This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019-11312C

Toward the Analysis of Embedded
Firmware through Automated Re-hosting
Eric Gustafson, Marius Muench, Chad Spensky, Nilo Redini,

Aravind Machiry, Aurelien Francillon, Davide Balzarotti,
Yung Ryn Choe, Christopher Kruegel, Giovanni Vigna

7 Sandia
S m) @ National 3

THE GOMPUTER SECURITY GROUP AT UCSE laboratorles E U R E C O M

Sandia National Laborator a multimission laboratory managed and operated by
National Te h Igy&Eg gSIt fS ndia, LLC, a wholly owned
bd ary of Honeywell Intern t nal Inc f r the USDp artment of Energy’s

National Nuclear Security Administration under contract DE-NA0003525.

Let's secure the IoT! JecclQb

w rks with

™

- e /SCHLAGE]
| | SAMSUNG
' c, SmartThmgs

PHILIPS
&) ecobee

INSTEON

Pretender 2

...but there’s all this crazy hardware... S€CLQD

P;'e;endér

Our Analysis Goals: Jecclab

e Fuzzing
o Feed the program with lots of inputs until something bad
happens
o Make lots of copies of the code and its environment to
make it feasible

e Symbolic Execution

o Used to understand how data affects program behavior,
and detect possible invalid behaviors

o Needs a strong model of the code’s environment
(software and hardware) to be tractable.

Pretender £

What if... JceclQb

Pretender 3

What if... JceclQb

01010101
01010100
10101000

S Extract! .

Pretender 6

What if... JceclQb

. N

01010101
01010100 Virtualize!
QEMU | 10101000

Pretender 7

What if...

JceclQb

Fuzz all the
things!!!

(
QEMU

01010101
01010100
10101000

Pretender

Re-hosting to the Rescue? Jecclab

“Re-hosting”: the act of transferring a piece of
software from one execution environment into
another, such as from a hardware device to a
software emulator

Pretender 9

...but there’s all this crazy hardware... S€CLQD

P;'e;endér

Uh oh...

JceclQb

S
W

Pretender

N
Ambarella

11

Firmware is hard! JecclQb

Device-specific code

Device-specific code

——_—
Operating System "
A N

<}rr>om<{>

Libraries (HALSs, libc)

Hardware Peripherals

Hardware Peripherals

OS-based firmware Blobs

Pretender 12

Peripherals are Hard! Jsecclab

M
E
M
O
CPU <)
Y
B On-chip
U Peripherals
S (MMIO)

Pretender 13

Peripherals are Hard! Jsecclab

On- . Off-
chip = chip

<xVOImMZ

Timers
|

12C <I2C Bus Ir]terface

I
Power Cfg

Serial <USART / L:JART interface >

Pretender 14

>_

CPU <

nwCcCw

Peripherals are Hard! Jsecclab

Timer 5 (32 bit)

OXFFFFFFFF 0xCOOOOFFF
50 TIM3 OR
50 TIM2 OR
4C [__TIM5 DMAR
48 TIM5 DCR

40 TIM5 CCR4
3C TIM5 _CCR3
38 TIM5 CCR2
34 TIM5 CCR1

0xB0000000 2C TIM5_ARR
T 28 TIM5 PSC
Sl 24 TIM5 CNT
>0 |__TIM5 CCER
0x40000000 c| TIM5_CCMR2
1g| TIM5_CCMR
14 TIM5 EGR
10 TIM5 SR
0C TIM5 DIER
08 [TIM5 SMCR
0x00000000 04 TIM5 CR2

0x40000C00 TIM5 CR1

Pretender 15

Peripherals are Hard! Jsecclab

Timer 5 (32 bit)

OXFFFFFFFF 0XxCOOOOFFF
50 TIM3 OR
50 TIM2 OR
4C [__TIM5 DMAR
48 TIM5 DCR

40 TIM5 CCR4
L1 TIM5 CCR3
38 TIM5 CCR2
34 TIM5 CCR1

0xB0000000 gg Ekﬂﬁg égg
e il 24 TIM5 CNT [l

20 TIM5 CCER

0x40000000 1C TIM5_CCMR2
18 TIM5_CCMR1
14 TIM5 EGR
10 TIM5 SR
0C TIM5 DIER
08 TIM5 SMCR

0x00000000 04 TIM5 CR2

0x40000C00 TIM5 CR1

Pretender 16

Peripherals are Hard! Jsecclab

Offset | Register Name Offset | Register Name

0x0 Status 0x0 Control 1

Ox4 Control 2

0x8 Baud Rate 0x8 Control 3

0xC Control 1 0xC Baud Rate

0x10 Control 2 0x10 GTPR

0x14 Control 3 0x14 RTOR

0x18 GTPR O
STM32L152 Serial port STM32F072 Serial port

Pretender 17

Peripherals are Hard! Jecclab

e Obtained a dataset of Cortex-M memory layouts
as used by debuggers (SVD files)

e Data self-published by vendors (and is therefore
extremely incomplete)

e 463 distinct chip models, 13 vendors, 1592
unique peripherals

e Mainline QEMU supports 3 Cortex-M CPUs,
and zero of the above dataset!

Pretender 18

Emulation is Hard! JecclQb

e Hardware-in-the-loop isn’t sufficient
o One thread per device
o One device reboot per execution

e Replay is not sufficient!
o Can’t do fuzzing without input

Pretender 19

Four Attributes of Ideal Re-Hosting s cClLQD

e Virtual

o Does not require hardware at the time of emulation

Pretender * - - 20

Four Attributes of Ideal Re-Hosting Jsecclab

e Virtual

o Does not require hardware at the time of emulation

e Abstraction-less
o Does not rely on any aspect of the program

Pretender | 7 21

Four Attributes of Ideal Re-Hosting Jsecclab

e Virtual

o Does not require hardware at the time of emulation

e Abstraction-less
o Does not rely on any aspect of the program

e Interactive
o Responds to stimulus as the original hardware would

Pretender 22

Four Attributes of Ideal Re-Hosting Jsecclab

e Virtual

o Does not require hardware at the time of emulation

e Abstraction-less
o Does not rely on any aspect of the program

e Interactive
o Responds to stimulus as the original hardware would

e Automatic
o Requires a minimum of human intervention

Pretender 23

Re-hosting is hard!

But are we doomed? Not yet.

Can we observe the real hardware, to
build models for an emulator?

Pretender

JceclQb

[N

Unmodified
Firmware

N

MMIO
Mapping

Pretender

Emulated Environment

(QEMU)

Record Forwarded Interactions

Real Embedded System

MMIO

o

n| 0 I 0

0 0 Il

o o 0 O o o U O

(@ D
(@ D
MMIO
Log | Interrupt
Log
a |
d J

Machine

Learning
Engine

Recording JsecclQb

Inside the
Device-specific code CPU

We want to record this, Libraries (HALs, libc)

but it’s inside the CPU! =)

Internal Peripherals

Pretender 7 7 27

Recording JsecclQb

Now we just Inside the
Device-specific code record hetfe. CPU
Problem
solved?
Libraries (HALSs, libc) :

MMIO

Internal Peripherals

Pretender 28

Interrupts Jecclab

e The current version of Avatar does not handle
interrupts at all, but almost every firmware
requires them

e Previous approaches leverage chip-specific
hardware to observe interrupts

e Timing, masking, ordering, Cause extreme
complications

Pretender 29

Interrupt Recording Jecclab

QEMU Hardware
RUNNING RUNNING
Rl EEE < MMIO... MMIO... MMIO... > R EEE

Pretender 30

Interrupt Recording JsecclQb

QEMU < INTERRUPT Ox2F!!!

RUNNING
Normal code

Pretender 31

Interrupt Recording JsecclQb

QEMU

RUNNING
Normal code

Pretender 32

Interrupt Recording Jecclab

QEMU Hardware
RUNNING RUNNING
i Fake Interrupt
Interrupt Routine o
OK! Taking Interrupt Ox2F!! > outine

Pretender 33

Interrupt Recording Jecclab

QEMU Hardware
RUNNING RUNNING
: Fake Interrupt
Interrupt Routine :
Routine

Pretender 34

Interrupt Recording Jecclab

QEMU Hardware

RUNNING RUNNING

Normal Code Normal Code
OK! Done with Interrupt Ox2F!! >

Pretender 35

Modeling Jecclab

1. Figure out which groups of memory locations

are distinct “peripherals”

2. Figure out which interrupts those peripherals
fire, and under which conditions

3. Assign a model to each location within the

peripheral

Pretender 36

Grouping Peripherals Jsecclab

Op. Address Value
READ 0x40000004 0x1000
WRITE 0x40010024 0x0
READ 0x40002000 0x8000
WRITE 0x40020004 0x1
READ 0x40000008 0x8
READ 0x40003000 0x10

I;T‘e te;ci er | 37

Grouping Peripherals Jsecclab

0x40000000
Op. Address Value _
READ 0x40000004 0x1000
WRITE 0x40010024 0x0
READ 0x40002000 0x8000 _
WRITE 0x40020004 Ox1
READ 0x40000008 0x8
READ 0x40003000 0x10 _
N
> —
0x50000000

Pretender 38

Grouping Peripherals Jsecclab

0x40000000
Op. Address Value _
READ 0x40000004 0x1000
WRITE 0x40010024 0x0
READ 0x40002000 0x8000 _
WRITE 0x40020004 Ox1]
READ 0x40000008 0x8 Clusterlng:
READ 0x40003000 0x10 ‘ _‘
| |
| =|
0x50000000

Pretender 39

Associating Interrupts

JceclQb

Offset Value

0x0 9?7?77
Ox4 ??7??°°°7?7
0x8 ??7?°?°°°7?7
0xC ??°°°?°°?
0x10 9?7?77

Pretender

40

Associating Interrupts JsecclQb

Offset Value

0x0 2?0?2777

Ox4 O0xDEADBEEF
Ox8 2?90?77

OxC 2?0?77
0x10 2?0?77

Pretender 41

Associating Interrupts JsecclQb

Offset Value

Interrupt Ox2E!
0x0 rrreny : Interrupt Ox2F!

= —

Ox4 OxDEADBEEF : Interrynt Ox
0x8 22?22?2227 Interrupt Ox2F!
0xC ???°?°7°7?°7?7
0x10 9?7?7777

Pretender 42

Associating Interrupts

JceclQb

ISR ENTER | 0x2F

READ Peripheral 1
WRITE Peripheral 4
READ Peripheral 4
WRITE Peripheral 1
READ Peripheral 4
READ Peripheral 4
READ Peripheral 4
WRITE Peripheral 4
WRITE Peripheral 1
ISR EXIT 0x2F

Pretender

43

Associating Interrupts

Jecclab

ISR ENTER

0x2F

READ

WRITE

WRITE

Peripheral 1

Peripheral 1

Peripheral 1

ISR EXIT

0x2F

Pretender

44

Associating Interrupts Jecclab

ISR ENTER | 0x2F

READ Peripheral 1

Peripheral 4
generates

WRITE Peripheral 1 Interrupt Ox2F!

WRITE Peripheral 1

ISR EXIT 0x2F

Pretender 45

Interrupt Trigger Inference

JceclQb

Op. Offset Value
WRITE | Ox4 OxDEADBEEF
ENTER Ox2F

Pretender

46

Interrupt Trigger Inference

JceclQb

Op. Offset | Value WRITE | 0x4 OxFACEBEEF
WRITE | Ox4 OxDEADBEEF
ISR ENTER | Ox2F
ISR ENTER | Ox2F
WRITE | Ox4 OxO0000BEEF ISR EXIT Ox2F
ISR ENTER | Ox2F WRITE | Ox4 OxDEADOOO0O

Pretender

47

Interrupt Trigger Inference Jsecclab

Op. Offset | Value WRITE | Ox4 OxFACEBEEF
WRITE | Ox4 OxDEADBEEF

e ISR ENTER | Ox2F
ISR ENTER | Ox2F |

The trigger for Interrupt 0x2F is
0x0000BEEF in offset 0x4!

WRITE | Ox4 OxO0000BEEF ISR EXIT Ox2F

ISR ENTER | Ox2F WRITE | Ox4 OxDEADOOO0O

Pretender 48

Modeling MMIO

JceclQb

Offset Register Model
0x0 ???°?°?°?°77?
Ox4 (e dddds
0x8 (e ddds
0xC ???°?°7°7?°7?7
0x10 9?7?7777

Pretender

49

Modeling MMIO

JceclQb

Offset Register Model
0x0 ???°?°?°?°77?
Ox4 (e dddds
0x8 (e ddds
0xC ???°?°7°7?°7?7
0x10 9?7?7777

Offset
0x0
0x0
0x0
0x0
0x0

Op.
REA
WRITE
READ
WRITE
READ

Value

42
42
56
56

Pretender

50

Modeling MMIO Jecclab

Offset Register Model
0x0

O0x4 P97
0x8 P97
0xC P?77?797°7°°7
0x10 P97

Pretender 91

Modeling MMIO Jecclab

Offset Register Model

0x0 Offset Op. Value
Ox4 WRITE 0x400

Ox4 RERPT Y Ox4 WRITE 0x800
Ox4 WRITE 0x600

Ox8 2700707 Ox4 WRITE 0x1234

s T— Ox4 WRITE 0x5432

0x10 227222777

Pretender 92

Modeling MMIO Jecclab

Offset Register Model
0x0

Ox4 Write-Only Model
0x8 2?90?77
0xC 2?77?07
0x10 2?0?77

Pretender 23

Modeling MMIO

JceclQb

Offset Register Model
0x0

Ox4 Write-Only Model
0x8 2?90?77

0xC 2?77?07

0x10 7?0?77

Offset
0x8
0x8
0x8
0x8
0x8
0x8

Op.
REA
READ
READ
READ
READ
READ

Value
O0x1
0x2
0x4
0x1
0x2
Ox4

Pretender

o4

Modeling MMIO

JceclQb

Offset Register Model
0x0

Ox4 Write-Only Model
0xC 2?0?77

0x10 2?0?77

Pretender

95

Modeling MMIO

JceclQb

Offset Register Model
0x0

Ox4 Write-Only Model
0x8

0xC 2?77?07

0x10 7?0?77

Offset
0xC
0xC
0xC
0xC
0xC
o0XC
0xC
0xC

Op.
REA
READ
READ
READ
WRITE
READ
READ
READ

Value
0x12
0x48
0x96
0x123

0x24
0x48
0x96

Pretender

56

Modeling MMIO JsecclQb

Offset Register Model
0x0

Ox4 Write-Only Model
0x8

0xC

0x10 227772727

Pretender o7

Modeling MMIO Jecclab

Offset Op. Value
0x10 REA “”
0x10 READ “L”
Offset Register Model 0x10 READ “9”
0x10 READ “v”
0x0 0x10 READ ‘¢’
. 0x10 READ “D”
Ox4 Write-Only Model 0x10 READ “o”
0x8 0x10 READ “1”7
0x10 READ “‘p”
0x10 READ “h”
i ! ' | 0x10 READ 7
0x10 22222977 - 0x10 ~ READ “n’
0x10 READ “s”
0x10 READ “1”
0x10 WRITE “‘O”
0x10 WRITE “‘K”

Pretender 58

Modeling MMIO JsecclQb

Offset Register Model

0x0

Ox4 Write-Only Model
0x8

0xC

0x10 State Approximation

Pretender 52

State Approximation Jecclab

e Remaining locations typically represent state
held by the hardware or physical world

e Can we recover the state machine? No:
o No countable states, no state transitions, no state
probabiliites
e Can we just guess? No.
o Many firmware samples and libraries will not tolerate
errors!

Pretender 60

Fake it until we make it! JceAllQb

e Consider writes to the peripheral to change its
“state”.

e \When a value is read, return the next value of
that location, except if it is in a different “state”

e \When a write occurs, move to the next state

where the same value was written

o Seek backward if we don't find one
o Missing values are filled in from the most recent value

Pretender 61

Evaluation JecclQb

e Constructed 6 test firmware samples based on
the mbed framework

e Used w/ 3 different boards

e Mixes of interrupts, stateful peripherals, etc

'P;‘eteinider 7 7 7 | 7 N - 7 B | 62

Evaluation JceAllQb

e 3 samples are fully-interactive, and have
functionality not seen during recording, as well
as synthetic vulnerabilities

e Replace analyst-chosen source of input with
external input source

e Now we can drive the firmware like console
programs

Pretender 63

Evaluation

JceclQb

Firmware Name Peripherals Blocks Executed
Null A
Rec. Model SA Fuzzing
Nucleo L152RE
blink_led
read_hyperterminal
i2c_master

button_interrupt
thermostat (custom)
rf_door_lock (custom)
Nucleo FO72RB
blink_led
read_hyperterminal
12¢c_master
button_interrupt
thermostat (custom)
rf_door_lock (custom)
MAX32600MBED
blink_led
read_hyperterminal
12¢c_master
button_interrupt
thermostat (custom)
rf_door_lock (custom)

Pretender

64

Evaluation

JceclQb

Firmware Name Peripherals Blocks Executed
Null A
Rec Model SA Fuzzing
Nucleo L152RE
blink_led Timer, GPIO
read_hyperterminal Timer, GPIO, UART
i2c_master Timer, 12C, AM3215

button_interrupt
thermostat (custom)
rf_door_lock (custom)
Nucleo FO72RB
blink_led
read_hyperterminal
12¢c_master
button_interrupt
thermostat (custom)
rf_door_lock (custom)
MAX32600MBED
blink_led
read_hyperterminal
12¢c_master
button_interrupt
thermostat (custom)
rf_door_lock (custom)

Timer, GPIO, Button
Timer, 12C, AM3215
Timer, GPIO, Radio,

Timer, GPIO

Timer, GPIO, UART
Timer, 12C, AM3215
Timer, GPIO, Button
Timer, I12C, AM3215
Timer, GPIO, Radio,

Timer, GPIO

Timer, GPIO, UART
Timer, 12C, AM3215
Timer, GPIO, Button
Timer, 12C, AM3215
Timer, GPIO, Radio,

Pretender

65

[]
Evaluation JceclQb
Firmware Name Peripherals Blocks Executed
Rec II:I/Ilg(liel SA Fuzzing
Nucleo L152RE
blink_led Timer, GPIO 218 86
read_hyperterminal Timer, GPIO, UART 545 85
i2c_master Timer, 12C, AM3215 1185 61
button_interrupt Timer, GPIO, Button 344 68
thermostat (custom) Timer, 12C, AM3215 1263 62
rf_door_lock (custom) Timer, GPIO, Radio, 665 87
Nucleo FO72RB
blink_led Timer, GPIO 405 117
read_hyperterminal Timer, GPIO, UART 828 102
12¢c_master Timer, 12C, AM3215 1572 103
button_interrupt Timer, GPIO, Button 362 103
thermostat (custom) Timer, 12C, AM3215 1662 103
rf_door_lock (custom) Timer, GPIO, Radio, 960 102
MAX32600MBED
blink_led Timer, GPIO 280 9
read_hyperterminal Timer, GPIO, UART 514 8
12c_master Timer, 12C, AM3215 941 8
button_interrupt Timer, GPIO, Button 188 8
thermostat (custom) Timer, I12C, AM3215 1009 8
rf_door_lock (custom) Timer, GPIO, Radio, 692 8

Pretender

66

[]
Evaluation JceclQb
Firmware Name Peripherals Blocks Executed
Rec II:I/[uol(lje] SA Fuzzing
Nucleo L152RE
blink_led Timer, GPIO 218 86 218
read_hyperterminal Timer, GPIO, UART 545 85 545
i2c_master Timer, 12C, AM3215 1185 61 1185
button_interrupt Timer, GPIO, Button 344 68 314
thermostat (custom) Timer, 12C, AM3215 1263 62 1261
rf_door_lock (custom) Timer, GPIO, Radio, 665 87 665
Nucleo FO72RB
blink_led Timer, GPIO 405 117 405
read_hyperterminal Timer, GPIO, UART 828 102 828
i2c_master Timer, 12C, AM3215 1572 103 1572
button_interrupt Timer, GPIO, Button 362 103 362
thermostat (custom) Timer, 12C, AM3215 1662 103 1662
rf_door_lock (custom) Timer, GPIO, Radio, 960 102 960
MAX32600MBED
blink_led Timer, GPIO 280 9 280
read_hyperterminal Timer, GPIO, UART 514 8 514
12c_master Timer, 12C, AM3215 941 8 942
button_interrupt Timer, GPIO, Button 188 8 188
thermostat (custom) Timer, I12C, AM3215 1009 8 1009
rf_door_lock (custom) Timer, GPIO, Radio, 692 8 692

Pretender

67

[]
Evaluation JceclQb
Firmware Name Peripherals Blocks Executed
Rec II:I/[uol(lje] SA Fuzzing
Nucleo L152RE
blink_led Timer, GPIO 218 86 218 n/a
read_hyperterminal Timer, GPIO, UART 545 85 545 636
i2c_master Timer, 12C, AM3215 1185 61 1185 n/a
button_interrupt Timer, GPIO, Button 344 68 314 n/a
thermostat (custom) Timer, 12C, AM3215 1263 62 1261 1276
rf_door_lock (custom) Timer, GPIO, Radio, 665 87 665 758
Nucleo FO72RB
blink_led Timer, GPIO 405 117 405 n/a
read_hyperterminal Timer, GPIO, UART 828 102 828 999
i2c_master Timer, 12C, AM3215 1572 103 1572 n/a
button_interrupt Timer, GPIO, Button 362 103 362 n/a
thermostat (custom) Timer, 12C, AM3215 1662 103 1662 1918
rf_door_lock (custom) Timer, GPIO, Radio, 960 102 960 972
MAX32600MBED
blink_led Timer, GPIO 280 9 280 n/a
read_hyperterminal Timer, GPIO, UART 514 8 514 668
12c_master Timer, 12C, AM3215 941 8 942 n/a
button_interrupt Timer, GPIO, Button 188 8 188 n/a
thermostat (custom) Timer, I12C, AM3215 1009 8 1009 1066
rf_door_lock (custom) Timer, GPIO, Radio, 692 8 692 712

Pretender

68

Limitations JecclQb

e DMA: We can’t record what we can’t observe

e The limits of state approximation:

e Frequent interrupts cause recording issues

Pretender 69

Next Steps JsecclQb

e Recording is tricky, can we go without?

e Static analysis to locate DMA and disambiguate
internal/external peripherals

e Relax “abstraction-less”, find abstractions in
blobs

O

Pretender 70

Thank you! Jecclab

https: //glthub com/ucsb-seclab/pretender

— e - ———o———=

Pretender 71

