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Summary / Outline

> MagL.IF is a Magneto-Inertial Fusion scheme that simulations indicate could
reach multi-M] yields on a future generator

> We observe helical implosion and stagnation structures in MaglLIF
experiments

° By varying the liner aspect ratio we can vary the dominant wavelengths that
will feedthrough the liner

° Stagnation structures are consistent with instability feedthrough

@I scalin%1 MagLIF to higher currents, we are exploring scaling paths that aim
to limit the potential impact of feedthrough
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MagLIF is a Magneto-Inertial Fusion scheme that may be able to
reach MJ yields with an appropriate driver
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4 at stagnation

Helical structure is observed in MagLIF stagnations; we are aiming to
better understand it to predict and mitigate impact at higher currents

Self-emission . o L
° Stagnation columns exhibit quasi-helical

structure
° Brightness varies along length of the column
° In some cases bifurcation exists

° Non-uniform stagnation can reduce hot fuel
volume, limit tamper

° Better understanding this structure can provide
more confidence in scaling to higher currents
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We have observed helical structures early in time in pre-

magnetized liners

Various theories exist to explain these structures
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In radiography experiments of premagnetized
liners we see a helical structure

> We can’t presently radiograph experiments with
preheat

TJ.Awe et al.,
Physics of Plamsas 21,056303 (2014)

There are a number of proposed explanations for
these helical structures

> Electrons streaming onto liner surface (Setkow ez al.)

> Compression of field by low density feed plasma
(Ryutove ¢# al., Velikovich e# al.)

> Force free current paths on the liner surface (Seyler ez

al.)

WVe can design experiments to test if this instability feeds
through to the stagnation column

C.E. Seyler, M.R. Martin, N.D. Hamlin
Physics of Plasmas 25,062711 (2018)




Experiments aim to understand whether stagnation structure is
feedthrough of the helix observed in radiography

> Radiography shows helical structure imprinted in liner in-
tlight

° Inner surface of imploding liner is non-uniform

Self-emission
at stagnation ,
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We have designed experiments to test whether stagnation

structures are dominated by feedthrough

For slab of thickness A, the dominant
teedthrough mode will have
wavelength

AxA

For a cylindrical liner, this is is
controlled by the aspect ratio

Outer Radius R,
Wall Thickness A

AR =

If stagnation helix is driven by
feedthrough of implosion instability,
varying aspect ratio will change the
helical structure
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When stagnation column is well defined (not bifurcated) the
centroid is well-represented by a fit to the horizontal profile

> We are interested in quantifying
dominant pitches/wavelengths in the
stagnation

° Fitting a Gaussian to each axial slice is a
noise-insensitive method to capture the
centroid

Axis stretched to
highlight structure
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To quantify feedthrough wavelengths we use a fit to the radial
structure at stagnation

° Axial structure is determined
using centroid of Gaussian fits
to the emission profile
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Changing the initial liner aspect ratio leads to variations in the
stagnation structure

AR = 4.6 AR =6 AR=9
A = 646um A =465um A =291lum

> Helical structure is impacted
by change in liner aspect ratio

° Higher aspect ratio leads to
shorter helix
petiod/wavelength

° Axial variation in brightness
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Data demonstrates strong correlation between liner thickness and
helical stagnation structure
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Data demonstrates strong correlation between liner thickness and

helical stagnation structure
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o Data shows measurable
changes in stagnation
pitch/wavelength as a function
of liner thickness

° Consistent with feedthrough
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Stagnation structures are consistent with feedthrough of helical )
imprint on outer surface of liner I
Stagnation wavelength varies with initial 4.
liner thickness, consistent with MRT Easll° E':T wavelength
feedthrough 1o A £ '3 """" '
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Not all experiments have as ‘clean’ helical structure, however there
is still some evidence of these dominant wavelenghts
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. > We have data for
4 multiple experiments at
Jm— each aspect ratio
X, mm
AR =4.6
A = 646um °This simplified analysis

method does not capture
double helix structures
well

o FFTs for ARG, AR9 show
some presence of the
dominant pitches

See 2C06 presented by Will Lewis
for analyzing double helix




Aspect ratio can be scaled to constrain the impact of instability
feedthrough as current is increased

We believe stagnation structure is dominated by feedthrough; as imploding shell will be
compressed more as current is increased

We can construct a scaling argument where the impact of feedthrough does not get worse
at higher currents

Growth rate of fastest growing mode:
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Growth rates and feedthrough amplitude can be estimated from 1-dimensional simulations
and aspect ratio chosen to preserve ratio of feedthrough amplitude and stagnation radius
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Separate experiments using a dielectric-coated liner to S|gn|f|cantly
improve morphology provide a potential baseline for scaling
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Summary / Outline

> MagL.IF is a Magneto-Inertial Fusion scheme that simulations indicate could
reach multi-M] yields on a future generator

> We observe helical implosion and stagnation structures in MaglLIF
experiments

° By varying the liner aspect ratio we can vary the dominant wavelengths that
will feedthrough the liner

° Stagnation structures are consistent with instability feedthrough

#Tn scalin% MagLIF to higher currents, we are exploring scaling paths that aim
to limit the potential impact of feedthrough




Additional material




Many key stagnation parameters, including yield, are
reproducible when a plastic coating is used to suppress ETI

These three, nominally identical
coated AR9 experiments have
exhibited very similar behavior

° Similar Primary DD yields
° Similar Ion temperatures
° Similar DT yields

While going to the coated AR9
platform hasn’t improved
MagLIF performance
o Performance hasn’t been
diminished
> Reproducibility is better
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MRT conserving scaling can reach multi-M| yields with an &
appropriate driver
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We believe the seed for the helical instability is electro-
thermal instability — if it is then theory shows we can fix it
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We have observed helical structures early in time in pre-

magnetized liners

Various theories exist to explain these structures
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In radiography experiments of premagnetized
liners we see a helical structure

> We can’t presently radiograph experiments with
preheat
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There are a number of proposed explanations for
these helical structures

> Electrons streaming onto liner surface (Setkow ez al.)
> Compression of field by low density feed plasma
(Velikovich)

> Force free current paths on the liner surface (Seyler ez

al.)

We can design experiments to test if this instability feeds
through to the stagnation column

C.E. Seyler, M.R. Martin, N.D. Hamlin
Physics of Plasmas 25, 062711 (2018)




Radial mass distribution is changed with coatings

(a) AR9 uncoated (b) AR9 uncoated detail (g) Radial Mass distirbution (Uncoated)
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