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The Power of AEM and Data Analytics:
Examples from Materials Science

(with a little geology too)
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Why are we called Sandia?

• Largest National Laboratory in the
US with over 13,000 employees

• Originally a division of Los Alamos
Scientific Laboratory

• Named after the Sandia Mountains
near Albuquerque

• Those mountains were named by
the early Spanish settlers in -1540
• From a distance the Sandia's

look like a watermelon on its side
• The Spanish settlers mistook

gourds being grown by the
natives for watermelons
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Sandia Mountains, Albuquerque, NM, USA, Courtesy USDA-NRCS
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47001ft AEM Spectral Imaging
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P.G. Kotula, et al. Microsc. Microanal. 12 [6] 538-544.
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Conventional Data Analysis
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'11 Example of Conventional Analysis
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4101 Example of Conventional Analysis
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Why is MSA im ortant?

• Spectral images are larg nd getting larger

• Impossible to manually interrogate

• MSA can reduce the dimension of the data

• Separate chemical information from redundancy and
noise tilli

111)
Keenan, M R , Multivariate analysis of spectral images composed of count data, in Techniques
and applications of hyperspectral image analysis, H. Grahn and P. Geladi, Editors. 2007, John
Wiley & Sons: Chinchester.
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The Data Set

A little over 1 hour of AEM data acquisition
320,000 spectra each with 2048 channels
Spectra are noisy
Can MSA make anything out of this?

Average spectrum has 33 counts

1

Marcellus shale
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Multivariate Statistical 
D

Analysis
• D=CST co

=
co

• Compress data to get more than 100 c''
counts/new pixel

• Normalize for Poisson noise (Eigenanalysis
for rank determination...13)

• Compute Principal Components

• Rotate to simple spatial or spectral structure

• Apply non-negativity constraint

• Inverse normalization for noise

• 25 seconds later...ready for interpretation
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Interesting RE-containing phase
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Carbon-containing material
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Low end spatially, high end for sensitivity
Raw spectrum from the CMOS spectral ima• e
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Low end, Spectral-Domain Simplicity
Best Spectral or Elemental 'Contrast'
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•
Low end, Spatial-Domain Simplicity

Ni-silicide contact, MSA shows minor elements
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Medium end analysis
Sub-nm microanalysis of electrical contact materials
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The analytical power of the AC-STEM is at least 70x better than the older analytical

microscope at Sandia.
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Analysis of Mn-doped STO E-13 Boundaries
Z13 (510)4001]

Quantitative EDS and EELS
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4D-STEM
STEM-CBED and MSA...A Tale of Big Data

• Titan G2 80-200 STEM

• pnCCD mounted below the
projection chamber

• 4.8 mrad convergence angle in
probe with 30 pA

• 256x256 real-space pixels

• 264x264 reciprocal-space pixels

• 4x109 data elements as summed

• No "small" dimension
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STEM-CBED and MSA...Real-space simplicity
38 Gbyte in, 9 Mbyte after MSA, Compression factor of -21000
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Conclusions

• MSA methods are powerful n channels p factors

and highly relevant todacl

• General phase analysis

• Needle in th haystack

• Additional dat modalities

• Commerciall nd non-
commercially available

• Paul.Kotula@sandia.gov
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