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Abstract

Design and operation decisions of manufacturing plants can often be expressed within a hierarchical
structure, where optimal decisions at lower operating level provide constraints for the decision making at
a higher decision level. In this work, we are addressing the case of a hierarchical design and scheduling
optimization problem. The integration of design and scheduling decisions can play a big role in designing
economically profitable plants and improving their operational performance. This problem can be
expressed as a bi-level problem, where design related decisions occur at the upper level and operational
scheduling decisions at the lower level. Since discrete decisions are involved in both optimization levels,
the resulting formulation typically corresponds to bi-level mixed-integer programming problems (B-MIP).
The solution of B-MIP problems is very challenging, and typically requires the use of global optimization
techniques, with many algorithms not able to guarantee of feasibility. To overcome the challenges in
solving this class of problems we propose the use of a multi-parametric based algorithm for the solution
of bi-level mixed-integer linear and quadratic programming problems, capable of providing the exact and
global solution. The main idea of this approach is to treat the lower scheduling problem as a multi-
parametric programming problem in which the design decisions are considered as parameters. The
resulting parametric solutions can then be substituted into the upper level design problem, which can be
solved as a set of single-level deterministic programming problems. Through the developed formulation
and algorithm we are able to supply the decision makers with the exact solution of the integrated design
and scheduling problem.
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Introduction

The integration of design and scheduling decisions can
play a big role in designing economically profitable plants
and improving their  operational  performance
(Pistikopoulos and Diangelakis, 2016).

Design decisions involve the decisions that must be
taken before the plant is operational and are the less likely
to change while a possible change usually requires not only
a considerable investment but also the permanent cease of
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operation. Such decisions include the location and capacity
of the production plant, the choice of raw materials and
products, and the number and capacity of different units in
the plant. At the operating level, scheduling decisions
optimize the plant performance and involve the detailed
timing of operations and sequencing for a fixed process
design (Edririk-Dogan et al., 2007).



In this work we are focusing on the integration of
process design decisions and operation decisions of
processing plants. The design and scheduling problem can
be expressed as a hierarchical decision problem, where
design related decisions occur at the upper level and
operational scheduling decisions at the lower level (Lukszo
and Heijnen, 2007), (Yue and You, 2015). We formulate
this mixed-integer bilevel optimization problem and solve
it through a multi-parametric bi-level solution algorithm to
arrive to the exact global optimum of the integrated
problem.

The remainder of this paper is organized as follows. Bi-
level programming is introduced and the challenges in
solving such problems are explained, and the solution
algorithm used in this work is summarized. A generic bi-
level formulation of a design and scheduling problem is
then presented. Finally, a small case study is formulated and
solved to illustrate the capabilities of the suggested
formulation and solution algorithm.

Bi-level programming

Optimization problems that involve two decision
makers at two decision levels, such as the design and
scheduling problem, can be formulated as bi-level
programming problem. Both the design optimization level
and the scheduling level involve both continuous and
integer variables. In the design level integer decisions
include the decision on the choice of products and raw
materials, or the number and type of processing units, while
continuous decisions involve the capacity of the processing
plant. In the scheduling level, integer decision can include
the sequence of operations, while continuous decisions can
include the detailed timing of this operations.

The general form of a mixed-integer bi-level
programing problem is as follows:

min F;(x,y)
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,where x; is a vector of the upper level problem
continuous optimization variables, y, is a vector of the upper
level integer variables, x, is a vector of the lower level
problem continuous optimization variables, y,is a vector of
the lower level integer variables, x is a vector of all
continuous variables and y is a vector of all integer
variables.

Bi-level programming problems are very challenging
to solve, even in the linear case (shown to be NP-hard by
Hansen et al. (1992) and Deng (1998)). For classes of
problems where the lower level problem also involves

discrete variables, such as the case of design and scheduling
integration where the scheduling problem involves integer
variables, the complications are further increased, typically
requiring global optimization methods for their solution and
often result to approximate solutions that does not guarantee
feasibility.

To overcome the difficulties Avraamidou et al. (2017a)
presented an algorithm for the global and exact solution of
linear and quadratic bilevel mixed-integer problems. This is
described in the following section.

Bi-level mixed-integer optimization through multi-
parametric programming

The integration of process design and operation
formulated in the previous section corresponds to a bi-level
mixed-integer programming (B-MIP) problem, Eq. (1). The
multi-parametric based algorithm for the solution of B-
MILP and B-MIQP problems suggested by Avraamidou et
al. (2017) will be used in this work for the solution of B-
MIP problems. The main idea behind this approach is to
treat the lower level problem (operation level) as a multi-
parametric mixed-integer linear programming (mp-MILP)
problem, where the upper level variables (design decisions)
are considered as parameters.

This approach has been applied for the solution of an
array of hierarchical process systems engineering
applications, such as the integration of Planning and
Scheduling (Avraamidou and Pistikopoulos 2018a), supply
chain optimization (Avraamidou and Pistikopoulos,
2017b), and hierarchical model predictive control (Faisca et
al. 2007) (Avraamidou and Pistikopoulos, 2017c). It has
been also implemented in a MATLAB® based toolbox, the
Bi-level Parametric Optimization (B-POP) toolbox
(Avraamidou and Pistikopoulos, 2018b). The main steps of
the algorithm for the solution of B-MIP problems with
linear lower level problem are summarized in Table 1.

Table 1. Multi-Parametric based algorithm for
the solution of B-MIP problems

Step 1 Establish integer and continuous variable
bounds.

Step 2 Transform the B-MIP into a binary B-MIP.

Step 3 Recast the lower level problem as a mp-MILP,
in which the optimization variables of the upper
level problem are considered as parameters.

Step 4 Solve the resulting mp-MILP problem to obtain
the optimal solution of the lower level as
explicit functions of the upper level variables

Step 5 Substitute each multi-parametric solution into
the upper level problem to formulate & single
level MIP problems.

Step 6 Solve all £ single level problems and compare

their solutions to select the exact and global
optimum.




Table 2. Notation

Sets and indices

b Time slot (1, ..., N)
k Product (1, ..., N)
J Stage (1, ..., M))

Upper level Variables
n; Integer variable for the number of units in
stage J

P, Production target of product k&
Ca Plant capacity

Lower level Variables

c Completion time of ith product in stage j

Lj
Yix  Binary variable to denote if product kis made
at jth time slot (sequence)

Wi,  Auxiliary variable

Constants

Aj,  Processing time factor of product kin stage j

dy Demand of product &

Cj””’c Capacity investment cost
¢/™Y  Unit investment cost for stage /
CRev  Selling price of product k
c2Pe"  Operating cost of product &
Pt Lower bound on the production target of
product &
PY  Upper bound on the production target of
product &

Bi-level formulation for the integration of Process
Design and Scheduling

Bi-level formulations have been used extensively in
operations research for several years. In this section, we will
present a bi-level formulation for the integration of process
design and scheduling, where design-related decisions
occur at the upper level, and scheduling-related decisions at
the lower level optimization problem. The notation used
throughout the formulation can be found in Table 2.

Upper level problem — Design

A design problem generally aims at designing a
profitable plant by making long term decisions. Those
decisions include the location or capacity of the plant, the
type of products it is producing, the pathways to produce
these products, and the type and number of units needed.

Equation (2) presents a simplified objective function
example of a plant design optimization problem.

N N M
min — Z CRevP, + Z CoPeT Py + Z C/™Un;Ca (2)
= k=1 =1
= = ]:

,where the first term corresponds to the revenue gained
from selling the products, the second term to corresponds to
the operating costs and the final term to the investment costs
required to purchase process units. Note that the objective
function here is not linear as the last term (investment costs)
is bilinear.

The design decisions for this example include the
choice of the number of units in each processing stage, and
the production target of each product.

Lower level problem — Scheduling

The scheduling problem optimizes the plant
performance by determining the detailed timing of
operations and sequencing so as to meet a performance
criterion, for example minimizing the makespan.

The scheduling model generally involves two types of
constraints, sequencing constraints that typically denote
which products are produced in the different time instances,
and assignment constraints that determine the completion
times of the products at different stages. The formulation of
the scheduling problem (3) presented here is a modification
of the formulation developed in Ryu et al. (2007).

min cy y
Ci,jYi,j
N
s.t. Zyi'k =1 vk
i=1
N
Yie =1 Vi
k=1
N
12 ) VihiePe Vi ®
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Ci,j > Ci,j—l + Z yi,kAj,kPk ] > 1, Vi

k=1
N

Cij = Ci—njj + Z yl-ykA]-‘kPk i> nj,Vj
k=1

In this formulation, we are assuming that the
processing time of each product at each stage is a linear
function of the production target, Py .

The objective function of problem 3 is to minimize
Cy m- that is the completion time of the last product in the
last stage and corresponds to the makespan. The first
equality constraint ensures that each product is assigned at
one position in the production sequence. The second
equality constraint ensures that each position in the
sequence is assigned to one product. The third constraint is
an inequality constraint and indicates that the completion
time of the first stage for all products is greater than the
processing time needed. The fourth and fifth constraints
indicate that a product in a stage can only be processed if
the product and the corresponding unit are available at the
same time.



The last three bilinear constraints are linearized by
introducing an auxiliary variable, w;;, = y; Py, and are
updated with the following constraint set (4).

N
Cip = E Appwiy Vi
k=1

N
Cij =Cpj_1 Tt ZA]-’kwi_k j>1,Vvi
k=1

N
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The third constraint in the set is only active for i > n;.
Since n; is considered an optimization variable, a
reformulation is needed. Big-M constraints are formulated
to activate and deactivate this constraint for different values
of i and n;. The integer variable n; is transformed into a set
of binary variables, m{*, using the procedure described in
Floudas (1995) (Section 6.2.1 - Remark 1) to allow for the
formation of Big-M constraints.

One can observe that the design optimization variables,
n; and Py, appear in the constraints of the scheduling
problem. This indicates that solving the two problems
separately can result in a sub-optimal or even infeasible
solution. Therefore, a bi-level formulation and a global
solution algorithm for bi-level problems will be able to
supply the decision makers with the optimal solution of the
design and scheduling problem. The final problem
formulation corresponds to a bi-level mixed-integer linear
programming problem.

Ilustrative Case Study

Based on the proposed formulation and algorithm, a
small case study is solved for illustration purposes. The case
study considers the design and scheduling integration of
processes that consists of two stages (a reaction stage and a
separation stage, Figure 1) for the production of three
products (A, B, and C). At the design phase the number of
units for each stage is decided along with the capacity or
production target of the processing plant. At the operating
stage scheduling decisions are made, that include the
sequence of the production of the three products and the
start and finish times of each production stage for each
product. The constants used for this case study are presented
in Table 3, Table 4 and Table 5.

The maximum number of units for both of the
production stages is set to three (Figure 1) as the number of
products being produced is three. Furthermore, bounds are
set for the maximum and minimum production capacity of

the three products and this are set to 20 and 10 tons
respectively.

—»| Reactor 1 —

Separator 1 [—»

—» Reactor 2 = Separator 2 [—»

|/

—» Reactor 3

Separator 3 [—»

Figure 1. A schematic representation of the
process configuration of the illustrative
example

Table 3. Processing time data

Processing time factor, 4, (h/Ton)

Product, &
Stage 1 (j=1) Stage 2 (j=2)
0.1 0.3
B 0.07 0.2
0.1 0.25

Table 4. Operating cost and Demand data

Operating Cost, Deman Selling
Product, k& C,?p" d, d, Price

($/Ton) (Ton)  ($/Ton)

30 20 600

B 33 19 720

C 27 17 880
Table 5. Unit investment cost data

Stage, / Cost, C;"*Y($/Ton)
Reactor, j=1 300
Separator, j=2 600

Solution method

Following the algorithm presented Table 1, the first and
second steps are skipped as the problem is already a binary
B-MILP.

For the third step, the lower level scheduling problem,
Eq. (3) and Eq. (4) is solved as a multi-parametric problem
where the design decisions, number of units (n;),



production target of each product (P,) and production
capacity (Ca), are considered as parameters.

The solution of the multi-parametric problem resulted
into the complete profile of optimal solutions of the lower
scheduling level problem as explicit functions of the
variables of the higher design level problem, with
corresponding boundary conditions for different regions in
the parametric space (critical regions, CR). The solution
consists of 25 critical regions and a fraction of them is given
in Table 6 and illustrated through a 3-D plot (P4 vs Pg Vs
P;) of the parametric space in Figure 2, by fixing the
number of units (n;) to n; = 1 and n, = 3 (one reactor and
3 separators).

Table 5. Partial solution of the lower level

scheduling problem
CR Definition of the CR Lower level variables
c1, = 0.07P,
€1, =0.27Pg

¢34 = 0.1P, + 0.07Py

0.359P, + 0.252P; Cyo = 0.4P, + 0.07P;

—0.899P, < 0 p
—0.926P, + 0.216P; 3
~0.309P; <0 N 8';5’4 07y
of ~—0408R,+0816P, €
_o. < 3,2
0.408P; <0 = 0.1P, + 0.07P,
10=P, =20 +0.35P
Py >10 oS
10 <P, <20 i o o X
- 1’ — 3 1, — Y J2A —
n e yZ,B = 0: yZ,C =0
Y34 =0,y35 =0
Ysc=1

¢1, = 0.07P,

1, = 0.27P,
0.359P, +0.252P o ='0.1p, + 0.07P,
—0.899P, <0 ¢y, = 0.4P, + 0.07P;

—0.926P, + 0.216P, p
— < >
cp  0.408P, —0.816P, +O01P
. c
+0.408P; <0 C3, = 0.27P5 + 0.25P,
10 < P, <20 Yia=0y.5=1
Py <20 Sl
10 <P, < 20 Yic=0,¥24=1

Y25 =0,¥,0=0
Y34=0,y35=0
Ysc=1

n,=1n,=3

In step 5, the computed solutions (Table 5) are then
substituted into the upper design level problem to formulate
new single-level deterministic mixed-integer bilinear
programming problems. More specifically, the expressions
for the optimization variables of the lower scheduling level,
¢;j and y;;, are substituted in the upper design level in
terms of the design optimization variables, n; and P, and

the definition of critical regions is added in the upper level
as a new set of constraints.

For Step 6, the resulting single level MIP problems are
solved using CPLEX algorithm. The solution of a fraction
of the single level problems created is presented Table 6.

Fixed at: n1=1, n2=3

[ CR Ct

Figure 2. 3-D plot of the parametric space for
fixed number of units

As a final step, the solutions of all the single level
problems are compared. The solution with the minimum
objective function value corresponds to the global minimum
of the original bi-level programming problem. For this case
the optimum lies in CR Al and CR A2, that result to the
same upper and lower objective functions but have different
sequence for the production of the three products. The upper
level objective is -$21284 and the lower level objective is
15.08 hr. The optimal design variables are P, = 19, Py =
19, P, =17, Ca=19, n; =1, n, =1. The optimal
sequence of production is either B-A-C or B-C-A.

It is worth noting here that optimistic, pessimistic and
degenerate solutions can be found using the proposed
methodology, supplying the decision maker with all optimal
solutions.

Conclusions

In this work we were able to formulate and solve a
Design and Scheduling integration problem as a bi-level
mixed integer programming problem. Through the
proposed algorithm we were able to get the global solution
of the bi-level problem that considered both design and
operational decisions.



Table 6. Single level solutions of a fraction of the

CRs created in Step 4.
Upper Lower ., Fraction of
CR !eve.l l.eve! Production
Objective Objective Sequence .
. . Variables
Function Function

n, =1,

n, =1,

Al -21248 15.080 B-A-C P, =19,
Py =19,

P. =17

n, =1,

n, =1,

A2 -21284 15.080 B-C-A P, =19,
Py =19,

P, =17

n, =1,

n, =2,

B1 -10370 8.840 B-A-C P, =17,
Py =17,

P, =17

n, =1,

n, =2,

B2 -10370 9.350 C-A-B P, =17,
Py =17,

P, =17

n, =1,

n, =3,

C1 -170 9.350 C-A-B P, =17,
Py =17,

P. =17

n, =1,

n, =3,

Cc2 -170 8.840 B-A-C P, =17,
Py =17,

P. =17
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