
Toward the Analysis of Embedded
Firmware through Automated Re-hosting

Eric Gustafson, Marius Muench, Chad Spensky, Nilo Redini,
Aravind Machiry, Aurelien Francillon, Davide Balzarotti,
Yung Ryn Choe, Christopher Kruegel, Giovanni Vigna

THE COMPUTER SECURITY GROUP AT 122I

Sandia
National
Laboratories EURECOM

Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-NA0003525.

SAND2019-11312C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Let's secure the IoT! .rEcLcab

works with

nest

PHILIPS

tugust

WinK

C SIIMSUNG

Smartrhingsim

CHLAG

INSTEUN®
CO

Pretender 2

....but there's all this crazy hardware... .rEcLcab

Pretender 3

Our Analysis Goals: _rEcLab

• Fuzzing
o Feed the program with lots of inputs until something bad

happens
o Make lots of copies of the code and its environment to

make it feasible

• Symbolic Execution
o Used to understand how data affects program behavior,

and detect possible invalid behaviors
o Needs a strong model of the code's environment

(software and hardware) to be tractable.

Pretender

What if... J-EcLcab

Pretender 5

What if... J-EcLcab

01010101

01010100
101010 0 0

Extract!

Pretender 6

What if... J-EcLcab

QEMU

01010101

01010100
10101000 < Virtualize!

Pretender 7

What if... .rEcLcab

C

1

C
C

C
C

1

1

C
C

C
C

Fuzz all the
things!!!

c
c

c
c

C
QEMU

01010101

01010100
10101000

Pretender 8

Re-hosting to the Rescue? J-EcLcab

"Re-hosting": the act of transferring a piece of
software from one execution environment into
another, such as from a hardware device to a
software emulator

Pretender

....but there's all this crazy hardware... .rEcLcab

Pretender 10

Uh oh...
MP-

.rEcLab

A9-AO-RH
NZV1X

50101212

Pretender 11

Firmware is hard! .rEcLcab

Device-specific code

Operating System

Hardware Peripherals

OS-based firmware

Device-specific code

Libraries (HALs, libc)

Hardware Peripherals

Blobs

Pretender 12

Peripherals are Hard! .rEcLcab

CPU

M
E
M
O
R
Y

B
U
S

FLASH
MEMORY

RAM

On-chip
Peripherals
(MMIO)

Pretender 13

Peripherals are Hard!

CPU

M
E
M
O
R
Y

B
U
S

FLASH
MEMORY

RAM

Timers

I2C

Power Cfg

Serial

.rEcLcab
On- Off-
chip chip

I2C Bus Interface

USART / UART interface

Pretender 14

Peripherals are Hard! _rEcLab
OxFFFFFFFF

OxB0000000

Ox40000000

Ox00000000

OxC0000FFF

50
50
4C
48

40
3C
38
34

2C
28
24

20

1C

18
14
10
OC
08
04

Ox40000000

Timer 5 (32 bit)

...

TIM3 OR
TIM2 OR

TIM5 DMAR
TIM5 DCR
R.
TIM5 CCR4
TIM5 CCR3
TIM5 CCR2
TIM5 CCR1
RESERVED
TIM5 ARR
TIM5 PSC
TIM5 CNT
TIM5 CCER

TIM5 CCMR2

TIM5 CCMR1

TIM5 EGR
TIM5 SR
TIM5 DIER
TIM5 SMCR
TIM5 CR2
TIM5 CR1

Pretender 15

Peripherals are Hard! _rEcLab
OxFFFFFFFF

OxB0000000

Ox40000000

Ox00000000

OxC0000FFF

50
50
4C
48

40
3C
38
34

2C
28
24

20

1C

18
14
10
OC
08
04

Ox40000000

Timer 5 (32 bit)

...

TIM3 OR
TIM2 OR

TIM5 DMAR
TIM5 DCR
R ' •
TIM5 CCR4
TIM5 CCR3
TIM5 CCR2
TIM5 CCR1
RESERVED
TIM5 ARR
TIM5 PSC
TIM5 CNT
TIM5 CCER

TIM5 CCMR2

TIM5 CCMR1

TIM5 EGR
TIM5 SR
TIMS DIER
TIMS SMCR
TIM5 CR2
TIM5 CR1

Pretender 1 6

Peripherals are Hard! xEr Lab
Offset Register Name Offset Register Name

Ox0 Status

Ox4 Data (RX and TX)

Ox8 Baud Rate

OxC Control 1

Oxl 0 Control 2

Ox14 Control 3

Ox18 GTPR

Ox0 Control 1

Ox4 Control 2

Ox8 Control 3

OxC Baud Rate

Oxl 0 GTPR

Ox14 RTOR

Ox20 Data RX

Ox24 Data TX 1
STM32L152 Serial port STM32F072 Serial port

Pretender 17

Peripherals are Hard! _TEC La b

• Obtained a dataset of Cortex-M memory layouts
as used by debuggers (SVD files)

• Data self-published by vendors (and is therefore
extremely incomplete)

• 463 distinct chip models, 13 vendors, 1592
unique peripherals

• Mainline QEMU supports 3 Cortex-M CPUs,
and zero of the above dataset!

Pretender

Emulation is Hard! .rEcLcab

• Hardware-in-the-loop isn't sufficient
o One thread per device
o One device reboot per execution

• Replay is not sufficient!
o Can't do fuzzing without input

Pretender 1 9

Four Attributes of Ideal Re-Hosting _rEcLicab

• Virtual
o Does not require hardware at the time of emulation

Pretender

Four Attributes of Ideal Re-Hosting .rEclsab

• Virtual
o Does not require hardware at the time of emulation

• Abstraction-less
o Does not rely on any aspect of the program

Pretender 21

Four Attributes of Ideal Re-Hosting _rEcLcab

• Virtual
o Does not require hardware at the time of emulation

• Abstraction-less
o Does not rely on any aspect of the program

• Interactive
o Responds to stimulus as the original hardware would

Pretender

Four Attributes of Ideal Re-Hosting _rEcLcab

• Virtual
o Does not require hardware at the time of emulation

• Abstraction-less
o Does not rely on any aspect of the program

• Interactive
o Responds to stimulus as the original hardware would

• Automatic
o Requires a minimum of human intervention

Pretender

Re-hosting is hard!
But are we doomed? Not yet.

Can we observe the real hardware, to
build models for an emulator?

Pretender _rEcLab

Unmodified
Firmware

MMIO
Mapping

Pretender

Emulated Environment

■
■
a
■

r

Emulated
CPU

(QEMU)

■
■
■
■
■

Memor;

MMIO

u u u u u u

MMIO
Log

9

Interrupt
Log

Recard Forwarded Interactions

Machine
Learning
Engine

Real Embedded System

r

Real
CPU

Hardware Models

26

Recording .rEcLcab

We want to record this,
but it's inside the CPUI i>.

M

\o/

Device-specific code

Libraries (HALs, libc)

Internal Peripherals

ternal Peripherals

Inside the
CPU

A\
u
s
s
e
s

Pretender 27

Recording

1

P

\7

Device-specific code

Libraries (HALs, libc)

QEMU

.rEcLcab

Now we just
record here.
Problem
solved?

MMIO
Internal Peripherals

ternal Peripherals

Inside the
CPU

u
s
s
e
s

Pretender 28

Interrupts _re- Lab

• The current version of Avatar does not handle
interrupts at all, but almost every firmware
requires them

• Previous approaches leverage chip-specific
hardware to observe interrupts

• Timing, masking, ordering, Cause extreme
complications

Pretender

Interrupt Recording .rEcLcab

QEMU Hardware

RUNNING RUNNING
Normal code Normal code

<
MM10... MM10... MM10...

>

Pretender 30

Interrupt Recording .rEcLcab

QEMU

RUNNING
Normal code

INTERRUPT Ox2F!!!] Hardware

STOPPED
Interrupt Routine

Pretender 31

Interrupt Recording J-EcLcab

QEMU

RUNNING
Normal code

Hardware

STOPPED
Fake Interrupt
Routine

Pretender 32

Interrupt Recording .rEcLcab

QEMU

RUNNING
Interrupt Routine

I nterru

Hardware

RUNNING
Fake Interrupt
Routine

Pretender 33

Interrupt Recording J-EcLcab

QEMU

RUNNING
Interrupt Routine

Hardware

RUNNING
Fake Interrupt
Routine

Pretender 34

Interrupt Recording .rEcLcab

QEMU

RUNNING
Normal Code

OK! Done with Interrupt Ox2F!! >
Hardware

RUNNING
Normal Code

Pretender 35

Modeling _TE'' Lab

1. Figure out which groups of memory locations
are distinct "peripherals"

2. Figure out which interrupts those peripherals
fire, and under which conditions

3. Assign a model to each location within the
peripheral

Pretender

Groupingleripherals .rEcLcab

Op. Address Value
READ Ox40000004 Ox1000
WRITE Ox40010024 Ox0
READ Ox40002000 Ox8000
WRITE Ox40020004 Oxl
READ Ox40000008 Ox8
READ Ox40003000 Oxl 0

Pretender 37

Grouping Peripherals .1-Er La b

Op. Address Value
READ Ox40000004 Ox1000
WRITE Ox40010024 Ox0
READ Ox40002000 Ox8000
WRITE Ox40020004 Oxl
READ Ox40000008 Ox8
READ Ox40003000 Oxl 0

 >

r

Ox40000000

Ox50000000

Pretender 38

Grouping Peripherals .1-Er La b

Op. Address Value
READ Ox40000004 Ox1000
WRITE Ox40010024 Ox0
READ Ox40002000 Ox8000
WRITE Ox40020004 Oxl
READ Ox40000008 Ox8
READ Ox40003000 Oxl 0

Clustering:
1
1

Ox40000000

Ox50000000

Pretender 39

Associating Interrupts .rEcLab

Offset Value

Ox0 99929299

Ox4 99977779

Ox8 99929779

OxC 97929979

Ox10 97979799

Pretender 40

Associating Interrupts .rEcLab

Offset

Ox0

Ox4

Value

99999999

OxDEADBEEF

Ox8 99999779

OxC 97979979

Ox10 97979799

Pretender 41

Associating Interrupts .rEcLab

Offset

Ox0

Ox4

Value

99797999

OxDEADBEEF

Ox8 99922299

OxC 9999977?

Ox10 97979799

interrupt Ox PI

Interrupt Ox2F!

I err Cb_________AtaLs2E-1---

Interrupt Ox2F!
________----_____/

Pretender 42

Associating Interrupts .rEcLcab
ISR ENTER Ox2F

READ Peripheral 1

WRITE Peripheral 4

READ Peripheral 4

WRITE Peripheral 1

READ Peripheral 4

READ Peripheral 4

READ Peripheral 4

WRITE Peripheral 4

WRITE Peripheral 1

ISR EXIT Ox2F

Pretender 43

Associating Interrupts .rEcLcab
ISR ENTER Ox2F

READ Peripheral 1

WRITE Peripheral 4

READ Peripheral 4

WRITE Peripheral 1

READ Peripheral 4

READ Peripheral 4

READ Peripheral 4

WRITE Peripheral 4

WRITE Peripheral 1

ISR EXIT Ox2F

Pretender 44

Associating Interrupts .rEcLcab
ISR ENTER Ox2F

READ Peripheral 1

WRITE Peripheral 4

READ Peripheral 4

WRITE Peripheral 1

READ Peripheral 4

READ Peripheral 4

READ Peripheral 4

WRITE Peripheral 4

WRITE Peripheral 1

ISR EXIT Ox2F

Peripheral 4
generates
Interrupt Ox2F!

Pretender 45

Interrupt Trigger Inference J-EcLcab
Op.

WRITE

ENTER

Offset Value

Ox4 OxDEADBEEF

Ox2 F

Pretender 46

Interrupt Trigger Inference _rEcLab
Op. Offset Value WRITE Ox4 OxFACEBEEF

WRITE Ox4 OxDEADBEEF

ISR ENTER Ox2 F

ISR ENTER Ox2F

WRITE Ox4 Ox0000BEEF

ISR ENTER Ox2F

ISR EXIT Ox2F

WRITE Ox4 OxDEADOI 00

Pretender 47

Interrupt Trigger Inference _rEcLab
Op. Offset Value WRITE Ox4 OxFACEBEEF

WRITE Ox4 OxDEADBEEF

ISR ENTER Ox2 F

ISR ENTER Ox2F

The trigger for Interrupt Ox2F is
Ox0000BEEF in offset 0x4!

WRITE Ox4

ISR

Ox0000BEEF

ENTER Ox2 F

ISR EXIT

WRITE Ox4

Ox2 F

OxDEAD0000

Pretender 48

Modeling MMIO .rEcLcab

Offset Register Model

Ox0 99929999

Ox4 97977929

Ox8 97927779

OxC 97977279

Ox10 97979779

Pretender 49

Modeling MMIO .rEcLcab

Offset Register Model

Ox0 99777979

Ox4 77777727

Ox8 79777997

OxC 77729797

Ox10 2797777?

 <
Offset Op. Value
00 READ 1
Ox0 WRITE 42
00 READ 42
Ox0 WRITE 56
00 READ 56

Pretender

Modeling MMIO .rEcLcab

Offset

Ox0

Ox4

Register Model

Storage Model

27722297

Ox8 77777797

OxC 72777797

Ox10 27277797

Pretender 51

Modeling MMIO

Offset

Ox0

Ox4

Register Model

Storage Model

77777797

Ox8 ????????

OxC 77799997

Ox10 9797977?

.rEcLcab

Offset Op. Value
Ox4 WRITE Ox400
Ox4 WRITE Ox800
Ox4 WRITE Ox600
Ox4 WRITE Ox1234
Ox4 WRITE Ox5432

Pretender

Modeling MMIO .rEcLcab

Offset

Ox0

Ox4

Ox8

Register Model

kStorage Model

Write-Only Model

77777777

OxC 79797797

Ox10 77777799

Pretender 53

Modeling MMIO .rEcLcab

Offset

Ox0

Ox4

Ox8

Register Model

iStorage Model•
Write-Only Model

72779297

OxC 9297929?

Ox10 9797977?

<
Offset Op. Value
Ox8 READ Oxl
Ox8 READ Ox2
Ox8 READ Ox4
Ox8 READ Oxl
Ox8 READ Ox2
Ox8 READ Ox4

Pretender 54

Modeling MMIO .rEcLcab

Offset

Ox0

Ox4

Ox8

OxC

Register Model

kStorage Model•
Write-Only Model

rattern Model •
79997297

Ox10 97977777

Pretender 55

Modeling MMIO .rEcLcab

Offset

Ox0

Ox4

Ox8

OxC

Register Model

iStorage Model•
Write-Only Model

kattern Model

97999999

Ox10 9797977?

n<
Offset Op. Value
OxC READ Ox12
OxC READ Ox48
OxC READ Ox96
OxC READ Ox123
OxC WRITE 0
OXC READ Ox24
OxC READ Ox48
OxC READ Ox96

Pretender

Modeling MMIO .rEcLcab

Offset

Ox0

Ox4

Ox8

OxC

Ox10

Register Model

iStorage Model•
Write-Only Model

!Pattern Model •
[Increasing Model

9797777?

Pretender 57

Modeling MMIO .rEcLcab

Offset

Ox0

Ox4

Ox8

OxC

Ox1 0

Register Model

iStorage Model•
Write-Only Model

!Pattern Model m
[Increasing Model

9797777? <

Offset Op. Value
Ox1 0 READ "I"
Oxl 0 READ "L"
Oxl 0 READ "o"
Oxl 0 READ "v"
Ox1 0 READ "e"
Oxl 0 READ "D"
Ox1 0 READ "o"
Oxl 0 READ "I"
Ox1 0 READ "p"
Oxl 0 READ "h"
Ox1 0 READ "i"
Oxl 0 READ "n"
Ox1 0 READ "s"
Oxl 0 READ "!"
Ox1 0 WRITE "0"
Oxl 0 WRITE "K"

Pretender 58

Modeling MMIO .rEcLcab

Offset

Ox0

Ox4

Ox8

OxC

Ox10

Register Model

kStorage Model•
Write-Only Model

IP
l'attern Model •
Increasing Model

State Approximation

Pretender 59

State Approximation _re- La b

• Remaining locations typically represent state
held by the hardware or physical world

• Can we recover the state machine? No:
o No countable states, no state transitions, no state

probabiliites
• Can we just guess? No.

o Many firmware samples and libraries will not tolerate
errors!

Pretender

Fake it until we make it! _TE'' La b

• Consider writes to the peripheral to change its
"state".

• When a value is read, return the next value of
that location, except if it is in a different "state"

• When a write occurs, move to the next state
where the same value was written
o Seek backward if we don't find one
o Missing values are filled in from the most recent value

Pretender

Evaluation J-Er Lab
• Constructed 6 test firmware samples based on

the mbed framework
• Used w/ 3 different boards
• Mixes of interrupts, stateful peripherals, etc

13,

,11.' I

ile .
t

11,a • 11.

Pretender

Evaluation _rEcLab

• 3 samples are fully-interactive, and have
functionality not seen during recording, as well
as synthetic vulnerabilities

• Replace analyst-chosen source of input with
external input source

• Now we can drive the firmware like console
programs

Pretender

Evaluation .rEcLcab
Firmware Name Peripherals Blocks Executed

Rec.
Null

SA Fuzzing
Model

Nucleo L152RE
blink_led
read_hyperterminal
i2c_master
button_interrupt
thermostat (custom)
rf_door_lock (custom)
Nucleo F072RB
blink_led
read_hyperterminal
i2c_master
button_interrupt
thermostat (custom)
rf_door_lock (custom)
MAX32600MBED
blink_led
read_hyperterminal
i2c_master
button_internipt
thermostat (custom)
rf_door_lock (custom)

Pretender 64

Evaluation .rEcLcab
Firmware Name Peripherals

Rec.

Blocks Executed
Null

SA Fuzzing
Model

Nucleo L152RE
blink_led
read_hyperterminal
i2c_master
button_interrupt
thermostat (custom)
rf_door_lock (custom)
Nucleo F072RB
blink_led
read_hyperterminal
i2c_master
button_interrupt
thermostat (custom)
rf_door_lock (custom)
MAX32600MBED
blink_led
read_hyperterminal
i2c_master
button_interrupt
thermostat (custom)
rf_door_lock (custom)

Timer, GPIO
Timer, GPIO, UART
Timer, I2C, AM3215
Timer, GPIO, Button
Timer, I2C, AM3215
Timer, GPIO, Radio,

Timer, GPIO
Timer, GPIO, UART
Timer, I2C, AM3215
Timer, GPIO, Button
Timer, I2C, AM3215
Timer, GPIO, Radio,

Timer, GPIO
Timer, GPIO, UART
Timer, I2C, AM3215
Timer, GPIO, Button
Timer, I2C, AM3215
Timer, GPIO, Radio,

Pretender 65

Evaluation .rEcLcab
Firmware Name Peripherals

Rec.

Blocks Executed
Null

SA Fuzzing
Model

Nucleo L152RE
blink_led Timer, GPIO 218 86
read_hyperterminal Timer, GPIO, UART 545 85
i2c_master Timer, I2C, AM3215 1185 61
button_interrupt Timer, GPIO, Button 344 68
thermostat (custom) Timer, I2C, AM3215 1263 62
rf_door_lock (custom) Timer, GPIO, Radio, 665 87
Nucleo F072RB
blink_led Timer, GPIO 405 117
read_hyperterminal Timer, GPIO, UART 828 102
i2c_master Timer, I2C, AM3215 1572 103
button_interrupt Timer, GPIO, Button 362 103
thermostat (custom) Timer, I2C, AM3215 1662 103
rf_door_lock (custom) Timer, GPIO, Radio, 960 102
MAX32600MBED
blink_led Timer, GPIO 280 9
read_hyperterminal Timer, GPIO, UART 514 8
i2c_master Timer, I2C, AM3215 941 8
button_interrupt Timer, GPIO, Button 188 8
thermostat (custom) Timer, I2C, AM3215 1009 8
rf_door_lock (custom) Timer, GPIO, Radio, 692 8

Pretender 66

Evaluation .rEcLcab
Firmware Name Peripherals

Rec.

Blocks Executed
Null

SA Fuzzing
Model

Nucleo L152RE
blink_led Timer, GPIO 218 86 218
read_hyperterminal Timer, GPIO, UART 545 85 545
i2c_master Timer, I2C, AM3215 1185 61 1185
button_interrupt Timer, GPIO, Button 344 68 314
thermostat (custom) Timer, I2C, AM3215 1263 62 1261
rf_door_lock (custom) Timer, GPIO, Radio, 665 87 665
Nucleo F072RB
blink_led Timer, GPIO 405 117 405
read_hyperterminal Timer, GPIO, UART 828 102 828
i2c_master Timer, I2C, AM3215 1572 103 1572
button_interrupt Timer, GPIO, Button 362 103 362
thermostat (custom) Timer, I2C, AM3215 1662 103 1662
rf_door_lock (custom) Timer, GPIO, Radio, 960 102 960
MAX32600MBED
blink_led Timer, GPIO 280 9 280
read_hyperterminal Timer, GPIO, UART 514 8 514
i2c_master Timer, I2C, AM3215 941 8 942
button_interrupt Timer, GPIO, Button 188 8 188
thermostat (custom) Timer, I2C, AM3215 1009 8 1009
rf_door_lock (custom) Timer, GPIO, Radio, 692 8 692

Pretender 67

Evaluation .rEcLcab
Firmware Name Peripherals

Rec.

Blocks Executed
Null

SA
Model

Fuzzing

Nucleo L152RE
blink_led Timer, GPIO 218 86 218 n/a
read_hyperterminal Timer, GPIO, UART 545 85 545 636
i2c_master Timer, I2C, AM3215 1185 61 1185 n/a
button_interrupt Timer, GPIO, Button 344 68 314 n/a
thermostat (custom) Timer, I2C, AM3215 1263 62 1261 1276
rf_door_lock (custom) Timer, GPIO, Radio, 665 87 665 758
Nucleo F072RB
blink_led Timer, GPIO 405 117 405 n/a
read_hyperterminal Timer, GPIO, UART 828 102 828 999
i2c_master Timer, I2C, AM3215 1572 103 1572 n/a
button_interrupt Timer, GPIO, Button 362 103 362 n/a
thermostat (custom) Timer, I2C, AM3215 1662 103 1662 1918
rf_door_lock (custom) Timer, GPIO, Radio, 960 102 960 972
MAX32600MBED
blink_led Timer, GPIO 280 9 280 n/a
read_hyperterminal Timer, GPIO, UART 514 8 514 668
i2c_master Timer, I2C, AM3215 941 8 942 n/a
button_interrupt Timer, GPIO, Button 188 8 188 n/a
thermostat (custom) Timer, I2C, AM3215 1009 8 1009 I 066
rf_door_lock (custom) Timer, GPIO, Radio, 692 8 692 712

Pretender 68

Limitations J-Er Lab

• DMA: We can't record what we can't observe

• The limits of state approximation:

• Frequent interrupts cause recording issues

Pretender

Next Steps _rEcLcab

• Recording is tricky, can we go without?

• Static analysis to locate DMA and disambiguate
internal/external peripherals

. Relax "abstraction-less", find abstractions in
blobs
0

Pretender

Thank you! .rEcLcab

https://github.com/ucsb-seclab/pretender
Pretender 71

