
The Structural Simulation
Toolkit and GPGPU-Sim

PRESENTED BY

Clay Hughes, Sandia National Laboratories
— —

SST Development Team, Sandia National Laboratories

Architecture Accelerator Lab, Purdue University

09/22/2019

Sandia National Laboratories is a multimission
Laboratory managed and operated by National
Technology ft Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAND201 9-XXXX

SAND2019-11322C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

2 Welcome!

Part 1: Introduction to SST
SST Overview
Demos: Running a simple simulation; Enabling statistics;
Running in parallel

SST Element Libraries: A tour

Part 2: GPGPU-Sim
GPGPU-Sim Overview
New Features

Break

The SST/GPGPU-Sim Integration

1:00 — 2:30

2:30-3:30

3:30 — 4:00

4:00 - 5:00

PACT 2019 TUTORIAL

SST GPGPU Modeling Capability

Long history of GPGPU simulators, mostly from academia
GPGPUSim [Bakhoda, 2009]

Gem5+GPU [Power, 2014]

MacSim/Ocelot [Hyesoon, 2012], [Kerr, 2009]

Multi2Sim v5.0 [Gong, 2017]

NVArchSim

After a literature review and phone calls with the developers of GPGPUSim and
Multi2Sim, the SST team chose GPGPUSim as the integration target
More amendable to SST integration
Software designed around well-defined objects

More tractable for SST workflows

\
 \\
\.

\\
\\

.\
\\

\.
\\

\\

4 GPGPUSim Integration

GPGPUSim
Runs host code directly

Runs device code on a functional simulator

Interfaces with programs through a custom library,
replacing native CUDA calls

Simulation split into functional and timing

Functional Timing
CTA SIMT Core
Pool of threads with access to shared memory Roughly equivalent to Fermi's SM

Thread Cache
PC + registers + allocated memory , L1 4 Per-core, write-through/no-allocate

Instruction 0 L2 4 Device, write-back/no-allocate

1:1 mapping with opcode and implementation Interconnect
function; simulated at issue lntersim (Booksim)

Backing store
GDDR3/GDDR5

CUDA
Application

5 GPGPUSim Integration

I SIMT Core

SIMT Core

SIMT Core

S1MT Core

r
r CINAT

r CHAT

SIMT
Stacks

Thread Block

Thread Block
•

•

•

Thread Block

rtrinc.th_nt_

I r'r% e4.-} rt+

nnnetant

Constant
Cache
Textu re
Cache
Data
Cache

Memory
Port(s)

Keir au

1.
3e
li
uM
iG
il
li

Functional
SIMT units track default functional model from GPGPUSim

V-Memory Partition

Atomic Unit

LLC

DRAM

Timing
SIMT units maintain execution timing; Booksim is used for the interconnect; and
simple timing models are used for the memory partition

SIMT Core

S1MT Core

6 GPGPUSim Integration

S1MT Core r CIAAT

S1MT Core r CI11/17

r C1AAT

SIMT
Stacks

Thread Block

Thread Block
•

•

•

Thread Block
Memory
Port(s)

I ILawinch

-<=>
4:<=>- <=>

SSA

Plan to keep the SIMT units and replace everything else
CPU SST execution component (Ariel, Juno, etc.)

Interconnect SST networking component (Shogun, Merlin, Kingsley, etc.)

Memory Partition & Caches4 SST memHierarchy component for caches and various
other backends for the backing store (DRAMSim, SimpleMem, Cramsim, etc.)

, GPGPUSim Integration

L_

Ariel

CPU
 A

1
A\

C,ommandl Liin

Detta,U5*

PCIe-L1

PCIe-L2

SM

L1

SM

L1

L2 L2

L1

L2

SM

L1

L2

8 Primary SST Components:Ariel

Frontend based on Intel PIN, which passes information to a SST component
Supports OpenMP and MPI binaries

Faster than cycle-approximate models like Gem5 but slower than trace-based

Reasonable model of thread interactions
Non-deterministic

ikiWI T

User
Binary

Ariel
Processor

Ariel
Core

Art&
Core

Ariel
Core

Ariel

CPU
ccmfirimaldunk

Wij"'

GPGPUSim

Memory

9 Primary SST Components: memHierarchy

Collection of interoperable memory system elements
Caches and directories

Memory models (DDR, HBM, HMC, NVRAM, etc.)

Memory controllers & network interfaces for memory (MemNICs)

Inter- and intra-socket coherence

Correlated with modern memory hierarchies
HBM2/3 Evaluation on Many-core CPU for ECP
Messier: A Detailed NVM-Based DIMM Model for the SST Simulation Framework

Ariel

1121

Will allow us to model any sort of memory arrangement hat we can imagine!

CommII Link GPGPUSim

EN

GPGPUSim

SiiM ME
INICPU

LIAriel
1=

Cortimarei Command Link

CUDA API interception model

Standalone dummy CUDA lib which
is independent of CPU model

Applications link dynamically with lib
(shared object)

Dummy lib interacts with GPU engine
for kernel launch and CUDA memory
copies

Apps

Load/store trace 1 CUDA ync rtply4

PIN-base Ariel

CPU model

);

CUDA API call

Dummy CUDA

runtime Library

A
+

SST Infrastructure

SM

$
sA ima a

B
U
O
i
e
p
U
e
l
s

v
GPU Engine

model

API Calls Forwarded to GPU Model

cudaRegisterFatBinary cudaFree

cudaRegisterFunction

cudaMalloc

cudaMemcpy

cudaConfigureCall

cudaLaunch

cudaGetLastError

cudaRegisterVar

cudaSetupArgument

cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags

Using The GPU Component

12 Using the Component

Currently hosted in a separate repository within the SST project

To build SST elements with the GPU component (assumes core is built):
1. git clone https://github.com/sstsimulator/sst-elements.git
2. git clone https://github.com/sstsimulator/sst-gpgpusim.git $SST_ELEMENTS_ROOT/src/sst/elements/Gpgpusim
3. . src/sst/elements/Gpgpusim/sst-gpgpusim/setup_environment
4. cd src/sst/elements/Gpgpusim/sst-gpgpusim
5. make
6. cp --preserve=links $GPGPUSIM_ROOT/lib/$GPGPUSIM_CONFIG/libcudart_mod.so

$SST_ELEMENTS_ROOT/src/sst/elements/Gpgpusim/
7. cd $SST_ELEMENTS_HOME
8. ./autogen
9. ./configure --prefix=$SST_ELEMENTS_HOME --with-sst-core=$SST_CORE_HOME --with-pin=$PIN_HOME --with-

cuda=$CUDA_ROOT
10. make

Applications must be built using the shared cuda runtime library: --cudart=shared

If an application requires cuDNN or cuBLAS, it must be linked against the static
Cuda library: -cublas_static, -lcudnn_static

13 Using the Component

Running a simulation requires the user to specify both a SST model and a GPGPU
model
SST model contains wiring instructions and component definitions
Processor model, memory hierarchy, interconnect, etc.

GPGPU model contains SIMT core definition
PTX generation, number of registers, number of warps, number of functional units, etc.

SST Component
comp_gpu0 = sst.Component("gpu0", "Gpgpusim.Gpgpusim")
comp_gpu0.addParams({

"clock" : "1200MHz",
"gpu_cores" : "84",
"verbose" : "0"

})

GPGPU Model
-SST_mode 1
-gpgpu_ptx_force_max_capability 70
-gpgpu_clock_domains 1200.0:1200.0:1200.0:850.0
-gpgpu_shader_registers 65536
-gpgpu_occupancy_sm_number 70

-gpgpu_pipeline_widths 4,4,4,4,4,4,4,4,4,4,8,4,4
-gpgpu_num_sp_units 4
-gpgpu_num_sfu_units 4
-gpgpu_num_dp_units 4
-gpgpu_num_int_units 4
-gpgpu_tensor_core_avail 1
-gpgpu_num_tensor core units 4

1 4 Using the Component vectorAdd

sst --model-option="-c ariel-gpu-v100.cfg -s abs_kviTA.csv -x ./vectorAdd-163840" cuda-test.py

1.1r1 1.*15.-41X-11414X1

.
 MUM WV

I2gcache_8
memHierarchy.Cachc

g_xbar_link_8 12g_xbar_Iink_9 g_xbar_link_16 g_xbar_link_17 g_xbar_link_24
100ps 100ps 100ps 100ps 100ps

12gcache_9
memHierarchy.Cache

I2gcache_16
memHierarchy.Cache

12gcache_17
mcmHierarchy.Cache

12gcache_24
mcmHicrarchy.Cache

12gcache_25
memHierarchy.Cache

12g_xbar_link_25
100ps

12gcache_O
memHicranchy.Cache

12g_mcm_link_8 12g_mem_link_9 12g_mem_link_16 12g_mem_link_17 12g_mem_link_24 12g_mem_link_25 12g_mem_link_O
100ps100ps 100ps 100ps 100ps 100ps 100ps

mem_12_bus_O
memHicrarchy.Bus

bus_mem_link_O
50ps

Simplehbm_O
memHierarchy.MemController

50ps

Simplchbm_l
memHierarchy.MemController

g_xbar_link_O
100ps

12gcache_l
memHicrarchy.Cache

100ps

gpu_cache_link_41 gpu_cache_link_42
100ps

llgcache_42
memH ierarchy.0 ache

100ps

gpu0
Gpgpusim . Gpgpusim

•

gpu_cache_link_43 gpu_cache_link_44 gpu_cache_link_•
100ps 100ps 100ps

1 lgcache_43
memHierarchy.0 ache

1 I gcache_44
memHierarchy.Cache

11gcache_45
memHierarchy.Cache

ik Igcache_41_1ink Ilgcache_42_1ink llgcache_43_1ink llgcache_44_1ink Ilgcache_45_1ink
100ps 100ps 100ps 100ps 100ps

gpu_xbar
shogun. ShogunXB ar

12g_xbar_l ink_19 12g_xbar_link_26 12g_xbar_link_27 12g_xbar_link_4 12g_xbar_link_5
100ps 100ps 100ps 100ps 100ps

I2gcache_26
memH ierarchy.0 ache

12gcache_27
memHierarchy.0 ache

12g_memlink_26 12g_mem_link_27
100ps 100ps

12gcache_4
memHierarchy.Cache

12gcache_S
memHierarchy.Cache

12g_mem_link_4 12i
100ps

15 Using the Component vectorAdd

sst --model-option="-c ariel-gpu-v100.cfg -s abs_kviTA.csv -x ./vectorAdd-163840" cuda-test.py

Statistics file for this model contains 19861 entries:
ComponentName, StatisticName, StatisticSubld, StatisticType, SimTime, Rank, Sum, SumSQ, Count, Min, Max
AO, read_requests, 0, Accumulator, 2423910320, 0, 10240, 10240, 10240, 1, 1
AO, write_requests, 0, Accumulator, 2423910320, 0, 20480, 20480, 20480, 1, 1
AO, read_request_sizes, 0, Accumulator, 2423910320, 0, 655360, 41943040, 10240, 64, 64
AO, write_request_sizes, 0, Accumulator, 2423910320, 0, 1310720, 83886080, 20480, 64, 64
AO, instruction_count, 0, Accumulator, 2423910320, 0, 0, 0, 0, 0, 0
AO, cycles, 0, Accumulator, 2423910320, 0, 6446570, 6446570, 6446570, 1, 1
AO, active_cycles, 0, Accumulator, 2423910320, 0, 226, 226, 226, 1, 1

Performance Analysis

1 7 Mean Error

vectorAdd

lud

SST-GPGPU

5271

494519

12454750

5751

605685

11896477

9.093682

22.47961

4.48241

Complex model interactions make it difficult to pinpoint where models are lacking
in detail or are incorrect

Scale of simulation — number of components and links present a challenge
Full debug produces multi-TiB trace

No errors, so have to isolate anomalies in tens of thousands of statistics

18 Functional Testing — Kokkos Kernels

Kokkos-Kernels built with:

KOKKOSKERNELS_SCALARS=double

KOKKOSKERN ELS_LAYOUTS=LayoutLeft

KOKKOSKERNELS_ORDINALS=int

KOKKOSKERNELS_OFFSETS=int

KOKKOS_DEVICES=Cuda,Serial

KOKKOS_ARCHS=BDW, Pascal60

\

Version

gcc 4.8.5

CUDA SDK 8.0.61

Kokkos

Kokkos Kernels

sst-core

2.8.00

2.8.00

devel-d8042ec

sst-elements

Pin

devel-b3ba937

2.14.71313

Compiling for Broadwell and sm_60 for validation testing on Doom

19 Functional Testing Kokkos Kernels Unit Test Results
1 abs_double

2 abs_mv_double

3 asum_double

4 axpby_double

5 axpby_mv_double

6 axpy_double

7 axpy_mv_double

8 dot_double

9 dot_mv_double

10 mult_double

11 mult_mv_double

12 nrml_double

13 nrml_mv_double

14 nrm2_double

15 nrm2_mv_double

16 nrm2_squared_double

17 nrm2_squared_mv_double

18 nrminf_double

19 nrminf_mv_double

20 ireciprocal_double

21 reciprocal_mv_double

22 scal_double

23 scal_mv_double

24 sum_double

25 sum_mv_double

26 update_double

27 update_mv_double

Amigemv_double

29 gemm_double

_Msparse_spgemm_double_int_int_TestExecSpace

31 sparse_spadd_double_int_int_TestExecSpace 61 batched_scalar_serial_gemv_t_double_double
32 sparse_gauss_seidel_double_int_int_TestExecSpace 62 batched_scalar_serial_trsv_l_nt_u_double_double
33 sparse_block_gauss_seidel_double_int_int_TestExecSpace 63 batched_scalar_serial_trsv_l_nt_n_double_double
lidtparse_crsmatrix_double_int_int_TestExecSpace 64 batched_scalar_serial_trsv_u_nt_u_double_double
35 sparse_blkcrsmatrix_double_int_int_TestExecSpace 65 batched_scalar_serial_trsv_u_nt_n_double_double
36 sparse_replaceSumIntoLonger_double_int_int_TestExecSpace 66 batched_scalar_team_set_double_double
37 sparse_replaceSum I nto_dou ble_int_int_TestExecSpace 67 batched_scalar_team_scale_double_double
38 graph_graph_color_double_int_int_TestExecSpace 68 batched_scalar_team_gemm_nt_nt_double_double
39

40

41

graph_graph_color_deterministic_double_int_int_TestExecSpace

graph_graph_color_d2_double_int_int_TestExecSpace

common_ArithTraits

69

70

71

72

batched_scalar_team_gemm_t_nt_double_double

batched_scalar_team_gemm_nt_t_double_double

batched_scalar_team_gemm_t_t_double_double

batched_scalar_team_trsm_l_l_nt_u_double_double

lbatched_scalar_team_trsm_l_l_nt_n_double_double

42

43

common_set_bit_count

common_ffs

qbatched_scalar_serial_set_double_double
73

44
74 batched_scalar_team_trsm_l_u_nt_u_double_double

45 batched_scalar_serial_scale_double_double

46

47

48

49

batched_scalar_serial_gemm_nt_nt_double_double

batched_scalar_serial_gemm_t_nt_double_double

batched_scalar_serial_gemm_nt_t_double_double

batched_scalar_serial_gemm_t_t_double_double

7411batched_scalar_team_trsm_l_u_nt_n_double_double

76 batched_scalar_team_trsm_r_u_nt_u_double_double

77 batched_scalar_team_trsm_r_u_nt_n_double_double

78 batched_scalar_team_trsm_l_l_t_u_double_double

50 batched_scalar_serial_trsm_ _l_nt_u_double_double 79 batched_scalar_team_trsm_l_l_t_n_double_double

51 lbatched_scalar_serial_trsm_ 80 batched_scalar_team_trsm_l_u_t_u_double_double

52

_l_nt_n_double_double

batched_scalar_serial_trsm__u_nt_u_double_double 81 A batched_scalar_team_trsm_l_u_t_n_double_double

53 lbatched_scalar_serial_trsm__u_nt_n_double_double 82elbatched_scalar_team_gemv_nt_double_double

54 batched_scalar_serial_trsm_ _u_nt_u_double_double 83 batched_scalar_team_gemv_t_double_double

55 batched_scalar_serial_trsm_ _u_nt_n_double_double 84 batched_scalar_serial_lu_double

56 batched_scalar_serial_trsm_ _l_t_u_double_double 84batched_scalar_serial_inverselu_double

57 lbatched_scalar_serial_trsm_ _l_t_n_double_double 86 batched_scalar_serial_solvelu_double

58 batched_scalar_serial_trsm__u_t_u_double_double 87 batched_scalar_team_lu_double

59 lbatched_scalar_serial_trsm__u_t_n_double_double 88 batched_scalar_team_inverselu_double

60 batched_scalar_serial_gemv_nt_double_double 89 _batched_scalar_team_solvelu_double

Currently passing 54/89 tests (60.67%)

20 Functional Testing Kokkos Kernels Unit Test Results
1 abs_double 31 sparse_spadd_double_int_int_TestExecSpace 61 batched_scalar_serial_gemv_t_double_double
2 abs_mv_double 32 sparse_gauss_seidel_double_int_int_TestExecSpace 62 batched_scalar_serial_trsv_l_nt_u_double_double
3 asum_double 33 sparse_block_gauss_seidel_double_int_int_TestExecSpace 63 batched_scalar_serial_trsv_l_nt_n_double_double
4 axpby_double sparse_crsmatrix_double_int_int_TestExecSpace 64 batched_scalar_serial_trsv_u_nt_u_double_double
5 axpby_mv_double 35 sparse_blkcrsmatrix_double_int_int_TestExecSpace 65 batched_scalar_serial_trsv_u_nt_n_double_double
6 axpy_double 36 sparse_replacesumIntoLonger_double_int_int_TestExecSpace 66 batched_scalar_team_set_double_double
7 axpy_mv_double 37 sparse_replaceSumInto_double_int_int_TestExecSpace 67 batched_scalar_team_scale_double_double
8 dot_double 38 graph_graph_color_double_int_int_TestExecSpace 68 batched_scalar_team_gemm_nt_nt_double_double
9 dot_mv_double

10 mult_double

11 mult_mv_double

39

40

41

graph_graph_color_deterministic_double_int_int_TestExecSpace

graph_graph_color_d2_double_int_int_TestExecSpace

common_ArithTraits

69 batched_scalar_team_gemm_t_nt_double_double

70 batched_scalar_team_gemm_nt_t_double_double

71 batched_scalar_team_gemm_t_t_double_double
42 lcommon_set_bit_count

43

gbatched_scalar_serial_set_double_double

12 nrml_double

13 nrml_mv_double common_ffs
72 batched_scalar_team_trsm_l_l_nt_u_double_double

lbatched_scalar_team_trsm_l_l_nt_n_double_double73
14 nrm2_double

15 nrm2_mv_double

44

batched_scalar_serial_scale_double_double
74 batched_scalar_team_trsm_l_u_nt_u_double_double

45

16 nrm2_squared_double

17 nrm2_squared_mv_double

18 nrminf_double

19 nrminf_mv_double

46

47

48

49

batched_scalar_serial_gemm_nt_nt_double_double

batched_scalar_serial_gemm_t_nt_double_double

batched_scalar_serial_gemm_nt_t_double_double

batched_scalar_serial_gemm_t_t_double_double

7411batched_scalar_team_trsm_l_u_nt_n_double_double

76 batched_scalar_team_trsm_r_u_nt_u_double_double

77 batched_scalar_team_trsm_r_u_nt_n_double_double

78 batched_scalar_team_trsm_l_l_t_u_double_double

20 50 batched_scalar_serial_trsm_ _l_nt_u_double_double 79 batched_scalar_team_trsm_l_l_t_n_double_doubleireciprocal_double

21 reciprocal_mv_double 51 lbatched_scalar_serial_trsm_ 80 batched_scalar_team_trsm_l_u_t_u_double_double

22 scal_double

_l_nt_n_double_double

52 batched_scalar_serial_trsm__u_nt_u_double_double 81 A batched_scalar_team_trsm_l_u_t_n_double_double

23 scal_mv_double 53 lbatched_scalar_serial_trsm__u_nt_n_double_double 82elbatched_scalar_team_gemv_nt_double_double

24 sum_double 54 batched_scalar_serial_trsm_ _u_nt_u_double_double 83 batched_scalar_team_gemv_t_double_double

25 sum_mv_double 55 batched_scalar_serial_trsm_ _u_nt_n_double_double 84 batched_scalar_serial_lu_double

26 update_double 56 batched_scalar_serial_trsm_ _l_t_u_double_double 84batched_scalar_serial_inverselu_double

27 update_mv_double 57 lbatched_scalar_serial_trsm_ _l_t_n_double_double 86 batched_scalar_serial_solvelu_double

damigemv_double

29 gemm_double
1

58 batched_scalar_serial_trsm__u_t_u_double_double

59 lbatched_scalar_serial_trsm__u_t_n_double_double

87 batched_scalar_team_lu_double

88 batched_scalar_team_inverselu_double

IlMsparse_spgemm_double_int_int_TestExecSpace 60 batched_scalar_serial_gemv_nt_double_double 89 batched_scalar_team_solvelu_double

Tests in pink fail because the parser cannot locate a post-dominator in some
kernels; this bug is also present in the public branch of GPGPUSim

21 Functional Testing — Kokkos Kernels Unit Test Results
1 abs_double 31 sparse_spadd_double_int_int_TestExecSpace 61

2 abs_mv_double 32 sparse_gauss_seidel_double_int_int_TestExecSpace 62
3 asum_double 33 sparse_block_gauss_seidel_double_int_int_TestExecSpace 63
4 axpby_double sparse_crsmatrix_double_int_int_TestExecSpace 64
5 axpby_mv_double 35 sparse_blkcrsmatrix_double_int_int_TestExecSpace 65
6 axpy_double 36 sparse_replacesumIntoLonger_double_int_int_TestExecSpace 66
7 axpy_mv_double 37 sparse_replaceSumInto_double_int_int_TestExecSpace 67
8 dot_double 38 graph_graph_color_double_int_int_TestExecSpace 68
9 dot_mv_double 39 graph_graph_color_deterministic_double_int_int_TestExecSpace 69
10 mult_double 40 graph_graph_color_d2_double_int_int_TestExecSpace 70
11 mult_mv_double 41 common_ArithTraits

71
42 lcommon_set_bit_count

43

12 nrml_double

i
13 nrml_mv_double common_ffs

72

gbatched_scalar_serial_set_double_double
73

14 nrm2_double 44
74

4515 nrm2_mv_double batched_scalar_serial_scale_double_double
7

16 nrm2_squared_double 46 batched_scalar_serial_gemm_nt_nt_double_double

17 nrm2_squared_mv_double 47 batched_scalar_serial_gemm_t_nt_double_double
7

18 nrminf_double 48 batched_scalar_serial_gemm_nt_t_double_double
77

19 nrminf_mv_double 49 batched_scalar_serial_gemm_t_t_double_double 78

20 reciprocal_double 50 Abatched_scalar_serial_trsm_j_nt_u_double_double 79

21 reciprocal_mv_double 51 batched_scalar_serial_trsm_ 80_l_nt_n_double_double

22 scal_double 52 batched_scalar_serial_trsmu_nt_u_double_double 81

23 scal_mv_double 53 batched_scalar_serial_trsm__u_nt_n_double_double 8

24 sum_double 54 batched _ scalar_ serial _ trsm_ _ u _ nt_ u _ double _double 83

25 sum_mv_double 55 lbatched_scalar_serial_trsm_ _u_nt_n_double_double 84

26 update_double 56 batched_scalar_serial_trsm_ _l_t_u_double_double 8

27 update_mv_double 57 batched_scalar_serial_trsm_4111 86_l_t_n_double_double

damigemv_double 58 batched_scalar_serial_trsm__u_t_u_double_double 87

29 gemm_double 59 batched_scalar_serial_trsmu_t_n_double_double

EIMsparse_spgemm_double_int_int_TestExecSpace 60 batched_scalar_serial_gemv_nt_double_double

i 88

89

1

1

batched_scalar_serial_gemv_t_double_double

batched_scalar_serial_trsv_l_nt_u_double_double

oatched_scalar_serial_trsv_l_nt_n_double_double

batched_scalar_serial_trsv_u_nt_u_double_double

batched_scalar_serial_trsv_u_nt_n_double_double

batched_scalar_team_set_double_double

batched_scalar_team_scale_double_double

batched_scalar_team_gemm_nt_nt_double_double

batched_scalar_team_gemm_t_nt_double_double

batched_scalar_team_gemm_nt_t_double_double

batched_scalar_team_gemm_t_t_double_double

batched_scalar_team_trsm_l_l_nt_u_double_double

batched_scalar_team_trsm_l_l_nt_n_double_double

batched_scalar_team_trsm_l_u_nt_u_double_double

batched_scalar_team_trsm_l_u_nt_n_double_double

batched_scalar_team_trsm_r_u_nt_u_double_double

batched_scalar_team_trsm_r_u_nt_n_double_double

batched_scalar_team_trsm_l_l_t_u_double_double

hltched_scalar_team_trsm_l_l_t_n_double_double

batched_scalar_team_trsm_l_u_t_u_double_double

batched_scalar_team_trsm_l_u_t_n_double_double

batched_scalar_team_gemv_nt_double_double

batched_scalar_team_gemv_t_double_double

batched_scalar_serialiu_double

batched_scalar_serial_inverselu_double

batched_scalar_serial_solvelu_double

oatched_scalar_team_lu_double

batched_scalar_team_inverselu_double

batched_scalar_team_solvelu_double

Tests in purple fail because of a bug(s) in the functional model that neither the SST
nor the GPGPUSim team has been able to isolate

22 Performance Analysis — Lulesh

One of the most widely used DOE mini-applications
Developed by Lawrence Livermore National Laboratory

Represents challenging hydrodynamics algorithms over unstructured
meshes
Common in many high-performance computing centers and are particularly
prevalent within the NNSA laboratories

Routinely counted in the top ten application codes in terms of CPU hours utilized

Lulesh was compiled with:

gcc 4.8.5

CUDA SDK 9.1.85

Lulesh 1.0

sst-core devel-d8042ec

sst-elements devel-b3ba937

Pin 2.14.71313

Lulesh was run with:
s=22 (22x22x22 elements)

Iterations=50

23

600000

500000

400000

300000

200000

100000

Performance Analysis — Lulesh

SST is capable of providing periodic statistic dumps for all of the currently loaded
components

Valuable for fine-grain performance analysis of applications

0
0 00 sO ml-

c...I in oo

lost Cycles

(-4 0 00 sf) NI- Ni 0 00 sO NI- NI 0 00 sf) NI- NI 0 00 sO NI-— -1- so cr, NI in 00 o in .0 as NI NI- r--. c) rn so 00 s-L) 4 r`l 8 00i in 00
,— — — — r..1 (-4 NI in in in in NI- NI- NI- in in in in si, si, sr) N. I"-- I"-- I"--

Time (ps)

,.1

6000000

5000000

4000000

3000000

2000000

1000000

0

GPU Crossbar Packets Processed

NI 0 00 .0 NI- CV 0 CO 0 00 sO mcl- N.1 0 al sO mcl- N.1
x— NI-
00 00

so
00

Cr,
00

NI
0,

in
0,

00
0,
0
0
—

NI in 00 x—
x—

NI-
x—

siD CT r..4 in
,— ,— N4 N4

V'

0 00 sO mcl- NJ 0 00 sO
00 0 rnsOCTNI Nr r-,

1-
Q

NI
in
0
so

00 sO -.1- rr.:,i, 8
CO x— NI-

00 ,L.R 01 N.I 51: 2 2 es g r-4 2 oed,
N4c-nrnnirnNI-NI-NI- in in in in so .0 sO 1.--• 1.--• r--. r--, oo oo oo oo cr, cr, cr, cz)

Time (ps)

„ I Performance Analysis L I Cache Lulesh
L1$ Misses

25000 25000

20000 20000

15000 15000

10000 10000

5000 5000

0 0
C. N 00 NI- CD .0 c..4 c..4 00 N1- 0.0 c...1 CO

rn 00 in 00 c-.1 Cts rn C. NI- NI- 00 c-.1 re)
cs4 N N r1 M rn in in in .0 .0 .0 00 00 Os Os Os 0

Time (ps)

L1$ Hits

12000 12000

10000 10000

8000 8000

6000 6000

4000 4000

2000

0

2000

0
C.

Ln n4 .0
c..4 c..4 00 NI-

00
0 00 NI-

rn Nt 00 - in 00 c...1 CT rn C. N1- Nr n4 cc. rn
- c.4 n4 N rn M rn NI- NI- in in .0 .0 • 00 00 as c)

L1$ Misses

co c-..4 c. 00 NI- 00 N .0 0 NI- 00 N .0 0 Nr
rn NJ- in 00 00 00 Os O. 0 0 0

O. O. Cr. Os Os Os Cr. ▪ C/s C/s C/s C/s C/s C/s Os Os Os Os 0 0 0 0

co
rn
c.1

O Cr.

Time (ps)

L1$ Hits

srg, 51,2 04). ciA 0 NI- 00 c-.4 .0 0 NI- 00 n.4 .10 0 NI- 00
in .0 I-, 00 00 00 Os Cis 0 0 0

CT CT CT CT CT Cr. Cr. Cr. Os Os Os Os 0 0 0

Time (ps) Time (ps)

„ I Performance Analysis L2 Cache Lulesh

45000

40000

35000

30000

25000

20000

15000

10000

5000

0

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

L2$ Misses

CD VD rq 00 Nr CD NI 00 mcr CD VD oo -4- CD so oo -1- CD 4D NI 00 mcr CD vD cv 00
nn CD NI- oo ul 00 NI VD CT rn 4:1 CD NI- r, oo un CT NI .0 CD rn r, co

(.4 (.4 c.1 nn nn nn NI- u, un .0 VD I-, r, r, 00 oo CT CT CT CD

Time (ps)

45000

40000

35000

30000

25000

20000

15000

10000

5000

0
00 NI .0 0

rn
CT CT CT Os

L2$ Misses

00 c..1 .0 0 1- 00 cv .0 0 NI- 00 r,1 .0 0 V- 00
mcj- un 00 00 00 CT CT 0 0 0
CT CT CT CT CT CT CT CT CT CT CT CT CT 0 0 0 0

Time (ps)

L2$ Hits L2$ Hits
9000

8000

7000

6000

5000

4000

3000

2000

1000

0

CD NI- oo VD CD NI- 00 NI VD CD NI- oo NI so CD NI- oo NI VD CD NI- oo NI VD CD NI- 00 NI VD
nn 421 CD nn CD nn I”, CD NI- r, CD NI- r, N T- aD T- oo T- Un 00 un 00

cv cv rn rn rn NI- NI- ul ul ul VD VD VD I', 00 00 00 CT CT CT

00 C,1 VD CD 00 NI 4D
lV nn un
CT CT CT CT CT CT CT

0 I- 00 VD 0 00 rq
VD VD .0 00 00 00 CT CT
CT CT O. CT CT CT CT CT CT CT

Time (ps) Time (ps)

CD N
CD

I- oo
CD CD
CD CD CD O

„ I Performance Analysis Crossbar Lulesh

6000000

5000000

4000000

3000000

2000000

1000000

0

180000

160000

140000

120000

100000

80000

60000

40000

20000

0

Crossbar Packets Processed
6000000

5000000

4000000

3000000

2000000

1000000

0

0 00 .0 • NI 0 00 .0 NI- NI 0 00 .0 NI- NI 0 00 .0 NI- NI 0 00 .0 NI- NI 0 00
re) N. cr. Ni so 0 NI- in 0, re) N. 0 NI- 00 NI .0 0, re) N. in 00

NI- in in .0 .0 .0 N. • N. 00 00 0, 0, 0,

Crossbar Packets Processed

00 N sA -7 4 00
chN' chrn cr, cr, cr, cr, iNif

.0 0
• .

mrl-
O .

00
O Is,

NJ .0 0 mrl- 00 .0 0 NI- o0 (-4
N. 00 00 00 Cr, Os 0 0 0

Cr, Cr, Cr, Cr, Cr, Cr, Cr, Cr, Cr, Cr, Cr, Cr, 0 0 0

Time (ps) Time (ps)

Crossbar Cycles Active Crossbar Cycles Active

4,4

0 .0
re) N.
2 4 oo c) Ni co •rj- c) Ni co c) oo c) Ni co

00 in 00 NJ ,C) Os re) .0 0 NI- Is, mrl- 00 NJ 0. NI)0 0 ro Is, 0
Ni N.1 NI re) re) re) NI- NI- in in in .0 .0 .0 N N. N. co co 0, 0, 0, 0

180000

160000

140000

120000

100000

80000

60000

40000

20000

0
00 N •0

Os 0, 0,
~•0tf
0 NI- 00 (-.4 .0 0 NI- 00 NI •0 mcl- 00 N4

iNtf ,C) ,C) • oo oo 00 Cr, 0, 0 0 0
Cr, Cr, 0, 0, Cr, Cr, Cr, Cr, Cr, Cr, Cr, Cr, 0 0 0

Time (ps) Time (ps)

27 I Performance Analysis Memory Controller— Lulesh

250000

200000

150000

100000

50000

0

Total Requests

ft
250000

200000

150000

100000

50000

0

1
Total Requests I

!

 I
0 sC. NI 00 -.1- C. sO N 00 mcl- 0 sO N 00 mcl- C. sO N 00 mcl- C. .0 N 00 ml- 0 sr, Ni 00 00 r..4 .0 0 4 00 (.4 .0 o mcl- 00 NI .0 0

rn N 0 ,g- oo ,— in 00 Ni .0 O. rn .0 0 NI- N ,— NI- 00 Ni in 0. NI .0 0 en N o Ni rn rn in in so .0 .0 N N 00
..— ..— ..— N N N rn rn rn NI- NI- Lil in in .0 .0 sO N N N. 00 00 Cr, Os Os 0 Crs Os Cts Os Os Os Cs, Cs, Cr, Cr, Cr, Cr, Cr, Cr,

Time (ps) Time (ps)

Cycles With Issue Cycles With Issue
40000 40000

35000 35000

30000 30000

25000 25000

20000 20000

15000 15000

10000 10000

5000 5000

0
0

03 0 1- 00 NI
x— 0,

.,—
N
r..-1

in rn as
in N. C7 0

N in rn ON N in rn ,— as N
NI NI- ,C. 73 ON ,— rn in I-, 00 0

in rn
NI mcl-

x—
.0

0.
N.
N in rn
Cr. x— ...i

0. N ifl
i.‘71 ,C. 00 C.

Ni
Cr,

rn
Cr,

(NI
0,

NI-
0,

-.1- mcl-
0,

in
0,

NI NI NI N N r..-1-1 r..-1-1-1 r..-1 mcl- m:1- mcl- mcr mcr in

1
,C.
in
Cr.

mcl- 00 N .0 0 ml- 00
00 00 Cr. ON 0 0 0
Cs, Cr, Cr, Cr, 0 0 0

1

0 NI- 00 NI .0 0 NI- 00 N 50 0 NI- 00
.0 ,C. •.0 1-••• I--, 00 00 00 Os 0,0 0 0
0, Cr. Cr. Cr. 0, Cr, Os Os Os Cr. 0

.,—
0
x—
0
x—

Time (ps) Time (ps)

N
x—

28 Design Space Exploration — Lulesh

rr

50.0)

HBM Frequency (MHz)
877 • MTh • 11600

Parameter sweep of SM clock frequency and memory frequency
SM frequency: 500MHz, 1312MHz, 1800Mhz (2.5x 1.3x speedup)

HBM frequency: 877MHz, 1200MHz, 1600Mhz (0.99x 1.04x speedup)

Future Work and Summaries

30 Future Work

Split Monolithic GPGPU Component into SM Components
Speed up simulations

Wider range of system options
Chiplets

Split interconnects

Scheduler

SIMD 0

(n-lanes)

SIMD m

(n-lanes)
SIMD 0

(n-lanes)

SIMD m

(n-lanes)

L1

I

SIMD 0

(n-lanes)

SIMD m

(n-lanes)

L1

I
L1

m-

L2

I
memHierarchy

31 Position SST For the Future

Ariel

CPU

L1

L2

Cornmand Link

ML/A1 Accelerator

PCIe-L2

PCIe-L1 Dat3c‘'(
irL a rr

Proves that SST can be integrated with
complex external models

Exploring new ISA plugins for Ariel

ARM (SVE?), other alternatives

HDL simulation components
Low-level hardware design including possible
path to tape-out

Neural-inspired & quantum

Exploration of interfaces and data movement

Near memory/storage computing

Micron

Easier integration with vendor-supplied
accelerator models

AMD FWIDIA

32 Lessons Learned

The philosophy behind the design of SST has always been modularity
Any component should be able to communicate with any other component, assuming
that the appropriate interface is available, with no other dependencies (mostly)

The integration of the GPU component has validated this design approach
Dropped in an "unknown" component and the memory subsystem...works!

The academic community, particularly in architecture, has little to no exposure to
applications of ASC-level code complexity

Genuinely surprised that so many of the applications had trouble with the parser

Some instructions not even implemented because they had never encountered them

SST needs an "accelerator" component to hide complexity
Will probably look like the current GPU model with bus links (PCIe, Gen-Z, CXL) and
one or more back channel command/control links

33 Remaining Issues

Support for UVM

Statistics are still resident in the GPU component and separate from SST

PTX parser has trouble with some instructions when compiling for sm_70

PTX parser is unable to locate a post dominator instruction in some instances

Texture cache is not implemented in functional and timing models
Presents a problem for some Kokkos-based applications

Some of the Thrust library is not implemented or is implemented incorrectly
leading to segfaults

Need write-through support in memHierarchy

Upstream GPGPUSim changes to mainline

35 Primary SST Components: memHierarchy

Collection of interoperable memory system elements
Caches and directories

Memory models (DDR, HBM, HMC, NVRAM, etc.)

Memory controllers & network interfaces for memory (MemNICs)

Inter- and intra-socket coherence

Correlated with modern memory hierarchies
HBM2/3 Evaluation on Many-core CPU
Messier: A Detailed NVM-Based DIMM Model for the SST Simulation Framework

Will allow us to model any
sort of memory arrangement
that we can imagine!

Private L1
Shared L2

L
Private L1
Private L2

(wou(d require directory for
coherence)

L2

1

1

L2

11
L3

,

Private L1
Private L2

Distributed shared L3

„ PTX vs. SASS

PTX SASS (PTXPIus)
$Lt_25_13570: 10x00000060:

Id.global.s32 %r9, [%rd5+0]; add.half.u32 $r7, $r4, Ox00000400;

add.s32 %r10, %r9, %r8; Id.global.u32 $r8, [$r4];

Id.global.s32 %rl 1, [%rd5+1024]; Id.global.u32 $r7, [$r7];

add.s32 %r8, %rl 1, %r10; add.half.u32 $r0, $r5, $r0;

add.u32 °A r5, O/or7, 0/0r5; add.half.u32 $r6, $r8, $r6;

add.u64 %rd5, %rd5, %rd6; set.gt.u32.u32 $p0/$o127, s[0x0020], $r0;

Id.param.u32 %r6, [size]; add.half.u32 $r6, $r7, $r6;

setp.lt.u32 %p2, %r5, %r6; add.half.u32 $r4, $r4, $r3;

@%p2 bra $Lt_25_13570; @$p0.ne bra 10x00000060;

mov.u32 %r12, 127; set.gt.u32.u32 $p0/$ol 27, $r2, const [0x0000];

setp.gt.u32 %p3, %r3, %r12; @$p0.equ add.u32 $ofs2, $ofsl, Ox00000230;

@%p3 bra $Lt_25_14082; @$p0.equ add.u32 $r6, s[$ofs2+0x0000], $r6;

Id.shared.s32 %r13, [%rd 10+512]; @$p0.equ mov.u32 s[$ofs1+0x0030], $r6;

add.s32

st.shared.s32

%r8, %r13, %r8;

[%rd10+0], %r8;

bar.sync Ox00000000;

$Lt 25 14082:

bar.sync 0;

37 Why SST?

Problem: Simulation is slow
Tradeoff between accuracy and time to simulate
Many simulators are serial, unable to simulate very large systems

Problem: Lack of simulator flexibility
Tightly-coupled simulations: Difficult to modify
Difficult to simulate at different levels of accuracy

The Structural Simulation Toolkit:
A parallel, discrete-event simulation framework

for scalability and flexibility

38 What is SST?

Goals
• Become the standard architectural

simulation framework for HPC
• Be able to evaluate future systems on

DOE/DOD workloads
• Use supercomputers to design

supercomputers

Technical Approach
• Parallel

• Parallel Discrete Event core with
conservative optimization over
MPI/Threads

• Multiscale
• Detailed and simple models for

processor, network, & memory
• lnteroperability

• DRAMSim„memory models
• routers, NICs, schedulers

• Open
• Open Core, non-viral, modular

Status
• Parallel Core, basic components
• Current Release (7.1)

• Improved components
• Modular core/elements
• More Internal documentation

•

•

Consortium

t
U3 *OAKRIDGE

BOSTON
UNIVERSITY

TA

NM
var,

k
" 1 5 IFIM

.1 A

4,Qicron IIICQIJ

39 Key Capabilities

Parallel
Built from the ground up to be scalable

Demonstrated scaling to 512+ host processors

Conservative, Distance-based Optimization

MPI + Threads

Flexible
Enables "mix and match" of simulation components

Multiscale tradeoff between accuracy and simulation time
e.g., cycle-accurate network with trace-driven endpoints

Open API
Easily extensible with new models

Modular framework

Open-source core

40 SST's discrete-event algorithm

Simulations are comprised of :;omponent: connected by links

Components interact by sending events over links

Each link has a minimum latency

uomponents can load subComponents and modules for additional functionality

Component Link

Event

Component

SST Core

Instantiation

Configuration

Partitioning

Time
Coordination

Parallel
Communication

SST
Component
Type: Core

SST
Component
Type: Core

SST Link
Latency: lns

SST Link
Latency: lns

SST
Component
Type: Cache

SST
Component
Type: Cache

SST Link
Latency: 2ns

SST Link
Latency: 2ns

SST
Component
Type: NoC
Router

SST
Component
Type: NoC
Router

41

Currently only supports synchronous kernel launches

CPU

•
•
•
•
•
•
•

CPU

Sync. Kernel Launch

Done
GPU Model

Time

42 Kokkos Kernels Unit Test Results

10

11

12

13

14

15

16

17

18

19

abs_double

abs_mv_double

asum_double

axpby_double

axpby_mv_double

axpy_double

axpy_mv_double

dot_double

dot_mv_double

mult_double

mult_mv_double

nrml_double

nrm1_mv_double

nrm2_double

nrm2_mv_double

nrm2_squared_double

nrm2_squared_mv_double

nrminf_double

nrminf_mv_double

I20 reciprocal_double

21 reciprocal_mv_double

scal_double

scal_mv_double

sum_double

sum_mv_double

update_double

update_mv_double

gemv_double

29 gemm_double

spa rse_spgemm_double_int_int_TestExecspace

spa rse_spgemm_double_int_size_t_TestExecspace

sparse_spadd_double_int_int_TestExecspace

sparse_spadd_double_int_size_t_TestExecSpace

22

23

24

25

26

27

M.

32

1
38

39

40

41

1114..

44

4

4

4

48

49

50

51

52

5

5/

58

59

60

61

sparse_gauss_seidel_double_int_int_TestExecSpace

sparse_gauss_seidel_double_int_size_t_TestExecSpace

sparse_block_gauss_seidel_double_int_int_TestExecSpace

sparse_block_gauss_seidel_double_int_size_t_TestExecSpace

sparse_crsmatrix_double_int_int_TestExecSpace

sparse_crsmatrix_double_int_size_t_TestExecspace

sparse_bikcrsmatrix_double_int_int_TestExecSpace

sparse_bl kcrsmatrix_double_int_size_t_TestExecSpace

sparse_replaceSumlntoLonger_double_int_int_TestExecSpace

sparse_replaceSumlntoLonger_double_int_size_t_TestExecSpace

sparse_replacesumlnto_double_int_int_TestExecSpace

sparse_replacesumlnto_double_int_size_t_TestExecSpace

graph_graph_color_double_int_int_TestExecSpace

graph_graph_color_double_int_size_t_TestExecSpace

graph_graph_color_deterministic_double_int_int_TestExecSpace

graph_graph_color_deterministic_double_int_size_t_TestExecSpace

graph_graph_color_d2_double_int_int_TestExecSpace

graph_graph_color_d2_double_int_size_t_TestExecSpace

common_ArithTraits

common_set_bit_count

common_ffs

batched_sca lar_serial_set_double_double

batched_scalar_serial_scale_double_double

batched_scalar_serial_gemm_nt_nt_double_double

batched_scalar_serial_gemm_t_nt_dou ble_double

batched_scalar_serial_gemm_nt_t_dou ble_double

batched_scalar_serial_gemm_t_t_double_double

batched_scalar_serial_trsm_l_l_nt_u_dou ble_double

batched_scalar_serial_trsm_l_l_nt_n_dou ble_double

batched_scalar_serial_trsm_l_u_nt_u_double_double

batched_scalar_serial_trsm_l_u_nt_n_double_double

batched_scalar_serial_trsm_r_u_nt_u_dou ble_double

batched scalar serial trsm r u nt n double double

73

74

75

76

batched_scalar_serial_trsm_l_l_t_u_double_double

batched_scalar_serial_trsm_l_l_t_n_double_double

batched_scalar_serial_trsm_l_u_t_u_double_double

batched_scalar_serial_trsm_l_u_t_n_double_double

batched_scalar_serial_gemv_nt_double_double

batched_scalar_serial_gemv_t_double_double

batched_scalar_serial_trsv_l_nt_u_double_double

batched_scalar_serial_trsv_l_nt_n_double_double

batched_scalar_serial_trsv_u_nt_u_double_double

batched_scalar_serial_trsv_u_nt_n_double_double

77 batched_scalar_team_set_double_double

batched_scalar_team_scale_double_double

batched_scalar_team_gemm_nt_nt_double_double

batched_scalar_team_gemm_t_nt_double_double

batched_scala r_team_gemm_nt_t_double_double

batched_scalar_team_gemm_t_t_double_double

batched_scalar_team_trsm_j_nt_u_double_double

84 batched_scalar_team_trsm_j_nt_n_double_double

85 batched_scalar_team_trsm_l_u_nt_u_double_double

86 batched_scalar_team_trsm_l_u_nt_n_double_double

87 batched_scalar_team_trsm_r_u_nt_u_double_double

88 batched_scalar_team_trsm_r_u_nt_n_double_double

89 batched_scalar_team_trsm_l_l_t_u_double_double

90 batched_scalar_team_trsm_l_l_t_n_double_double

91 batched_scalar_team_trsm_l_u_t_u_double_double

92 batched_scalar_team_trsm_l_u_t_n_double_double

93 batched_scalar_team_gemv_nt_double_double

94 batched_scalar_team_gemv_t_double_double

95 batched_scalar_serial_lu_double

6 batched_scalar_serial_inverselu_double

batched_scalar_serial_solvelu_double

batched_scalar_team_lu_double

batched_scalar_team_inverselu_double

batched_scalar_team_solvelu_double

78

79

80

81

82

83

98

99

100

43 Split Monolithic GPGPU Component into SM Components

Scheduler
M _)

SIMD 0

(n-lanes)

M

SIMD m

(n-lanes)

r

I • • • • • M. _

IIIImemHierarchy

M...."

SIMD 0

(n-lanes)

SM1

SIMD m

(n-lanes)

r

memHierarchy

• • •

SIMD 0

(n-lanes)

Mx

SIMD

(n-lanes)

Li
I • • • • • • _

memHierarchy

memHierarchy

,
memHierarchy

Backing Store

44 Performance Analysis — Lulesh

SST is capable of providing periodic statistic dumps for all of the currently loaded
components

Valuable for fine-grain performance analysis of applications

Host Cycles Crossbar Packets Processed
600000 6000000

500000 5000000

400000 4000000

300000 3000000

200000 2000000
100000 1000000

0
CD qJ 23 Nr 00

CD qD rg 00 NI- CD qD NI 00 NI- CD qD rg 00 NI- CD %JD rg 00 Nr CD ,4,0 rg 00
nn r, NI- un 00 NI Cn ni %ID CD NI- r, op, NI cr NsO CD nn r, CD

nn nn nn un un un %JD r, r, r, opo o0 cr cr Cn CD
CD 00

nn r, NI- NI CD 00
ul cr cg

rq

%ID
rq

NI-
CD
n1

NI
NI-
nn

CD 00 rg CD
ul cr ri r,

nn ul ul
00
CD
%JD

NI-
NI-
00

NI CD 00 cg CD
cg siD Cn ni r, Lin
r, r, r, 00 opo cr Cn

00
olo
cn

Time (ps) Time (ps)

L1$ Hits L2$ Hits
12000 9000

10000
8000
7000

8000 6000

6000
5000
4000

4000 3000

2000
2000
1000

0 0
0 200 400 600 800 1000

Time (ps)

0 200 400 600

Time (ps)

800

45 GPGPUSim Integration

Ariel

CPU

Dc

Command Link

PCIe-L1

PC1e-ji

PCIe-L1

ML/A1 Accelerator

CLICK TO EDIT MASTER TITLE STYLE

Slide Left Blank

