The Structural Simulation
Toolkit and GPGPU-Sim

Clay Hughes, Sandia National Laboratories

SST Development Team, Sandia National Laboratories

Architecture Accelerator Lab, Purdue University

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

N1
2

09/22/2019

SAND2019-11322C

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

SAND2019-XXXX

, | Welcome!

Part 1: Introduction to SST 1:00 - 2:30
o SST Overview

- Demos: Running a simple simulation; Enabling statistics;
Running in parallel

o SST Element Libraries: A tour

Part 2: GPGPU-SIim 2:30-3:30
> GPGPU-SIim Overview

o New Features

Break 3:30 - 4:00
Part 3: The SST/GPGPU-Sim Integration 4:00 - 5:00

PACT 2019 TUTORIAL

; | SST GPGPU Modeling Capability

Long history of GPGPU simulators, mostly from academia

> GPGPUSIm [Bakhoda, 2009]

- Gem5+GPU [Power, 2014] ‘
- MacSim/Ocelot [Hyesoon, 2012], [Kerr, 2009]

> Multi2Sim v5.0 [Gong, 2017] |
> NVArchSim

After a literature review and phone calls with the developers of GPGPUSIm and
Multi2Sim, the SST team chose GPGPUSIm as the integration target

- More amendable to SST integration
- Software designed around well-defined objects
> More tractable for SST workflows

+ | GPGPUSIim Integration

GPGPUSIm
> Runs host code directly
> Runs device code on a functional simulator CUDA ey
> Interfaces with programs through a custom library, ~ Application)

replacing native CUDA calls
> Simulation split into functional and timing

Functional Timing
- CTA > SIMT Core
> Pool of threads with access to shared memory - Roughly equivalent to Fermi's SM
> Thread - Cache
- PC + registers + allocated memory - L1 - Per-core, write-through/no-allocate
> [nstruction - L2 - Device, write-back/no-allocate

> 1:1 mapping with opcode and implementation > Interconnect
function; simulated at issue > Intersim (Booksim)

- Backing store
- GDDR3/GDDR5

s | GPGPUSIim Integration

SIMT Core ([QmT)
SIMT Core (et)
SIMT Core (QmT)

SIMT Core [SIMT |
Stacks |

Thread Block
Thread Block

Functional

Kernel Launch

[CAnctant

I MNMAnctant

| CAnctant

Constant
Cache

Texture
Cache

Data
Cache

108UU0DJaU|

o SIMT units track default functional model from GPGPUSIm

Timing

é N
- \
IyK/kamory Partition\
Atomic Unit
Y
LLC
4-’\ f
\ DRAM
N y,

o SIMT units maintain execution timing; Booksim is used for the interconnect; and
simple timing models are used for the memory partition

« | GPGPUSIm Integration

)

SIMT Core ([QImT
SIMT Core (et)
SIMT Core (QT)

SIMT Core [SIMT)
Stacks |

Thread Block

Thread Block

"~
|

Kernel Launch

<

Memory
Port(s)

Plan to keep the SIMT units and replace everything else

- CPU - SST execution component (Ariel, Juno, etc.)
o Interconnect - SST networking component (Shogun, Merlin, Kingsley, etc.)

- Memory Partition & Caches—> SST memHierarchy component for caches and various

other backends for the backing store (DRAMSim, SimpleMem, Cramsim, etc.)

; | GPGPUSIim Integration

|

' Command Link '

Dale L

s | Primary SST Components:Ariel

Frontend based on Intel PIN, which passes information to a SST component
> Supports OpenMP and MPI binaries

Faster than cycle-approximate models like Gem5 but slower than trace-based

Reasonable model of thread interactions
> Non-deterministic

Adiel SST Component

Ariel
Hriel PIN Tool Processor

User
Binary

% [GPGPUSIm]
EN EE EE EN - =N

L1 L1 L1
Ariel ;
Core

]
PCle-L2
Ariel
Core

v vy

Ariel
Core

I L | 5

Primary SST Components: memHierarchy o

Collection of interoperable memory system elements
- Caches and directories
- Memory models (DDR, HBM, HMC, NVRAM, etc.)

- Memory controllers & network interfaces for memory (MemNICs)

Inter- and intra-socket coherence

Correlated with modern memory hierarchies
- HBM2/3 Evaluation on Many-core CPU for ECP

> Messier: A Detailed NVM-Based DIMM Model for the SST Simulation Framework

Will allow us to model any sort of memory arrangement that we can imagine!

Ariel

‘M[mmn‘fﬁm m][Ed s 1T wa [ca J‘m’[mmﬁmzm]

le-L1 PCle-L1 e-L1
e:

CUDA API interception model =P

Standalone dummy CUDA lib which Apps
is independent of CPU model Load/store trace CUDA sync reply | _ _l_gU_DA AP call

runtime Library

Applications link dynamically with lib

| Dummy CUDA
(shared object) '

Adeaqi|
auo|epuels

:
Dummy lib interacts with GPU engine i
for kernel launch and CUDA memory
copies
API Calls Forwarded to GPU Model

__cudaRegisterFatBinary cudaFree

__cudaRegisterFunction cudalLaunch
cudaMalloc cudaGetLastError
cudaMemcpy cudaRegisterVar
cudaConfigureCall cudaSetupArgument

cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags

Using The GPU Component

2 | Using the Component

Currently hosted in a separate repository within the SST project

To build SST elements with the GPU component (assumes core is built):

il

s
8.
9.

S L e 3

git clone https://github.com/sstsimulator/sst-elements.git

git clone https://github.com/sstsimulator/sst-gpgpusim.git $SST_ELEMENTS_ROOT/src/sst/elements/Gpgpusim
. src/sst/elements/Gpgpusim/sst-gpgpusim/setup_environment

cd src/sst/elements/Gpgpusim/sst-gpgpusim

make

cp --preserve=links $§GPGPUSIM_ROOT/lib/$GPGPUSIM_CONFIG/libcudart_mod.so
$SST_ELEMENTS_ROOT/src/sst/elements/Gpgpusim/

cd $SST_ELEMENTS_HOME

Jautogen

Jconfigure --prefix=$SST_ELEMENTS_HOME --with-sst-core=$SST_CORE_HOME --with-pin=$PIN_HOME --with-
cuda=$CUDA_ROOT

10. make

Applications must be built using the shared cuda runtime library: --cudart=shared

If an application requires cuDNN or cuBLAS, it must be linked against the static
Cuda library: -cublas_static, -lcudnn_static

3 | Using the Component

Running a simulation requires the user to specify both a SST model and a GPGPU
model

- SST model contains wiring instructions and component definitions
> Processor model, memory hierarchy, interconnect, etc.

- GPGPU model contains SIMT core definition
- PTX generation, number of registers, number of warps, number of functional units, etc.

SST Component GPGPU Model
comp_gpul = sst. Component("gpu0"”, "Gpgpusim.Gpgpusim") -SST_mode 1
comp_gpul.addParams(} -gpgpu_ptx_force_max_capability 70
"clock" : "1200MHz", -gpgpu_clock_domains 1200.0:1200.0:1200.0:850.0
"gpu_cores" : "84", -gpgpu_shader_registers 65536
"verbose" : "0" -gpgpu_occupancy_sm_number 70

)
-gpgpu_pipeline_widths 4,4,4,4,4,4,4,4,4,4,8,4,4

-gpgpu_num_sp_units 4
-gpgpu_num_sfu_units 4
-gpgpu_num_dp_units 4
-gpgpu_num_int_units 4
-gpgpu_tensor_core_avail 1
-gpgpu_num_tensor_core_units 4

14 | Using the Component — vectorAdd

sst --model-option="-c ariel-gpu-v100.cfg -s abs_kviTA.csv -x ./vectorAdd-163840" cuda-test.py

12g_xbar_link_8 12g_xbar_link_9 12g_xbar_link_16 12g_xbar_link_17 12g_xbar_link_24 12g_xbar_link_25 12g_xbar_link_0
100ps 100ps 100ps 100ps 100ps 100ps 00ps
12gcache_8 12gcache_9 12gcache_16 12gcache_17 12gcache_24 12gcache_0 12gcache_1

memHierarchy.Cache

memHierarchy.Cache memHierarchy.Cache memHierarchy.Cache memHierarchy.Cache memHierarchy.Cache memHierarchy.Cache

‘ 12gcache_25

memHierarchy.Cache

12g_mem_link_8
100ps

12g_mem_link_9 12g_ mem_link_16\ 12g mem_link_17 /12g mem_link_24 12g_mem_link_25 12g_mem_link_O
100ps 100ps 100ps 100ps 100ps 100ps

mem_I2_bus_0
memHierarchy. Bus

bus_mem_link_0 bus_mem_link_1
Ops. 50ps

Simplehbm_0
memHierarchy. MemController

Simplehbm_1
memHierarchy. MemController

12g_mem_link_1
100ps

gpu0
Gpgpusim.Gpgpusim
gpu_cache_link_41 gpu_cache_link_42 gpu_cache_link_43 /gpu_cache_link_44'\ gpu_cache_link_
100ps 100ps 100ps 100ps 100ps
llgcache_42 llgcache_43 llgcache_44 llgcache_45

memHierarchy.Cache

memHierarchy.Cache

memHierarchy.Cache

memHierarchy.Cache

I1gcache_41_link
100ps

I1gcache_42_link
100ps

l1gcache_43_link
100ps

11gcache_44_link

100ps

I1gcache_45_link
100ps

gpu_xbar
shogun.ShogunXBar

12g_xbar_link_19 12g_xbar_link_26
100ps 100ps

12g_xbar_link_27

12g_xbar_link_4

12g_xbar_link_5

100ps 100ps 100ps
12gcache_26 12gcache_27 12gcache_4 12gcache_5
memHierarchy.Cache memHierarchy.Cache memHierarchy.Cache memHierarchy.Cache I
12g_mem_link_26 12g_mem_link_27 12g_mem_link_4 12;
100ps 100ps 100ps

s | Using the Component — vectorAdd

sst --model-option="-c ariel-gpu-v100.cfg -s abs_kviTA.csv -x ./vectorAdd-163840" cuda-test.py

Statistics file for this model contains 19861 entries:

ComponentName, StatisticName, StatisticSubld, StatisticType, SimTime, Rank, Sum, SumSQ, Count, Min, Max
AQ, read_requests, 0, Accumulator, 2423910320, 0, 10240, 10240, 10240, 1, 1

AQ, write_requests, 0, Accumulator, 2423910320, 0, 20480, 20480, 20480, 1, 1

A0, read_request_sizes, 0, Accumulator, 2423910320, 0, 655360, 41943040, 10240, 64, 64

AQ, write_request_sizes, 0, Accumulator, 2423910320, 0, 1310720, 83886080, 20480, 64, 64

A0, instruction_count, 0, Accumulator, 2423910320, 0,0, 0,0, 0, 0

AQ, cycles, 0, Accumulator, 2423910320, 0, 6446570, 6446570, 6446570, 1, 1

AQ, active_cycles, 0, Accumulator, 2423910320, 0, 226, 226, 226, 1, 1

Performance Analysis

- | Mean Error

5271 5751 9.093682
494519 605685 22.47961
12454750 11896477 4.48241

Complex model interactions make it difficult to pinpoint where models are lacking
In detail or are incorrect

Scale of simulation — number of components and links present a challenge
> Full debug produces multi-TiB trace

> No errors, so have to isolate anomalies in tens of thousands of statistics

s | Functional Testing — Kokkos Kernels

Kokkos-Kernels built with:

KOKKOSKERNELS_SCALARS=double
KOKKOSKERNELS_LAYOUTS=LayoutLeft
KOKKOSKERNELS_ORDINALS=int
KOKKOSKERNELS_OFFSETS=int
KOKKOS_DEVICES=Cuda,Serial
KOKKOS_ARCHS=BDW, Pascal60

gcc

CUDA SDK
Kokkos

Kokkos Kernels
sst-core
sst-elements
Pin

4.8.5

8.0.61

2.8.00

2.8.00
devel-d8042ec
devel-b3ba937
2.14.71313

Compiling for Broadwell and sm_60 for validation testing on Doom

9 | Functional Testing — Kokkos Kernels Unit Test Results

abs_double
abs_mv_double
asum_double
axpby_double
axpby_mv_double
axpy_double
axpy_mv_double
dot_double
dot_mv_double
mult_double
mult_mv_double
nrm1_double
nrm1l_mv_double
nrm2_double
nrm2_mv_double
nrm2_squared_double
nrm2_squared_mv_double
nrminf_double
nrminf_mv_double
reciprocal_double
reciprocal_mv_double
scal_double
scal_mv_double
sum_double
sum_mv_double
update_double
update_mv_double
gemv_double

29 gemm_double

-sparse_spgemm_dou ble_int_int_TestExecSpace

sparse_spadd_double_int_int_TestExecSpace
sparse_gauss_seidel_double_int_int_TestExecSpace
sparse_block_gauss_seidel_double_int_int_TestExecSpace
sparse_crsmatrix_double_int_int_TestExecSpace

35 sparse_blkcrsmatrix_double_int_int_TestExecSpace
sparse_replaceSumintoLonger_double_int_int_TestExecSpace
sparse_replaceSuminto_double_int_int_TestExecSpace
graph_graph_color_double_int_int_TestExecSpace
graph_graph_color_deterministic_double_int_int_TestExecSpace
graph_graph_color_d2_double_int_int_TestExecSpace
common_ArithTraits

common_set_bit_count

common_ffs

batched_scalar_serial_set_double_double
batched_scalar_serial_scale_double_double
batched_scalar_serial_gemm_nt_nt_double_double
batched_scalar_serial_gemm_t_nt_double_double
batched_scalar_serial_gemm_nt_t_double_double
batched_scalar_serial_gemm_t_t_double_double
batched_scalar_serial_trsm_|_|_nt_u_double_double
batched_scalar_serial_trsm_|_|_nt_n_double_double
batched_scalar_serial_trsm_|_u_nt_u_double_double
batched_scalar_serial_trsm_|_u_nt_n_double_double
batched_scalar_serial_trsm_r_u_nt_u_double_double

batched_scalar_serial_trsm_r_u_nt_n_double_double
batched_scalar_serial_trsm_|_|_t_u_double_double
batched_scalar_serial_trsm_|_|_t n_double_double
batched_scalar_serial_trsm_|_u_t_u_double_double
batched_scalar_serial_trsm_|_u_t_n_double_double

batched_scalar_serial_gemv_nt_double_double

Currently passing 54/89 tests (60.67%)

batched_scalar_serial gemv_t_double_double
batched_scalar_serial_trsv_| nt_u_double_double
batched_scalar_serial_trsv_|_nt_n_double_double
batched_scalar_serial_trsv_u_nt_u_double_double
batched_scalar_serial_trsv_u_nt_n_double_double
batched_scalar_team_set_double_double
batched_scalar_team_scale_double_double
batched_scalar_team_gemm_nt_nt_double_double
batched_scalar_team_gemm_t_nt_double_double
batched_scalar_team_gemm_nt_t double_double
batched_scalar_team_gemm_t_t double_double
batched_scalar_team_trsm_| | nt_u_double_double
batched_scalar_team_trsm_| | nt_n_double_double
batched_scalar_team_trsm_|_u_nt_u_double_double
batched_scalar_team_trsm_|_u_nt_n_double_double
batched scalar_team_trsm_r_u nt u_double_double
batched scalar_team_trsm_r_u nt_n_double_double

batched scalar_team_trsm_| u_t u_double double
batched_scalar_team_trsm_| u_t n_double_double
batched_scalar_team_gemv_nt_double_double
batched_scalar_team_gemv_t_double_double
batched_scalar_serial_lu_double
batched_scalar_serial_inverselu_double
batched_scalar_serial_solvelu_double

batched scalar_team_lu_double
batched_scalar_team_inverselu_double

batched_scalar_team_solvelu_double

2 | Functional Testing — Kokkos Kernels Unit Test Results

abs_double
abs_mv_double
asum_double
axpby_double
axpby_mv_double
axpy_double
axpy_mv_double
dot_double
dot_mv_double
mult_double
mult_mv_double
nrm1_double
nrm1l_mv_double
nrm2_double
nrm2_mv_double
nrm2_squared_double
nrm2_squared_mv_double
nrminf_double
nrminf_mv_double
reciprocal_double
reciprocal_mv_double
scal_double
scal_mv_double
sum_double
sum_mv_double
update_double
update_mv_double
gemv_double

29 gemm_double

-spa rse_spgemm_double_int_int_TestExecSpace

sparse_spadd_double_int_int_TestExecSpace
sparse_gauss_seidel_double_int_int_TestExecSpace
sparse_block gauss_seidel_double_int_int_TestExecSpace
sparse_crsmatrix_double_int_int_TestExecSpace

35 sparse_blkcrsmatrix_double_int_int_TestExecSpace
sparse_replaceSumintoLonger_double_int_int_TestExecSpace
sparse_replaceSuminto_double_int_int_TestExecSpace
graph_graph_color_double_int_int_TestExecSpace
graph_graph_color_deterministic_double_int_int_TestExecSpace
graph_graph_color_d2_double_int_int_TestExecSpace
common_ArithTraits

common_set_bit_count

common_ffs

batched_scalar_serial_set_double_double
batched_scalar_serial_scale_double_double
batched_scalar_serial_gemm_nt_nt_double_double
batched_scalar_serial_gemm_t_nt_double_double
batched_scalar_serial_gemm_nt_t_double_double
batched_scalar_serial_gemm_t_t_double_double
batched_scalar_serial_trsm_|_|_nt_u_double_double
batched_scalar_serial_trsm_|_|_nt_n_double_double
batched_scalar_serial_trsm_|_u_nt_u_double_double
batched_scalar_serial_trsm_|_u_nt_n_double_double
batched_scalar_serial_trsm_r_u_nt_u_double_double

batched_scalar_serial_trsm_r_u_nt_n_double_double
batched_scalar_serial_trsm_|_|_t_u_double_double
batched_scalar_serial_trsm_|_|_t n_double_double
batched_scalar_serial_trsm_|_u_t_u_double_double
batched_scalar_serial_trsm_|_u_t_n_double_double

batched_scalar_serial_gemv_nt_double_double

batched_scalar_serial gemv_t_double_double
batched_scalar_serial_trsv_| nt_u_double_double
batched_scalar_serial_trsv_|_nt_n_double_double
batched_scalar_serial_trsv_u_nt_u_double_double
batched_scalar_serial_trsv_u_nt_n_double_double
batched_scalar_team_set_double_double
batched_scalar_team_scale_double_double
batched_scalar_team_gemm_nt_nt_double_double
batched_scalar_team_gemm_t_nt_double_double
batched_scalar_team_gemm_nt_t double_double
batched_scalar_team_gemm_t_t double_double
batched_scalar_team_trsm_| | nt_u_double_double
batched_scalar_team_trsm_| | nt_n_double_double
batched_scalar_team_trsm_|_u_nt_u_double_double
batched_scalar_team_trsm_|_u_nt_n_double_double
batched scalar_team_trsm_r_u nt u_double_double
batched scalar_team_trsm_r_u nt_n_double_double

batched scalar_team_trsm_| u_t u_double double
batched_scalar_team_trsm_| u_t n_double_double
batched_scalar_team_gemv_nt_double_double
batched_scalar_team_gemv_t_double_double
batched_scalar_serial_lu_double
batched_scalar_serial_inverselu_double
batched_scalar_serial_solvelu_double

batched scalar_team_lu_double
batched_scalar_team_inverselu_double

batched_scalar_team_solvelu_double

Tests in pink fail because the parser cannot locate a post-dominator in some
kernels; this bug is also present in the public branch of GPGPUSIm

21 | Functional Testing — Kokkos Kernels Unit Test Results

abs_double
abs_mv_double
asum_double
axpby_double
axpby_mv_double
axpy_double
axpy_mv_double
dot_double
dot_mv_double
mult_double
mult_mv_double
nrm1_double
nrm1l_mv_double
nrm2_double
nrm2_mv_double
nrm2_squared_double
nrm2_squared_mv_double
nrminf_double
nrminf_mv_double
reciprocal_double
reciprocal_mv_double
scal_double
scal_mv_double
sum_double
sum_mv_double
update_double
update_mv_double
gemv_double

29 gemm_double

-spa rse_spgemm_double_int_int_TestExecSpace

sparse_spadd_double_int_int_TestExecSpace
sparse_gauss_seidel_double_int_int_TestExecSpace
sparse_block gauss_seidel_double_int_int_TestExecSpace
sparse_crsmatrix_double_int_int_TestExecSpace

35 sparse_blkcrsmatrix_double_int_int_TestExecSpace
sparse_replaceSumintoLonger_double_int_int_TestExecSpace
sparse_replaceSuminto_double_int_int_TestExecSpace
graph_graph_color_double_int_int_TestExecSpace
graph_graph_color_deterministic_double_int_int_TestExecSpace
graph_graph_color_d2_double_int_int_TestExecSpace
common_ArithTraits

common_set_bit_count

common_ffs

batched_scalar_serial_set_double_double
batched_scalar_serial_scale_double_double
batched_scalar_serial_gemm_nt_nt_double_double
batched_scalar_serial_gemm_t_nt_double_double
batched_scalar_serial_gemm_nt_t_double_double
batched_scalar_serial_gemm_t_t_double_double
batched_scalar_serial_trsm_|_|_nt_u_double_double
batched_scalar_serial_trsm_| | nt_n_double_double
batched_scalar_serial_trsm_|_u_nt_u_double_double
batched_scalar_serial_trsm_| u_nt_n_double_double
batched_scalar_serial_trsm_r_u_nt_u_double_double
batched_scalar_serial_trsm_r_u_nt_n_double_double
batched_scalar_serial_trsm_|_|_t _u_double_double
batched_scalar_serial_trsm_|_u_t_u_double_double
batched_scalar_serial_trsm_| u_t n_double_double
batched_scalar_serial_gemv_nt_double_double

batched_scalar_serial gemv_t_double_double
batched_scalar_serial_trsv_|_nt_u_double_double
batched_scalar_serial _trsv_| nt_n_double_double
batched_scalar_serial_trsv_u_nt_u_double_double
batched_scalar_serial_trsv_u_nt_n_double_double
batched_scalar_team_set_double_double
batched_scalar_team_scale_double_double
batched_scalar_team_gemm_nt_nt_double_double
batched_scalar_team_gemm_t_nt_double_double
batched_scalar_team_gemm_nt_t_double_double
batched_scalar_team_gemm_t_t double_double
batched_scalar_team_trsm_|_|I_nt_u_double_double
batched_scalar_team_trsm_| | nt_n_double_double
batched_scalar_team_trsm_|_u_nt_u_double_double
batched_scalar_team_trsm_| u_nt_n_double_double
batched scalar_team_trsm_r_u nt u_double_double
batched_scalar_team_trsm_r _u_nt_n_double_double

batched_scalar_team_trsm_|_u_t_u_double_double
batched_scalar_team_trsm_| u_t n_double _double
batched_scalar_team_gemv_nt_double_double
batched_scalar_team_gemv_t_double_double
batched_scalar_serial_lu_double
batched_scalar_serial_inverselu_double
batched_scalar_serial_solvelu_double
batched_scalar_team_lu_double
batched_scalar_team_inverselu_double

batched scalar_team_solvelu_double

Tests in purple fail because of a bug(s) in the functional model that neither the SST
nor the GPGPUSIm team has been able to isolate

» | Performance Analysis — Lulesh

One of the most widely used DOE mini-applications
- Developed by Lawrence Livermore National Laboratory

- Represents challenging hydrodynamics algorithms over unstructured
meshes

- Common in many high-performance computing centers and are particularly
prevalent within the NNSA laboratories

> Routinely counted in the top ten application codes in terms of CPU hours utilized

Pin 2.14.71313

Lulesh was compiled with: Lulesh was run with:

» $=22 (22x22x22 elements) |
gcc 4.8.5 > lterations=50

CUDA SDK 9.1.85

Lulesh 1.0 I
sst-core devel-d8042ec

sst-elements devel-b3ba937 |

s | Performance Analysis — Lulesh

SST is capable of providing periodic statistic dumps for all of the currently loaded
components

- Valuable for fine-grain performance analysis of applications

Host Cycles GPU Crossbar Packets Processed

600000 6000000
500000 5000000 M
400000 4000000
300000 3000000
200000 2000000
100000 1000000

0 \—‘ e 0

2 | Performance Analysis LI Cache — Lulesh

L1S Misses

L1S Misses

25000

25000

20000

20000

15000

10000

5000

15000

10000

5000

Zlol
8001
001
0001
966
66
886
¥86
086
9.6
(444
896
¥96
096
966
56
8v6
44
ové
9¢6
€6
876

8001
L6
9¢€6
006
¥98
878
6L
96/
0ZL
789
8v9
19
9.6
(04
¥0S
89
[4%4
96¢
09¢
vie
88¢C
[A<T4
91C
08l
44
801
L
9¢

Time (ps)

Time (ps)

L1S Hits

L1S Hits

12000

12000

10000

10000

8000

8000

6000

6000

4000

4000

2000

2000

Ziol
8001
001
0001
966
66
886
¥86
086
9.6
L6
896
¥96
096
946
56
8v6
144
ové
9¢€6
€6
876

8001
L6
9¢6
006
¥98
878
6L
96/
0ZL
789
819
a9
9§
(04
v0S
89
[434
96¢
09¢
vie
88¢C
[Asr4
91¢
08l
vl
801
L
9¢

Time (ps)

Time (ps)

2 | Performance Analysis L2 Cache — Lulesh

L2S Misses

9000
8000
7000
6000
5000
4000
3000
2000
1000

72
108
144
180
216
252
288
324
360
396
432
468
504
540

~ 576
612
648
684
720
756
792
828
864
900
936
972

1008

45000
40000
35000
30000
25000
20000
15000
10000

5000

9000
8000
7000
6000
5000
4000
3000
2000
1000

L2S Misses

980
984
988
992
996
1000
1004
1008
1012

1000
1004
1008
1012

% | Performance Analysis Crossbar — Lulesh

6000000

5000000

4000000

3000000

2000000

1000000

0

Crossbar Packets Processed

M

180000
160000
140000
120000
100000
80000
60000
40000
20000

Crossbar Cycles Active

6000000

5000000

4000000

3000000

2000000

1000000

180000
160000
140000
120000
100000
80000
60000
40000
20000

Crossbar Packets Processed

Crossbar Cycles Active

1000
1004
1008
1012

1000
1004
1008
1012

27 | Performance Analysis Memory Controller— Lulesh

Total Requests Total Requests

250000 250000
200000 200000
150000 W 150000
100000 100000
50000 50000
0 0

O O N OV MNOITOOVUNODOITOONRDITOONIT O VAN 0 N O O O N O O ¥ 0 N OV O Y 0o N OV © ¥ o

Time (ps) Time (ps)
Cycles With Issue Cycles With Issue

40000 40000
35000 “ 35000
30000 30000
25000 25000
20000 20000
15000 15000
5000 5000
0 0

XN IRIARLITIRI LIS LES I

—OoONOLM——TOONOLO MO NOLO MO NO MO NIOMM—ONLW N ™m ™ X < D N O O O NN O 0 0 08 O O ©O © —

M INNOONTOVOOOTTTMINMNOONTONO ML OO o oo 0OONO O ON OO0 6 6 O O O O

NN ANNNMMTOOOMN T T T YT YN - o v

Time (ps) Time (ps)

s | Design Space Exploration — Lulesh

HBM Frequency (MHz)
W 277 W260 W 1600

T4l

1@. *

B
E, it
%ﬁ ..
£ 3 B
5
N‘_ i

2

{4

580 R T80
SM Clock Frequency, (MHE))

Parameter sweep of SM clock frequency and memory frequency
- SM frequency: 500MHz, 1312MHz, 1800Mhz (2.5x = 1.3x speedup)

- HBM frequency: 877MHz, 1200MHz, 1600Mhz (0.99x = 1.04x speedup)

Future Work and Summaries

3 | Future Work

Split Monolithic GPGPU Component into SM Components
- Speed up simulations

- Wider range of system options
> Chiplets
> Split interconnects

Scheduler

Backing Store

31 | Position SST For the Future

|

Proves that SST can be integrated with
complex external models

> Exploring new ISA plugins for Ariel
- ARM (SVE?), other alternatives
o HDL simulation components

> Low-level hardware design including possible
path to tape-out

> Neural-inspired & quantum
> Exploration of interfaces and data movement |

ML/AI Accelerator

- Near memory/storage computing
> Micron

- Easier integration with vendor-supplied
accelerator models

(inte) arm <3

AMD NVIDIA

|
|
|

Lessons Learned

The philosophy behind the design of SST has always been modularity

> Any component should be able to communicate with any other component, assuming
that the appropriate interface is available, with no other dependencies (mostly)

> The integration of the GPU component has validated this design approach
> Dropped in an “unknown” component and the memory subsystem...works! |

The academic community, particularly in architecture, has little to no exposure to
applications of ASC-level code complexity

> Genuinely surprised that so many of the applications had trouble with the parser
- Some instructions not even implemented because they had never encountered them |

SST needs an “accelerator” component to hide complexity

> Will probably look like the current GPU model with bus links (PCIe Gen-Z, CXL) and
one or more back channel command/control links ~ v T— e

;3 | Remaining Issues

Support for UVM

Statistics are still resident in the GPU component and separate from SST
PTX parser has trouble with some instructions when compiling for sm_70
PTX parser is unable to locate a post dominator instruction in some instances

Texture cache is not implemented in functional and timing models
> Presents a problem for some Kokkos-based applications

Some of the Thrust library is not implemented or is implemented incorrectly
leading to segfaults

Need write-through support in memHierarchy

Upstream GPGPUSIm changes to mainline

35 | Primary SST Components: memHierarchy H

o Caches and directories
- Memory models (DDR, HBM, HMC, NVRAM, etc.)

:
Collection of interoperable memory system elements |
- Memory controllers & network interfaces for memory (MemNICs) |

Inter- and intra-socket coherence

Correlated with modern memory hierarchies

- HBM2/3 Evaluation on Many-core CPU
> Messier: A Detailed NVM-Based DIMM Model for the SST Simulation Framework

@ mm

Will allow us to model any |
Private L1 Private L1 |

sort of memory arrangement
that we can imagine!

Shared L2 Private L2 o g
(would require directory for ”_Vate
Private L2

coherence)
Distributed shared L3

o | PTX vs. 5ASS

PTX

$Lt 25 13570:
|d.global.s32
add.s32
|d.global.s32
add.s32
add.u32
add.u64
|d.param.u32
setp.lt.u32
@%p2 bra

mov.u32 %r12, 127;

setp.gt.u32

@%p3 bra
|d.shared.s32
add.s32
st.shared.s32

$Lt 25 14082:
bar.sync O;

%r9, [Y%rd5+0];
%r10, %r9, %r8;
%r11, [%rd5+1024];
%r8, %r11, %r10;
%r5, %r7, %r5;
%rdS, %rd5, %rd6;
%r6, [size];

%p2, %r5, %ro;

$Lt 25 13570;

%p3, %r3, %r12;
$Lt 25 14082;
%r13, [%rd10+512];
%r8, %r13, %r8;
[%rd10+0], %r8;

SASS (PTXPlus)

10x00000060:
add.half.u32 $r7, $r4, 0x00000400;
|d.global.u32 $r8, [$rd];
|d.global.u32 $r7, [$r7];
add.half.u32 $r0, $r5, $r0;
add.half.u32 $r6, $r8, $r6;
set.gt.u32.u32 $p0/$0127, s[0x0020], $rO;
add.half.u32 $r6, $r7, $r6;
add.half.u32 $ra, $r4, $r3;
@$p0.ne bra 10x00000060;

set.gt.u32.u32
@%p0.equ add.u32 $ofs2, $ofs1, 0x00000230;
@%p0.equ add.u32 $r6, s[$ofs2+0x0000], $r6;
@%p0.equ mov.u32 s[$ofs1+0x0030], $r6;
bar.sync 0x00000000;

$p0/$0127, $r2, const [0x0000];

B s s B

7 | Why SST?

Problem: Simulation is slow
> Tradeoff between accuracy and time to simulate
- Many simulators are serial, unable to simulate very large systems

Problem: Lack of simulator flexibility
o Tightly-coupled simulations: Difficult to modify

> Difficult to simulate at different levels of accuracy

The Structural Simulation Toolkit:
A parallel, discrete-event simulation framework
for scalability and flexibility

What is SST?

Goals
Become the standard architectural
simulation framework for HPC
Be able to evaluate future systems on
DOE/DOD workloads
Use supercomputers to design
supercomputers

Status

Parallel Core, basic components
Current Release (7.1)

Improved components
Modular core/elements
More Internal documentation

Technical Approach
Parallel
» Parallel Discrete Event core with
conservative optimization over
MPI/Threads
Multiscale
» Detailed and simple models for
processor, network, & memory
Interoperability
« DRAMSIm, ,memory models
* routers, NICs, schedulers
Open
* Open Core, non-viral, modular

Consortium

=ﬁA‘V C!V?lCI"Oﬂ | ‘ @

T&@HMQ LOEIES

\ ”Z UNIVERSITY

\.\. a(()\\I\

3 | Key Capabilities

Parallel

> Built from the ground up to be scalable

- Demonstrated scaling to 512+ host processors
> Conservative, Distance-based Optimization

- MP| + Threads

Flexible
> Enables “mix and match” of simulation components
> Multiscale tradeoff between accuracy and simulation time
> e.g., cycle-accurate network with trace-driven endpoints
> Open API
- Easily extensible with new models
> Modular framework
- Open-source core

o | SST’s discrete-event algorithm

Simulations are comprised of components connected by links
Components interact by sending events over links
Each link has a minimum latency

Components can load subComponents and modules for additional functionality

SST
55T ST SST Link Component
Component Link Component Component Component K | ;iency: 2ns Type: NoC
Event Type: Core Type: Cache Router
oy -
SST Core 5 :
— . ¥
Instantiation Time a5
Coordination -
Configuration
Parallel SST SST cOmSpS;,ent
Partitioning Communication Component Component Type: NoC
Type: Core Type: Cache Rodter

Currently only supports synchronous kernel launches

Svync. Kernel Launch

GPU Model

Done

Time

o | Kokkos Kernels Unit Test Results

abs_double

abs_mv_double

asum_double

axpby_double

axpby_mv_double

axpy_double

axpy_mv_double

dot_double

dot_mv_double

mult_double

mult_mv_double

nrm1_double

nrm1l_mv_double

nrm2_double

nrm2_mv_double

nrm2_squared_double
nrm2_squared_mv_double

nrminf_double

nrminf_mv_double

reciprocal_double

reciprocal_mv_double

scal_double

scal_mv_double

sum_double

sum_mv_double

update_double

update_mv_double

gemv_double

29 gemm_double
sparse_spgemm_double_int_int_TestExecSpace
sparse_spgemm_double_int_size_t_TestExecSpace
sparse_spadd_double_int_int_TestExecSpace
sparse_spadd_double_int_size_t_TestExecSpace

sparse_gauss_seidel_double_int_int_TestExecSpace
sparse_gauss_seidel_double_int_size_t_TestExecSpace
sparse_block_gauss_seidel_double_int_int_TestExecSpace
sparse_block_gauss_seidel_double_int_size_t_TestExecSpace
38 sparse_crsmatrix_double_int_int_TestExecSpace

39 sparse_crsmatrix_double_int_size_t_TestExecSpace

40 sparse_blkcrsmatrix_double_int_int_TestExecSpace

41 sparse_blkcrsmatrix_double_int_size_t_TestExecSpace
sparse_replaceSumintoLonger_double_int_int_TestExecSpace
sparse_replaceSumIintoLonger_double_int_size_t_TestExecSpace
sparse_replaceSuminto_double_int_int_TestExecSpace
sparse_replaceSuminto_double_int_size_t_TestExecSpace
graph_graph_color_double_int_int_TestExecSpace
graph_graph_color_double_int_size_t_TestExecSpace
graph_graph_color_deterministic_double_int_int_TestExecSpace
graph_graph_color_deterministic_double_int_size_t_TestExecSpace
graph_graph_color_d2_double_int_int_TestExecSpace
graph_graph_color_d2_double_int_size_t_TestExecSpace
common_ArithTraits

common_set_bit_count

common_ffs

batched_scalar_serial_set_double_double
batched_scalar_serial_scale_double_double
batched_scalar_serial_gemm_nt_nt_double_double
batched_scalar_serial_gemm_t_nt_double_double
batched_scalar_serial_gemm_nt_t_double_double
batched_scalar_serial_gemm_t_t_double_double
batched_scalar_serial_trsm_|_I_nt_u_double_double
batched_scalar_serial_trsm_|_I_nt_n_double_double
batched_scalar_serial_trsm_|_u_nt_u_double_double
batched_scalar_serial_trsm_|_u_nt_n_double_double
batched_scalar_serial_trsm_r_u_nt_u_double_double
batched_scalar_serial_trsm_r_u_nt_n_double_double

batched_scalar_serial_trsm_|_u_t_u_double_double
batched_scalar_serial_trsm_|_u_t_n_double_double
batched_scalar_serial_gemv_nt_double_double
batched_scalar_serial_gemv_t_double_double
batched_scalar_serial_trsv_|_nt_u_double_double
batched_scalar_serial_trsv_|_nt_n_double_double
batched_scalar_serial_trsv_u_nt_u_double_double
batched_scalar_serial_trsv_u_nt_n_double_double
batched_scalar_team_set_double_double
batched_scalar_team_scale_double_double
batched_scalar_team_gemm_nt_nt_double_double
batched_scalar_team_gemm_t_nt_double_double
batched_scalar_team_gemm_nt_t_double_double
batched_scalar_team_gemm_t_t_double_double
batched_scalar_team_trsm_|_|_nt_u_double_double
batched_scalar_team_trsm_|_I_nt_n_double_double
batched_scalar_team_trsm_|_u_nt_u_double_double
batched_scalar_team_trsm_|_u_nt_n_double_double
batched_scalar_team_trsm_r_u_nt_u_double_double
batched_scalar_team_trsm_r_u_nt_n_double_double

batched_scalar_team_trsm_|_u_t_u_double_double

batched_scalar_team_trsm_|_u_t_n_double_double
batched_scalar_team_gemv_nt_double_double
batched_scalar_team_gemv_t_double_double
batched_scalar_serial_lu_double
batched_scalar_serial_inverselu_double
batched_scalar_serial_solvelu_double

98 batched_scalar_team_lu_double

99 batched_scalar_team_inverselu_double

100 batched_scalar_team_solvelu_double

3 | Split Monolithic GPGPU Component into SM Components

‘ Scheduler
1 y

Backing Store

« | Performance Analysis — Lulesh

SST is capable of providing periodic statistic dumps for all of the currently loaded

components

- Valuable for fine-grain performance analysis of applications

Host Cycles

600000
500000
400000
300000
200000
100000

12000

10000

8000 \
6000 ;
4000

2000

0 200 400 600 800 1000
Time (ps)

6000000
5000000
4000000
3000000
2000000
1000000

0

9000
8000
7000
6000
5000
4000
3000
2000
1000

Crossbar Packets Processed

VOV T NOVOVWITNOOWITNOROWOUITNOOITNO®
M N0 NVOTO IO MNOTONOVUOMIN — W
AN NN T TN OO ONNNOGOOWO OO
Time (ps)
L2S Hits
200 400 600 800 1000
Time (ps)

GPGPUSIim Integration

l Command Link l

PCle-L1

Ariel

CPU ML/AI Accelerator

PCle-L2

PCle-L2

pale Lk

CLICK TO EDIT MASTER TITLE STYLE

Slide Left Blank

