This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019-11321C

GPGPU-Sim Overview i

Mengchi Zhang, Purdue University 09/21/2019
— | [S

Clay HugheS) Gwen VOSkuilen) Sandla Natlonal Sandia National Laboratories is a multimission

. laboratory managed and operated by National
L a b ora t O 11 eSs Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell

International Inc., for the U.S. Department of
Energy’s National Nuclear Security

MengChi Z h ang’ P urdu e Unlvef Slty Administration under contract DE-NA0003525.

, | Welcome!

Part 1: Introduction to SST 1:00 - 2:30
o SST Overview

- Demos: Running a simple simulation; Enabling statistics;
Running in parallel

o SST Element Libraries: A tour

Part 2: GPGPU-Sim 2:30-3:30
o GPGPU-Sim Overview

o New Features

Break 3:30 - 4:00
Part 3: The SST/GPGPU-Sim Integration 4:00 - 5:00

PACT 2019 TUTORIAL

; | Outline

GPGPU-Sim Introduction

> GPU and programming model
> Functional model

> Performance model

- GPUWattch: power model

New Features in GPGPU-Sim
> Volta model

> Run closed source libraries

> Run CUTLASS library
> Tensor Core

+ | Acknowledgements

Some slides are credited to GPGPU-Sim Micro Tutorial 2012

Some data and figures are credited to papers below:

- Akshay Jain, Mahmoud Khairy, Timothy G. Rogers, A Quantitative Evaluation of
Contemporary GPU Simulation Methodology. SIGMETRICS 2018

- Mahmoud Khairy, Jain Akshay, Tor Aamodt, Timothy G Rogers, Exploring Modern
GPU Memory System Design Challenges through Accurate Modeling,
arXiv:1810.07269, (and ISPASS 2019 poster)

- Jonathan Lew, Deval Shah, Suchita Pati, Shaylin Cattell, Mengchi Zhang, Amruth
Sandhupatla, Christopher Ng, Negar Goli, Matthew D. Sinclair, Timothy G. Rogers, Tor
M. Aamodt, Analyzing Machine Learning Workloads Using a Detailed GPU Simulator,
arXiv:1811.08933, (and ISPASS 2019 poster)

- Md Aamir Raihan, Negar Goli, Tor Aamodt, Modeling Deep Learning Accelerator
Enabled GPUs, ISPASS 2019

We thank all contributors to GPGPU-Sim

All new features are based on the dev branch of GPGPU-Sim:
https://github.com/gpgpu-sim/gpgpu-sim distribution/tree/dev

s | Outline

GPGPU-Sim Introduction

> GPU and programming model
> Functional model

> Performance model

- GPUWattch: power model

New Features in GPGPU-Sim
> Volta model

> Run closed source libraries

> Run CUTLASS library
> Tensor Core

s | GPU Introduction

GPU = Graphics Processing Unit

> Optimized for Highly Parallel Workloads
> Highly Programmable

- Heterogeneous computing

NVidia Tesla GV100: 80 Stream Multiprocessors(SMs)
- Each SM has 64 INT32, 64 FP32, 32 FP64, 8 Tensor core

EEEEEEEDN EEEEEEEE
EEEEEEER EEEPERERE
EEEEEEED EEEEEEED
EEEEEEER EEEEEEEN
O i EEEEEEN

; | GPGPU Programming model evolution

GPGPU programming model:
> CUDA and OpenCL

> Support more features with newer architectures

CUDA 9.X
U ,]EUC?A 6.X Cooperative groups
CUDA 1.X CUDA 3.X CUDA 4.X Byrarsie Parallaliom MPS CUDA 10.X
C compiler ~ C++ compiler C++ new/delete Y CUDNN CUTLASS CUDA Graphs
i - Tensor core operation :
(Tesla) (Fermi) ~ No-copy system (Kepler, Maxwell) (Voltal)a (Turing)

CUDA memory
l 2008 l 201 1\1/ 2013 l 2015 l l

2007 '|‘ 2010 ’[‘ 2014 1‘ 1‘2017 2019

OpenCL OpenCL 1.0 OpenCL 1.2 OpenCL 2.0 OpenCL 2.1 OpenCL 2.2
C99 support Device Partition Shared virtual memory C++14 C++14
Built-in kernels Nested Parallelism SPIR-V SPIR-V 1.1
Pipe for Vulkan

subgroup

GPU Microarchitecture'

NVidia GV100:
> Hierarchical compute unit: SM=>TPC=>GPC=>GPU
> Multi-level memory: L1/shmem=>L2=>HBM // P S

Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

- GPGPU-Sim simulator models components above 7

FP32 FP32 INT FP32 FP32
PCI Express 3.0 Host Interface

GigaThread Engine

FP32 FP32 FP32 FP32

FP32 FP32 FP32 FP32

FP32FP32 TENSOR TENSOR FR2FFE TENSOR TENSOR

Fpa2 Fp32 CORE CORE Fp32 Fp32 CORE CORE

FP32 FP32 FP32 FP32

s0j100u00 Aioway,

s
il
3
S
(3]
2
-]
E
s
=

FP32 FP32 FP32 FP32

FP32 FP32 FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST 8T ST ST ST ST

LO Instruction Cache L0 Instruction Cache
Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Memory Controller

J9j100u09 Kir- 1o

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

i

FP64 INT INT FP32 FP32 FP64 INT FP32 FP32

Memory Controller
s9jj05u00 Kiowspy

FP64 INT INT FP32 FP32 FP64 INT FP32 FP32

FP64 INT INT EP32FPR2 Lo\ o o TENSOR FP64 | INT FP32 FP32 tENSOR TENSOR

FP64 INT INT FP32 FP32 CORE CORE FP64 INT FP32 FP32 CORE CORE

FP64 INT INT FP32 FP32 FP64 INT FP32 FP32

Memory Controller
Js)jonu0) Kiowew

FP64 INT INT FP32 FP32 FP64 INT FP32 FP32

FP64 INT INT FP32 FP32 FP64 INT FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST 8T 8T ST 8T ST ST 8T ST 8T ST ST BT ST 8T

128KB L1 Data Cache / Shared Memory

Tex Tex

[1]Volta Whitepaper. https://images.nvidia.com/content/volta-ar

s | GPGPU-Sim Introduction

GPGPU-SIim
> Widely used GPU simulator in the research community (1300+ citations).

> The third most cited simulator in computer architecture field (after GEM5(+GEMS) and
SimpleScalar)

Functional model
° Virtual ISA (VISA)

- Machine ISA (mISA)

Performance model
> Model microarchitecture timing relevant to GPU compute

o | GPGPU-Sim Introduction

GPGPU-Sim simulates kernel
> Transfer data to GPU memory
- GPU kernels runs on GPGPU-Sim:
- Reports statistics for the kernels
> Transfer data back to CPU memory

CPU

Async. Kernel Launch

Done

Blockin
Done
o

CPU

CPU

Sync. Kernel Launch

Done

GPGPU-Sim

I

GPGPU-Sim

I

GPGPU-Sim

I

Time

.+ | Functional model

Single Instruction Multiple Thread(SIMT):
> SIMD + multithreading
> Grid, Block, Warp, Thread

Virtual ISA vs. Machine ISA
- VISA: PTX = Parallel Thread eXecution: virtual ISA defined by Nvidia

> mISA: SASS = Native ISA for Nvidia GPUs

- GPGPU-Sim use PTXPlus to represent SASS
> 1:1 mapping from SASS to PTXPlus

GPGPU-Sim supports:
o PTX for new architectures(CUDA 10): new, inaccurate, well documented

- SASS for architecture before Fermi(SM_1.X): old, accurate, less documented

» | Performance model

GPGPU-Sim models timing

o SIMT Core

- Caches and texture/constant/shared memory

> Interconnection network(Booksim)

- DRAM(GDDRS5/HBM)

DO NOT model
> Graphic Specific Hardware

Single-Instruction, Multiple-Threads

SIMT Core Cluster

SIMT Core Cluster

SIMT SIMT SIMT SIMT SIMT SIMT

Core Core Core Core | Core | Core |

Interconnection Network

Memory Memory Memory
Partition Partition Partition

GDDR5/HBM GDDR5/HBM Off-chip DRAM GDDR5/HBM

3 | GPUWattch: Power model

Estimate power consumed by the GPU according to the timing behavior

|deal for evaluating fine-grained power management mechanisms

Validated with power measurements from GV100

Performance counters

Modified McPAT

* Modifications: Specific
micro-architectural
components

Interface

--------- ' | & 8 &8 0 8 B B |
| Feedback-driven

I Optimizations

Static Dynamic
Power Power

Detailed Power
Stats

]
O
(C
Y—
-
]
-
=

A Comprehensive Framework for Performance and Energy Optimization Research

GPGPU-Sim

* Modifications: Add
required performance
counters

Detailed
Performance Stats

\:4

Modeled Power (W) =
o8B 5238885388 8R e 0
(=) | | | | | | | | | | | o
O S ="
N 88 C
o En.g
8 - o = é
o ©
S eV
gg_ ':_J"—h :::
D o o O 0O
w O —h =
£ o@
(1] O © .
o o OO< O
S B - « » = 0
ED '. O
: . - S =2
- B i '0)
é;_ [] - 1
o
o . 3
S 4 o
§- oo
N @
S

Relative Error
(Modeled - Measured)

%0T-

%0%-
%0€-
%0¢-
%0

Now B
o o
X XK

=
S
S

BinomialOptions
kmeans_K1

sgemm
fastWalshTransform_K1
mri-q_K1

backprop_K2

sradvl_K1

dct8x8_K1

dwt2d_K1
sortingNetworks_K1
quasirandomGenerator_K2
backprop_K1

b+tree_K1

histogram_K1

b+tree_K2

mergesort_K1
fastWalshTransform_K2
pathfinder
sortingNetworks_K2
sad_K1

SobolQRNG

mergesort_K2
guasirandomGenerator_K1
Average

Average (absolute rel. error)

(JeAlajul ©2UapIIU0D %GR) %99°S F %9 Z— JO 1011 BANle|a 8belaAy -

s | Outline

GPGPU-Sim Introduction

> GPU and programming model
> Functional model

> Performance model

- GPUWattch: power model

New Features in GPGPU-Sim
> Volta model

> Run closed source libraries

> Run CUTLASS library
> Tensor Core

6 | Functional model

ISA cycle correlation[1] before new Volta model[2]
> For Pascal Titan X

VISA mISA VISA mISA RGSUHZ

Compqte 43.3% 21.9% 91.1% 99.0% - Compute |nt.e.nS|ve: mISA > vISA
Intensive - Cache sensitive: both show

Cache inaccurate cache model
Sensitive 104.8% | 100.4% | 81.2% 82.0% - Memory sensitive(streaming): not

related to cache model

SA(:?]'S‘E?; 31.6% | 29.8% | 96.0% 95.1% - Compute balanced: vISA > mISA
gg{;‘ﬁ;‘:ﬁ 58.5% | 70.7% | 96.1% | 93.5%

[1] Akshay Jain, Mahmoud Khairy, Timothy G. Rogers, A Quantitative Evaluation of Contemporary GPU Simulation Methodology. SIGMETRICS 2018
[2] Mahmoud Khairy, Jain Akshay, Tor Aamodt, Timothy G Rogers, Exploring Modern GPU Memory System Design Challenges through Accurate Modeling, arXiv:1810.07269

- | New features:Volta model’

Fermi-based Model

SIMT Core Memory Hierarchy
7 o
g >0
8'3 08
o
o o @ A v, = o
- =) (8] (] O
p= - 5 E °a (= 2
c =) D O
=) 88 e TlS a. o <] S > 2 e § e 1
e — Qo = c [(o
n Q o o o £ G)
c Q5 L ©
- = v £
—)mg QE
;_‘: — O
e - O
“ a

[1] Mahmoud Khairy, Jain Akshay, Tor Aamodt, Timothy G Rogers, Exploring Modern GPU Memory System Design Challenges through Accurate Modeling, arXiv:1810.07269

697/0°018L:ALXJe ‘Suljdpow 931eInddy Yysnoay) sasua)iey) usisaq WalsAs Alowaw Ndo ulapow SuLio)dxy ‘siasoy o Ayjowr] ‘ypowey Jol ‘Aeysyy uter ‘Auteyy pnowyew [1]

wn
c
(e
a)
(@)
Instruction Cache o
& | g
Warp Warp Warp Warp &
Scheduler || Scheduler Scheduler scheduler -~ B
4 x o O
Register Register Reglster Reglster = E
File File Fi le F1le a g
9 $ S
Exec Units || Exec Units Exec Units B Exec Units 2
+
SP SP SP SP g
DP DP DP DP z
o
SFU SFU SFU SFU 3
o
=
INT INT INT INT
Tensor Tensor Tensor Tensor
2,
=
Volta coalescer (8 threads coalescer) -
Q)
o
=
®
=
L1D Cache / Shared Memory ®
+Sectored, +Adaptive cache (128 KB), g
+Streaming cache +Banked <
L
®
=
Q
L2 Cache o
+Sectored, +memory copy engine model E
+New Lazy_Fetch_on_Read write policy,
+partition-camping-aware hashing
T
“§
HBM % o
+ HBM Model, +dual-bus interface 3 2
+ Read/Write buffers S 2
<z
o
-

8l

.SoJNnjeaj) MaN

[opow ©1|oA

|9POIN paseq-e}|oA

o | Hardware correlation for Volta model’

Model | Model Model Model
Execution | o0 | 27% 71% 96%
Cycles
L1Reqs | 48% 0.5% 92% 100%
N SIMT Core
CTHIT 1 19 18% 89% 93% Memory Hierarchy
Ratio
L2 Reads | 66% 1% 49% 94%
L2Read | g4 15% 68% 81%
Hits
iy 89% 1% 60% 95%
Reads

[1] Mahmoud Khairy, Jain Akshay, Tor Aamodt, Timothy G Rogers, Exploring Modern GPU Memory System Design Challenges through Accurate Modeling, arXiv:1810.07269

o | Run closed source modell

Run applications with cuDNN/cuBLAS
- Static linking closed source libraries

- LeNet for MNIST using cuUDNN/cuBLAS

Executable

Application

static cuDNN library

static cuBLAS library

[1] Jonathan Lew, Deval Shah, Suchita Pati, Shaylin Cattell, Mengchi Zhang, Amruth Sandhupatla, Christopher Ng, Negar Goli, Matthew D. Sinclair, Timothy G. Rogers,
Tor M. Aamodt Analyzing Machine Learning Workloads Using a Detailed GPU Simulator, arXiv:1811.08933

GPGPU-Sim

CUDA runtime API layer

21 | Tensor Core in GVI100

Accelerate FP operations

8 Tensor Core/SM

Each perform 64 FP FMA/clock
512 FMA/clock/SM

Or 1024 FP ops/clock/SM

LO Instruction Cache

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32
INT INT FP32 FP3™
INT INT FP32 FP3

INT BSSB TENSOR TENSOR

INT FP32 FP3z GORE GDRE

INT FP32 FP32
INT FP32 FP3

INT FP32 FP3

LD/ LD/ LD/
ST ST ST

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32
INT INT FP32 FP3
INT INT FP32 FP3

INT INT FP32 FP3 TENSOR TENSOR

INT INT FP32 FP32 KR —

INT INT FP32 FP3*
INT INT FP32 FP3

INT INT FP32 FP3

LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST SFU

FP64

FP64

LD/
ST

LD/
ST

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32
INT INT FP32 FP32
INT INT FP32 FP32

INT INT FP32 FP32 TENSOR

INT INT FP32 FP32 CDEE

INT INT FP32 FP32
INT INT FP32 FP32

INT INT FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32
INT INT FP32 FP!
INT INT FP32 FP!

INT INT FP32 FP! TENSOR

INT INT FP32 FP32 KRk

INT INT FP32 FP*™*
INT INT FP32 FP!

INT INT FP32 FP!

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST

128KB L1 Data Cache / Shared Memory

Tex

Tex

TENSOR
CORE

SFU

TENSOR
CORE

SFU

, | Tensor Core in Tesla Titan V'

Standard deviation of less than 5%
99.60% IPC correlation

GPGPU-Sim shows higher perf than HW as matrix size increase

(a) WMMA-based GEMM kernel cycle

*NVIDIA Volta «GPGPU-Sim

=

-~

—

—;—I——ﬂ—-:::;:i::

L____‘___“____o____p—:n—

16 32 64

128 160 192 224 256 288 320 384 480 512
Squared Matrix Size

count as matrix size varies.

GPGPU-Sim IPC

1000

800

600

400

200

u.-

0

100 200 300 400 500 600 700 800
Hardware IPC

(b) Instructions per cycle (IPC) corre-
lation of CUTLASS GEMM kernel on
GPGPU-Sim vs Titan V.

[1] Md Aamir Raihan, Negar Goli, Tor Aamodt, Modeling Deep Learning Accelerator Enabled GPUs, ISPASS 2019

NVIDIAVOLTA EGPGPUSIM

888 BEE

Hardware |PC

g

g

Ll

8

(=]

128 256 512 768 1024
Sguare Matrix Size

count as matrix size varies.

2048

(c) CUTLASS-based GEMM kernel cycle I

» | Run CUTLASS library

Validation: 680 test cases from CUTLASS library[1]

Correlation: using Deepbench training/inference test from real scenario

1E+10

e CUTLASS cycles[Cor=99.91%, Err=5.22%]

1E+8

1E+6

Simulation

1E+4

1E+2
1E+2 1E+4 1E+6 1E+8 1E+10

Hardware
[1] Md Aamir Raihan, Negar Goli, Tor Aamodt, Modeling Deep Learning Accelerator Enabled GPUs, ISPASS 2019

2 | Summary

GPGPU-SIm:
- Simulates GPU compute unit and memory hierarchies.

> an evolutional simulator for new features in CUDA and GPUSs.
> actively including new features

GPGPU-Sim with SST:
- GPGPU-Sim brings promising GPU model to SST

- GPGPU-Sim benefits for SST parallel simulation architecture

7 | Thread Hierarchy Revisited

» Recall, kernel = grid of blocks of [ees wolles el
warps of threads sy asaaeas 3adsResesas
« Threads are grouped into warps in fekes sexas sexesn
hardware S il
SIMT Core Each block is dispatched
to a SIMT core as a unit
32 Threads of work: All of its warps
Thread Block 32 Threads run in the core’s pipeline
(CTA) until they are all done.

Warps

s | Inside a SIMT Core

Done (Warp ID)

##

* Fine-grained multithreading
 Interleave warp execution to hide latency
« Register values of all threads stays in core

2 | SIMT Stack

foo[] = {4,8,12,16};
One stack per warp

A: v = foo[tid.x]; SIMT Stack
B: if (v < 10) PC RPC Active Mask
C: v = 0; E | - 1111
e D|E 0011
ClE 1100
D: v = 10;
E: w = bar[tid.x]+v;

oWl

Handles Branch Divergence

1 | Constant Cache

A Read-only cache for constant memory

GPGPU-Sim simulates 1 read ports
- Awarp can access 1 constant cache locations in a single memory unit cycle

o If more than 1 locations accessed
> reads are serialized causing pipeline stalls
o # of ports is not configurable

| Coalescing

Combining memory accesses made by threads in a warp into
fewer transactions

- E.qg. if threads in a warp are accessing consecutive 4-byte sized
locations in memory

- Send one 128-byte request to DRAM (coalescing)
o Instead of 32 4-byte requests

This reduces the number of transactions between SIMT cores
and DRAM

> Less work for Interconnect, Memory Partition
and DRAM

5 | Interconnection Network Model

Intersim (Booksim) a flit level simulator

- Topologies (Mesh, Torus, Butterfly, ...)

- Routing (Dimension Order, Adaptive, etc.)
> Flow Control (Virtual Channels, Credits)

We simulate two separate networks
> From SIMT cores to memory partitions
- Read Requests, Write Requests
> From memory partitions to SIMT cores
- Read Replies, Write Acks

5 | PTX

Low-level data-parallel virtual ISA
o Instruction level
> Unlimited registers
- Parallel threads running in blocks; barrier synchronization instruction

Scalar ISA

> SIMT execution model

Intermediate representation in CUDA tool chain
> ——

w | SASS
Native ISA for Nvidia GPUs

> Better correlation with HW but less documented
- Related with Stream Multiprocessor(SM) version.

Scalar ISA

GPGPU-Sim use PTXPlus to represent both SASS and PTX

conversion

cuobjdump 4

SASS mapped 1:1 into PTXPlus instruction

» | PTX vs. 5ASS

PTX

$Lt 25 13570:
|d.global.s32
add.s32
|d.global.s32
add.s32
add.u32
add.u64
|d.param.u32
setp.lt.u32
@%p2 bra

mov.u32 %r12, 127;

setp.gt.u32

@%p3 bra
|d.shared.s32
add.s32
st.shared.s32

$Lt 25 14082:
bar.sync O;

%r9, [Y%rd5+0];
%r10, %r9, %r8;
%r11, [%rd5+1024];
%r8, %r11, %r10;
%r5, %r7, %r5;
%rdS, %rd5, %rd6;
%r6, [size];

%p2, %r5, %ro;

$Lt 25 13570;

%p3, %r3, %r12;
$Lt 25 14082;
%r13, [%rd10+512];
%r8, %r13, %r8;
[%rd10+0], %r8;

SASS (PTXPlus)

10x00000060:
add.half.u32 $r7, $r4, 0x00000400;
|d.global.u32 $r8, [$rd];
|d.global.u32 $r7, [$r7];
add.half.u32 $r0, $r5, $r0;
add.half.u32 $r6, $r8, $r6;
set.gt.u32.u32 $p0/$0127, s[0x0020], $rO;
add.half.u32 $r6, $r7, $r6;
add.half.u32 $ra, $r4, $r3;
@$%p0.ne bra 10x00000060;

set.gt.u32.u32
@%p0.equ add.u32 $ofs2, $ofs1, 0x00000230;
@%p0.equ add.u32 $r6, s[$ofs2+0x0000], $r6;
@%p0.equ mov.u32 s[$ofs1+0x0030], $r6;
bar.sync 0x00000000;

$p0/$0127, $r2, const [0x0000];

B s s B

% | Interfacing GPGPU-Sim to applications

GPGPU-Sim compiles into a shared runtime library and implements
the API:

o libcudart.so < CUDA runtime API

o libOpenCL.so €< OpenCL API

CUDA runtime API

User level Application > libcudart.so

Operating system CUDA Driver

Hardware

57 | Interfacing GPGPU-Sim to applications

GPGPU-Sim compiles into a shared runtime library and implements
the API:

o libcudart.so €< CUDA runtime API

o libOpenCL.so €< OpenCL API

CUDA runtime AF

libcudart.so

Application *| CUDA runtime API layer

| w

g | GPGPU-Sim Runtime Flow
Cuobjdump

PTX

Application

Source Code | | Source

(.cpp) (.cu)

Code

1

nvce + ptxas

b3
C/C++ compiler

1

Executable

PTX SASS

L

cuobjdump

-
FTX SASS

L

register usage

GPGPU-5im

Compile Time

Run Time

Cuobjdump
PTXPlus

Application

Source Code | | Source Code
{.cop) (.cu)

-

nvece + ptxas

- Compile Time
C/C++ compiler

JJ.

Executable

i

cuobjdump

i (o

cuubjdu mp tu_ptuplu:s

Run Time

register usage L TEPlus—
GPGPU-5im I

CLICK TO EDIT MASTER TITLE STYLE

Slide Left Blank

