Scheduling 

The scheduling problem optimizes the plant 
performance by determining the detailed timing of 
operations and sequencing so as to meet a performance 
criterion, for example minimizing the makespan.  

The scheduling model generally involves two types of 
constraints, sequencing constraints that typically denote 
which products are produced in the different time instances, 
and assignment constraints that determine the completion 
times of the products at different stages. The formulation of 
the scheduling problem (3) presented here is a modification 
of the formulation developed in Ryu et al. (2007). 

 
 

min
ij,^,'j,^

𝑐d,g      

𝑠. 𝑡.					c𝑦P,L = 1
d

Pe*

																				∀𝑘 

												c𝑦P,L = 1																					∀𝑖
d

Le*

 

												𝑐P,* ≥ c𝑦P,L𝐴*,L𝑃L						∀𝑖
d

Le*

																																								(3) 

												𝑐P,J ≥ 𝑐P,Jq* +c𝑦P,L𝐴J,L𝑃L							𝑗 > 1, ∀𝑖
d

Le*

 

												𝑐P,J ≥ 𝑐PqD^,J +c𝑦P,L𝐴J,L𝑃L				𝑖 > 𝑛J, ∀𝑗
d

Le*

 

 
In this formulation, we are assuming that the 

processing time of each product at each stage is a linear 
function of the production target, 𝑃L. 

The objective function of problem 3 is to minimize 
𝑐d,g, that is the completion time of the last product in the 
last stage and corresponds to the makespan. The first 
equality constraint ensures that each product is assigned at 
one position in the production sequence. The second 
equality constraint ensures that each position in the 
sequence is assigned to one product. The third constraint is 
an inequality constraint and indicates that the completion 
time of the first stage for all products is greater than the 
processing time needed. The fourth and fifth constraints 
indicate that a product in a stage can only be processed if 
the product and the corresponding unit are available at the 
same time.  



  
 

 

The last three bilinear constraints are linearized by 
introducing an auxiliary variable, 𝑤P,L = 𝑦P,L𝑃L, and are 
updated with the following constraint set (4). 

 

𝑐P,* ≥ c𝐴*,L𝑤P,L						∀𝑖
d

Le*

 

𝑐P,J ≥ 𝑐P,Jq* +c𝐴J,L𝑤P,L									𝑗 > 1, ∀𝑖
d

Le*

 

𝑐P,J ≥ 𝑐PqD^,J +c𝐴J,L𝑤P,L						𝑖 > 𝑛J, ∀𝑗
d

Le*

																									(4) 

𝑃L − 𝑃LW(1 − 𝑦P,L) ≤ 𝑤P,L ≤ 𝑃L − 𝑃L](1 − 𝑦P,L) 

𝑦P,L𝑃L] ≤ 𝑤P,L ≤ 𝑦P,L𝑃LW 

𝑃L] ≤ 𝑃L ≤ 𝑃LW 

 
The third constraint in the set is only active for 𝑖 > 𝑛J. 

Since 𝑛J is considered an optimization variable, a 
reformulation is needed. Big-M constraints are formulated 
to activate and deactivate this constraint for different values 
of 𝑖 and 𝑛J. The integer variable 𝑛J is transformed into a set 
of binary variables, 𝑚J

v, using the procedure described in 
Floudas (1995) (Section 6.2.1 - Remark 1) to allow for the 
formation of Big-M constraints. 

One can observe that the design optimization variables, 
𝑛J and 𝑃L, appear in the constraints of the scheduling 
problem. This indicates that solving the two problems 
separately can result in a sub-optimal or even infeasible 
solution. Therefore, a bi-level formulation and a global 
solution algorithm for bi-level problems will be able to 
supply the decision makers with the optimal solution of the 
design and scheduling problem. The final problem 
formulation corresponds to a bi-level mixed-integer linear 
programming problem. 

Illustrative Case Study 

Based on the proposed formulation and algorithm, a 
small case study is solved for illustration purposes. The case 
study considers the design and scheduling integration of 
processes that consists of two stages (a reaction stage and a 
separation stage, Figure 1) for the production of three 
products (A, B, and C). At the design phase the number of 
units for each stage is decided along with the capacity or 
production target of the processing plant. At the operating 
stage scheduling decisions are made, that include the 
sequence of the production of the three products and the 
start and finish times of each production stage for each 
product. The constants used for this case study are presented 
in Table 3, Table 4 and Table 5. 

The maximum number of units for both of the 
production stages is set to three (Figure 1) as the number of 
products being produced is three. Furthermore, bounds are 
set for the maximum and minimum production capacity of 

the three products and this are set to 20 and 10 tons 
respectively.  

 
   

 

Figure 1.   A schematic representation of the 
process configuration of the illustrative 

example 

Table 3. Processing time data 

Product,	k	
Processing	time	factor,	𝑨𝒋,𝒌	(h/Ton)	

Stage	1	(j=1)	 Stage	2	(j=2)	

A 0.1	 0.3	
B	 0.07	 0.2	
C	 0.1	 0.25	

Table 4. Operating cost and Demand data 

Product,	k 
Operating	Cost,	

𝑪𝒌
𝑶𝒑𝒆𝒓	

($/Ton)	

Deman
d,	𝒅𝒌	
(Ton)	

Selling	
Price	
($/Ton)	

A 30	 20	 600	
B	 33	 19	 720	
C	 27	 17	 880	

Table 5. Unit investment cost data 

Stage,	j Cost,	𝑪𝒋𝑰𝒏𝒗𝑼($/Ton)	

Reactor, j=1 300	
Separator,	j=2	 600	

 
Solution method 
 

Following the algorithm presented Table 1, the first and 
second steps are skipped as the problem is already a binary 
B-MILP.  

For the third step, the lower level scheduling problem, 
Eq. (3) and Eq. (4) is solved as a multi-parametric problem 
where the design decisions, number of units (𝑛J), 



  

 

production target of each product (𝑃L) and production 
capacity (𝐶𝑎), are considered as parameters.  

The solution of the multi-parametric problem resulted 
into the complete profile of optimal solutions of the lower 
scheduling level problem as explicit functions of the 
variables of the higher design level problem, with 
corresponding boundary conditions for different regions in 
the parametric space (critical regions, CR). The solution 
consists of 25 critical regions and a fraction of them is given 
in  Table 6 and illustrated through a 3-D plot (𝑃� vs 𝑃� vs 
𝑃V) of the parametric space in Figure 2, by fixing the 
number of units (𝑛J) to 𝑛* = 1 and 𝑛7 = 3 (one reactor and 
3 separators). 

Table 5. Partial solution of the lower level 
scheduling problem 

CR Definition	of	the	CR	 Lower	level	variables	

C1 

0.359𝑃� + 0.252𝑃�
− 0.899𝑃V ≤ 0		
−0.926P¤ + 0.216𝑃�
− 0.309𝑃V ≤ 0	
−0.408P¤ + 0.816𝑃�
− 0.408𝑃V ≤ 0	

10 ≤ 𝑃� ≤ 20	
𝑃� ≥ 10	

10 ≤ 𝑃i ≤ 20	
𝑛* = 1,	𝑛7 = 3	

𝑐*,* = 0.07𝑃�	
𝑐*,7 = 0.27𝑃�	

𝑐7,* = 0.1𝑃� + 0.07𝑃�	
𝑐7,7 = 0.4𝑃� + 0.07𝑃�	
𝑐¥,*
= 0.1𝑃� + 0.07𝑃�
+ 0.1𝑃V	
𝑐¥,7
= 0.1𝑃� + 0.07𝑃�
+ 0.35𝑃V	
𝑦*,� = 0,	𝑦*,� = 1	
𝑦*,V = 0,	𝑦7,� = 1	
𝑦7,� = 0,	𝑦7,V = 0	
𝑦¥,� = 0,	𝑦¥,� = 0	

𝑦¥,V = 1	

C2	

0.359𝑃� + 0.252𝑃�
− 0.899𝑃V ≤ 0		
−0.926P¤ + 0.216𝑃�
− 0.309𝑃V ≤ 0	
0.408P¤ − 0.816𝑃�
+ 0.408𝑃V ≤ 0	

10 ≤ 𝑃� ≤ 20	
𝑃� ≤ 20	

10 ≤ 𝑃i ≤ 20	
𝑛* = 1,	𝑛7 = 3	

𝑐*,* = 0.07𝑃�	
𝑐*,7 = 0.27𝑃�	

𝑐7,* = 0.1𝑃� + 0.07𝑃�	
𝑐7,7 = 0.4𝑃� + 0.07𝑃�	
𝑐¥,*
= 0.1𝑃� + 0.07𝑃�
+ 0.1𝑃V	

𝑐¥,7 = 0.27𝑃� + 0.25𝑃V	
𝑦*,� = 0,	𝑦*,� = 1	
𝑦*,V = 0,	𝑦7,� = 1	
𝑦7,� = 0,	𝑦7,V = 0	
𝑦¥,� = 0,	𝑦¥,� = 0	

𝑦¥,V = 1	
 
In step 5, the computed solutions (Table 5) are then 

substituted into the upper design level problem to formulate 
new single-level deterministic mixed-integer bilinear 
programming problems. More specifically, the expressions 
for the optimization variables of the lower scheduling level,  
𝑐P,J and 𝑦P,J, are substituted in the upper design level in 
terms of the design optimization variables, 𝑛J and 𝑃L, and 

the definition of critical regions is added in the upper level 
as a new set of constraints. 

For Step 6, the resulting single level MIP problems are 
solved using CPLEX algorithm. The solution of a fraction 
of the single level problems created is presented Table 6.  

 
  

 

Figure 2.   3-D plot of the parametric space for 
fixed number of units 

As a final step, the solutions of all the single level 
problems are compared. The solution with the minimum 
objective function value corresponds to the global minimum 
of the original bi-level programming problem. For this case 
the optimum lies in CR A1 and CR A2, that result to the 
same upper and lower objective functions but have different 
sequence for the production of the three products. The upper 
level objective is -$21284 and the lower level objective is 
15.08 hr. The optimal design variables are 𝑃� = 19,  𝑃� =
19, 𝑃V = 17, 𝐶𝑎 = 19, 𝑛* = 1, 𝑛7 = 1. The optimal 
sequence of production is either B-A-C or B-C-A. 

It is worth noting here that optimistic, pessimistic and 
degenerate solutions can be found using the proposed 
methodology, supplying the decision maker with all optimal 
solutions. 

Conclusions 

In this work we were able to formulate and solve a 
Design and Scheduling integration problem as a bi-level 
mixed integer programming problem. Through the 
proposed algorithm we were able to get the global solution 
of the bi-level problem that considered both design and 
operational decisions. 



  
 

 

Table 6. Single level solutions of a fraction of the 
CRs created in Step 4. 

CR 

Upper	
level	

Objective	
Function	

Lower	
level	

Objective	
Function	

Production	
Sequence	

Fraction	of	
the	

Variables	

A1 -21248	 15.080	 B-A-C	

𝑛* = 1,	
𝑛7 = 1,	
𝑃� = 19,	
𝑃� = 19,	
𝑃V = 17	

A2	 -21284	 15.080	 B-C-A	

𝑛* = 1,	
𝑛7 = 1,	
𝑃� = 19,	
𝑃� = 19,	
𝑃V = 17	

B1	 -10370	 8.840	 B-A-C	

𝑛* = 1,	
𝑛7 = 2,	
𝑃� = 17,	
𝑃� = 17,	
𝑃V = 17	

B2	 -10370	 9.350	 C-A-B	

𝑛* = 1,	
𝑛7 = 2,	
𝑃� = 17,	
𝑃� = 17,	
𝑃V = 17	

…	

C1	 -170	 9.350	 C-A-B	

𝑛* = 1,	
𝑛7 = 3,	
𝑃� = 17,	
𝑃� = 17,	
𝑃V = 17	

C2	 -170	 8.840	 B-A-C	

𝑛* = 1,	
𝑛7 = 3,	
𝑃� = 17,	
𝑃� = 17,	
𝑃V = 17	

…	
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