
The Structural Simulatio
Toolkit and GPGPU-Sim

PRESENTED BY

The SST and GPGPU-Sim Teams (Sandia, Purdue)

PACT 2019 TUTORIAL

Sandia National Laboratories is a multirnission
laboratory managed and operated by National
Technology Et Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAND2018-8919 TR

SAND2019-11320C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

2 Welcome!

Part I: Introduction to SS
SST Overview

Demos: Running a simple simulation; Enabling statistics;
Running in parallel

SST Element Libraries:A tour

Part 2: GPGPU-Sim
GPGPU-Sim Overview

New Features

Break

Part 3:The SST/GPGPU-Sim Integration

1:00 - 2:30

2:30 - 3:30

3:30 - 4:00

4:00 - 5:00

PACT 2019 TUTORIAL

3 I Instructors

Gwen Voskuilen grvosku@sandia.gov

Clay Hughes chughes@sandia.gov

Mengchi Zhang zhan2308®purdue.edu

PACT 2019 TUTORIAL

4 References

Websites
http://www.sst-simulator.org/
https://github.com/sstsimulator

Configuration File Format:
http://sst-simulator.org/SSTPages/SSTUserPythonFileFormat/

Doxygen Documentation:
http://sst-simulator.org/SSTDoxygen/9.0.0_docs/html/

Developer FAQ:
http://sst-simulator.org/SSTPages/SSTTopDocDeveloperInfo/

Building SST
http://sst-simulator.org/SSTPages/SSTBuildAndInstall9dotOdotOSeriesQuickStart/
http://sst-
simulator.org/SSTPages/SSTBuildAndInstall9dotOdotOSeriesDetailedBuildInstructions/

PACT 2019 TUTORIAL

5 So many simulators, so little interoperability

Already a rich selection of open-source simulators

But not a solid ecosystem for modeling systems
Tightly-entangled components make modifications complex

E.g., assumptions about caching or address mapping pervasive

Most simulator integrations are ad-hoc, not lasting

Significant performance problems with tying many simulators together

Wants:
Enable "mix-and-match" of existing models to create custom systems

Encourage disentangled models with clean interfaces for swapping functionality

Bricks not buildings

Low effort, high performance parallel simulation

Continuous path from low-fidelity/fast modeling to high-fidelity/slow models

PACT 2019 TUTORIAL

The Structural Simulation Toolkit
Goals

• Create a standard architectural simulation
framework for HPC*

• Ability to evaluate future systems on DOE/DOD

workloads
• Use supercomputers to design supercomputers

Technical Appr.dcl
Parplici Discrete Event core
• With conservative optimization over MPI/Threads

• InternnPrabilitu

• Node and system-scale models
• ivium-ScalF (
• Detailed (—cycle) and simple models that interoperate

• Ooer

• Open Core, non-viral, modular

Status
• Parallel framework (SST Core)
• Integrated libraries of components (Elements)

• Current Release (9.0)
https://sst-siriluldwi.org
https://gith u b/sstsim ulator

AL.. 4r# pa IA& I J e qf

111.41

Mellanor
Ta44.0a, Val.; 6.041:UmiC •

BOSTON
UNIVERSITY

NM

■

ro

UCF

•

'IDIA.

7 The SST Approach

Parallel Discrete-Event Simulator Framework (SST Core)
- Flexible framework enables multitude of custom "simulators"

O Demonstrated scaling to over 512 processors running a million+ components

Comes with many built-in simulation models (SST Elements)
Processors, memories, networks

Open API
O Easily extensible with new models
O Modular framework

O Open-source core

Time-scale independent core
Handles Micro-, Meso-, Macro-scale simulations

C++, Python

i
•

J L

i

PACT 2019 TUTORIAL

8 SST Architecture

SST Cols(framework
The backbone of simulation

Provides utilities and interfaces for simulation components (models)

Clocks, event exchange, statistics and parameter management, parallelism support, etc.

0 SST tiement libraries
Libraries of components that perform the actual simulation

Elements include processors, memory, network, etc.

Includes many existing simulators: DRAMSim2, Spike, HMCSim, Ramulator, etc.

C
o
m
p
o
n
e
n
t

C
o
m
p
o
n
e
n
t

\
C
o
m
p
o
n
e
n
t

C
o
m
p
o
n
e
n
t

Integration Services

SST Core

MPI and C++ Threads

PACT 2019 TUTORIAL

Running a simulation and code
orientation

.

High-Level View

PACT 2019 TUTORIAL

Getting and Installing SST

http://www.sst-simulator.org
0 Current release source download

0 Detailed build instructions including dependencies for Linux & Mac

- Archived tutorial materials

o https://github.com/sstsimulator
Source code checkout

Master branch — has passed testing

1
Devel branch — has passed basic testing 0 Pull requests Issues Marketplace Explore 41

•
+

I

isf The Structural Simulation Toolkit
Using the supercomputers of today to build the supercomputers of tomorrow

*TRH Structural Simulation Toolkit
Str.actdrai Sirnuiation Paraiie DISCre:e E vent FrameNork and Architectural Simulation Components

httP://sst-simulatoronv

ReposAories 20 t People 37 - Teams 9 I i Projects 0 Settings

Pinned repositories Custorwe prvned mix

I Downloads ' Documentation Support sst-elernents ast-cors = sst-macro

Home
Home

SST Arcnaecttrai Srr,labon Canonneits and SST Structural Sins.dation TcolIct Parallel Disuete SST Macto Element L.brary

Libraries Event Core and Services

Downloads Introduction to SST •C-- *21 ý28 •c.. *21 1/15 • C.- tltc ‘i?

Documentation

1 1 Building Blocks

SST simulations are comprised of component! connected by links
0 Every link has a minimum (non-zero) latency

0 Components define r‘,. , which are valid connection points for a link

Components communicate by sending eventr over the links I

Components can use suuconiponents and mooule: for customizable functionality

Component
Core

/

Event
Load

Component
Core

Link
Latency: lns

Link

NLatency: lns

Component
Cache

/ /

Event
Data

nt

Component
Cache

Link
Latency: 2ns

(Linkatency: 2ns

Component
NoC Router

Element Library,
„c c' A collection of components,..z, ,Q,

subcomponents, and/or modules

Component
NoC Router

1

PACT 2019 TUTORIAL

12 I SST Code Structure

0 SST Core and SS i Element! are compiled separately
O Element libraries register with the core

O External elements (not part of SST Elements) can also be registered with the
Example at github.com/sstsimulator/sst-external-element

Core maintains a database of registered libraries
Can query database with sst-infi, utility

Source code for core:
O sst-core/src/sst/core/

Source code for elements
O sst 'alements/src /sst/elements/

Most elements have a tests/ directory
Often a good starting point for example configurations

PACT 2019 TUTORIAL

core

Integration Services

.r

MPI and C++ Threads

13 Simulating with SST

We'll walk through how to configure a simulation and then run it
- Available at: https://github.com/sstsimulator/sst-tutorials/tree/master/pact20 I 9

O (github 4 sstsimulator 4 sst-tutorials 4 pact2019)

Element libraries in our example simulation
O Miran& - Simple core model that runs generated instruction streams

c Generators produce memory access patterns (SubComponents)

O memHierarcny — Various cache/memory system related subcomponents and modules

Cache (Component) with coherence protocol SubComponent
Memory Controller (Component) that loads a memory timing model (SubComponent)

2.4GHz, issue 2 accesses/cycle
Stream triad generator
- Three 1K element arrays A,B,C
- Compute C[i] = A[i] + 2*B[i]
4 2K reads Et 1K writes

 > L1 Cache < >L___ MemCtrl

2KB, 4-way set associative
2.4GHz, 2 cycle access
64B cache lines
LRU replacement
MESI coherence protocol

5Ons constant access latency
1GB capacity

PACT 2019 TUTORIAL

14 I Configuration File: Global SST parameters

o

Set any global simulation parameters

sst_setProgramoptior("stopAtcycle", "100ms")

End simulation at 100ms if it hasn't ended already

Other options
Most are also available as command line arguments to SST

debug-file

heartbeat-period

timebase

l partitioner

1 output-partition

Definition

SST Python API
User-defined string
SST argument

File to print debug output to

If set, SST will print a heartbeat message at the specified period

Units of simulation. Default is picoseconds which enables 2/3 of a year.

Partitioner to use for parallel execution

File to print partition to

PACT 2019 TUTORIAL

1 5 I Configuration File: Declare components and links

0 Components: sst . Component ("name", "type")

core = sst.Component("core", "miranda.BaseCPU")
cache = sst.Component("Ll", "memHierarchy.Cache")

mctrl = sst.Component("memctr1", "memHierarchy.MemController")

Component name

0 Links: sst . Link("name")

link0 = sst.Link("core_to_cache")
linkl = sst.Link("cache_to_memory")

Link name

Component library.type

SST Python API
User-defined string
SST argument

Core

I

Cache

E

MemCtrl

PACT 2019 TUTORIAL

16 I Configuration File: Configure the components

0 Parameters: addParams({ "parameter" : "value",

core.addParams({ "clock" : "2.4GHz" })

- SubComponents setSubComponent("slotname","type")
Recall: SubComponent is a swappable piece of functionality

gen = core.setSubComponent("generator", "miranda.STREAMBenchGenerator")

memory = mctrl.setSubComponent("backend", "memHierarchy.simpleMem") 1

How do I know what the options are?
Or even what elements I can pick from?

SST Python API
User-defined string
SST argument

Cache

Í

PACT 2019 TUTORIAL

17 I SSTlnfo. Getting component info

sst-info: utility to query element libraries

$ sst-info miranda.BaseCPU
Optionally filter for a specific library and/or component

PROCESSED 1 .so (SST ELEMENT) FILES FOUND IN DIRECTORY(s) /home/sst/build/sst-elements/lib/...

Filtering output on Element = "miranda.BaseCPU"

ELEMENT 0 = miranda

Num Components = 1

Component 0: BaseCPU

CATEGORY: PROCESSOR COMPONENT

NUM STATISTICS = 17

Port name

NUM PARAMETERS = 12

PARAMETER 0 = clock (Clock for the base CPU) [2G1-1z]

NUM PORTS = 2

PORT 0 = cache link (Link to Memory Controller)

Definition

NUM SUBCOMPONENT SLOTS = 2
Definition

SUB COMPONENT SLOT 0 = generator (What address generator to load) [SST::Miranda::RequestGenerator]

'\NN Slot name

SubComponent API

Parameter N Definition
"REQUIRED" or
default value

PACT 2019 TUTORIAL

18 I Configuration File: Connecting the components

- Declared Iinks and components a couple slides ago...

link0 = sst.Link("core_to_cache")
linkl = sst.Link("cache_to_memory")

core = _
cache = •••
mctrl = _ 4Gen)

_.onnect components: connect (endpointl, endpoint2) Core

Where endpoint is: (component, port, latency)

link0.connect(
(core, "cache_link", "100ps");------
(cache, "high network 0", "100ps")

link1.connect(
(cache, "low_network_0", "100ps")
(mctrl, "direct_link", "100ps") S

Endpoint 1

)

Endpoint 2

1

Cache

11

r MemCtrl

PACT 2019 TUTORIAL

19 Running SST

Usage: sst [options] configFile.py

Common options:

-v I --verbose

--debug-file <filename>

--partitioner <zoltan 1 self I simple 1
rrobin I linear 1 lib.partitioner.name>

-n 1 --num threads <num>

--model-options "<args>"

--output-partition <filename>

--output-dot <filename>
--output-xml <filename>
--output-json <filename>

Print information about core runtime

Send debugging output to specified file (default: sst_output)

Specify the partitioning mechanism for parallel runs

Specify number of threads per rank

Command line arguments to send to the Python configuration file

Write partitioning information to <filename>

Output the configuration graph in various formats to <filename>

PACT 2019 TUTORIAL

20 Running a simulation i
I

Launch simulation

$ sst demo0.py

0 Output

[Simulation is complete, simulated time: 6.66491 us

We probably want more information about what happened though
Enable statistics!

1

1

PACT 2019 TUTORIAL

21 I Enabling statistics

- Most Components and SubComponents define statistics
$ sst-info memHierarchy.Cache

•••

NUM STATISTICS = 51

STATISTIC 0 = CacheHits [Total number of cache hits] (count) Enable Level = 1

STATISTIC 1 = latency_GetS_hit [Latency for read hits] (cycles) Enable level = 1

Enable statistics in the configuration file
enableAllStatisticsForAllComponents()

enableAllStatisticsForComponentType(type)

enableAllStatisticsForComponentName(name)

setStatisticLoadLevel(level)

enableStatisticForComponentName(name, stat)

enableStatisticForComponentType(type, stat)

Configure output
setstatisticoutput("sst.output_type")

setstatisticoutputoptions(roption" : "value", })

PACT 2019 TUTORIAL

22 Running with statistics enabled

Let's enable statistics for all components
- Caches have A LOT of statistics so send the output to a CSV file

0 Other options: sst.statoutputX where X=

console txt
json hdf5

sst.setStatisticOutput("sst.statoutputcsv")

sst.setStatisticOutputOptions({ "filepath" "stats.csv" })

sst.setStatisticLoadLevel(5)

sst.enableAllStatisticsForAllComponents()

PACT 2019 TUTORIAL

23 SST in parallel

SST was designed from the ground up to enable
scalable, parallel simulations

Components distributed among MPI ranks/threads
Link latency controls synchronization rate

Two ranks
$ mpirun -np 2 sst demol.py

Two threads
$ sst -n 2 demol.py

Two ranks with two threads each
This will give a warning since we only
have 3 components across 4 ranks/threads
$ mpirun -np 2 sst -n 2 demol.py

CompO

Compl

MPI Rank 0

Comp2

t

Comp3

4-->

<-->

Comp4

t

Comp5

+4

<-4

Comp6

t

Comp7

Same con iguration file

PACT 2019 TUTORIAL

SST Elements:A Tour

PACT 2019 TUTORIAL

25 SST Element Libraries

O Elements are libraries of related components

c Elements must be registered with the SST core
Tells SST where to find this set of components

Includes information on parameters and statistics for each component

O SST provides a set of element libraries

Processor, network, memory, etc.
Tested for interoperability within and across libraries
Many are compatible with external "components" such as Ramulator and Spike
See www.sst-simulator.org for more information

O You can also register your own elements

PACT 2019 TUTORIAL

26 SST 9.0 Elements

Processors

Ariel — PIN-based

Juno — simple ISA processor

Miranda — pattern generator

Prospero — trace execution

GeNSA — Spiking temporal processing unit

Memory Subsystem

cacheTracer — cache tracing

O Cassini — cache prefetchers

O CramSim — DDR, HBM

O MemHierarchy — caches, directory, memory

Messier - NVM

Samba —TLB

VaultSimC — vaulted stacked memory

Network drivers

Ember — communication patterns

Firefly — communication protocols

O Hermes — MPI-like driver interface

O Zodiac — trace based driver

Thornhill — memory models for Ember sims

Networks/NoCs

Merlin — flexible network modeling

Kingsley — mesh NoC

Shogun — crossbar NoC

Others

sst-macro — network drivers/network

scheduler — job scheduling

simpleSimulation —"car wash" example

O simpleElementExample — many examples

O sst-external-element — example element
PACT 2019 TUTORIAL

27 I Juno: Simple instruction processor

Executes a program written in simple "assembly"
32-bit wide instructions with 8 bit op codes

64-bit integer operations

ADD, SUB, DIV, MUL,

AND, OR, XOR, NOT

Jump by register value (JGT-Zero, JLZ-Zero, J-Zero)

Jump up to 16 bits in either direction from current PC

Up to 253 user registers

r0 = PC

r I = data start register

Memory

Juno
i-

Load/Store Unit
 }

Instruction Manager
 _J

Register File

Processor 1 Memory Network/NoC Network driver Other

28 I Ariel: PIN-based processor

Lightweight processor core model

Uses Intel's PIN tools and XED decoders
to analyze binaries

Runs x86, x86-64, SSE/AVX, etc. binaries

Supports fixed thread count parallelism
(OpenMP, Qthreads, etc.)

Passes instructions to virtual core in SST

GPGPU-Sim Integration

I braponent

I "maw afr

ploemEizent 'Ur

I A r

Processor Memory Network/NoC Network driver

29 Ariel: Details

Pintool communicates with Ariel via shared memory !PC
Per-thread FIFO of instructions from pintool to Ariel's virtual cores

Backpressure on FIFO halts the binary's execution

Ariel's virtual cores
O Memory instruction oriented. execute memory instructions; other ins. single cycle no-ops
O Clocked. Reads instruction stream in chunks but processes on clock

Does not maintain dependence order or register locations

Can map virtual-to-physical addresses internally or use external component

Key parameters
O Ops issued/cycle
O Load/store queue size

Uses SST simpleMem interface
Generates SimpleMemRequests

Compatible with memHierarchy

Processor 1 Memory Network/NoC Network driver Other

30 Ariel: The Tradeoff

Pros:

- Faster than more complex/pipeline models

O Reasonable approximation for studies on memory system performance

Especially for heavily memory-bound applications

Reasonable model of thread interactions

Cons
Non-deterministic results

Interactions between pintool, threads, etc.

Variation is low (0(1%))

O Not compatible with non-x86 binaries

O Reliant on Pin 2.14

Currently working towards enabling Ariel to be used with other drivers

Processor 1 Memory Network/NoC Network driver Other

31 Prospero: Trace-based processor

Trace-based processor model
Like Ariel, memory instruction oriented

Reads memory ops from a file and passes to the simulated memory system

"Single core" but can use multiple trace files to emulate threaded or MPI applications

Supports arbitrary length reads to account for variable vector widths

Performs "first touch" virtual to physical mapping

Comes with Prospero Trace Tool to generate traces
Or can generate your own and translate to Prospero's format

Processor 1 Memory Network/NoC Network driver Other

32 Prospero: The Tradeoff

Pros

Faster than Ariel*

Provided you can get a trace

Cons

Traces can be very large

Requires good I/0 system to store and read the trace

Traces are less flexible than actual execution

Capture a single execution stream using a single application input

Processor Memory Network/NoC Network driver Other

33 Miranda: Pattern-based processor

Extremely light-weight processor model
Generates memory address patterns
Supports request dependencies

Library patterns
Strided accesses (single stream)
Forward and reverse strides

0 Random accesses
0 GUPS
STREAM benchmark
In-order & out-of-order CPU

3D stencil
Sparse matrix vector multiply (SpMV)
Copy (—array copy)
Stake interface to the Spike RiscV simulator

1
Processor 1 Memory Network/NoC Network driver Other

34 Miranda: The tradeoffs

Pros
- Very lightweight — no binary, no trace

0 Good for applications whose address patterns are predictable

e.g., not much pointer-chasing

Models instruction dependences

Cons
Need a generator for the memory pattern of interest

Requires a good understanding of the pattern

Processor 1 Memory Network/NoC Network driver Other

35 MemHierarchy: Memory system

Collection of interoperable memory system elements
- Caches

0 Directories

0 Memory controllers

Interfaces to memory models (DDR, HBM, HMC, NVM, etc.)

Scratchpads

NoC (network-on-chip) interfaces

Buses

Components are cycle-accurate/cycle-level

Capable of modeling modern cache and memory subsystems

.
r Processor

\
Memory Network/NoC Network driver Other

36 MemHierarchy: Cache modeling

Highly configurable
- Arbitrary hierarchy depth, flexible topologies

0 Cache inclusivity, coherence, private/shared, etc. configurable

- Single- and multi-socket configurations

Prefetch via Cassini element library

Data movement
Components support direct, bus, and on-chip network (NoC) communication

Event types: read/write, atomics, LLSC, noncacheable, custom memory, etc.

1-

.
r Processor

-\

Memory Network/NoC Network driver Other

37 MemHierarchy: Memory modeling

Interface to memory is the MemController

MemControllers implement backends
Timing model for memory controller with a link to memory

Timing model for memory controller and memory i
Interface to another component(s) that does the memory controller/memory timing

In this case just translates request formats

Wrapper for an external/non-native-SST component

Ramulator, DRAMSim2, etc.

Support custom memory instructions
Including ability to do cache shootdowns for coherence maintenance

.
r Processor

—\
Memory Network/NoC Network driver Other

38 MemHierarchy: Memory modeling

Memory controller
- Manages data values if needed (backing store)

0 Facilitates custom memory commands

Including cache shootdowns for coherence maintenance

Passes events to memory backend subcomponent

0 Backend; the "real" memory controller and/or memory
Implementations

Memory controller and model itself

Memory controller with interface to a memory component

Interface to another memory controller/memory component

Wrapper to an external simulator

Memory Controller

cusI— tom
command
handler

Backing
1 store

To memory component
(optional)

.
r Processor Memory Network/NoC Network driver Other

39 MemHierarchy: SST 9.0 backends

Memory (external)
CramSim (DDR, HBM)

• DRAMSini (DDR)

PagedMulti — 2-level memory variant

• FlashDlMMSim (FLASH)

• HMCSim/GoblinHM((HMC)

• HBMDRAMSim2 (HBM)

HBMPagedMulti — 2-level memory variant

Messier (NVRAM)

0 Rai (DDR, HBM, HMC)

SimpleDRAM (DDR)

SimpleMem (constant latency)

TimingDRAM (DDR)

VaultSimC (HMC-like)

Plus a few that can be used with other backends to reorder requests, add latency, etc.

r Processor Memory Network/NoC Network driver Other

40 Merlin: Network simulator

Low-level networking components that can be used to simulate high-speed networks
(machine level) or on-chip networks

Capabilities
High radix router model (hr_router)

Topologies — mesh, n-dim tori, fat-tree, dragonfly

Many ways to drive a network
Simple traffic generation models

Nearest neighbor, uniform, uniform w/ hotspot, normal, binomial

MemHierarchy

Lightweight network endpoint models (Ember — coming up next)

Or, make your own

\

Processor Memory Network/NoC
r

Network driver T C

41 I Merlin: Organization

NIC

TrafficGen
TestNlC
User Logic

LC = LinkControl

\

Router

x
B
A
R

Topology

PC = PortControl

Processor Memory Network/ NoC Network driver T Othe

42 Kingsley: Mesh simulator

Network-on-chip model; mesh
configuration

Similar to Merlin but:
No input queuing at routers

Mesh topology only

Not all ports need to be populated

Possible to instantiate multiple unconnected
n etwo rks

Multiple physical networks for coherence (e.g.,
request/response/ack/forward)

Kingsley NoC + Merlin/Kingsley system
network

\

r .d.
h Interconnect

Í Processor T Memory Network/NoC
r

Network driver T Other 1

43 Ember: Network Traffic Generator

Light-weight endpoint for modeling network traffic
Enables large-scale simulation of networks where detailed modeling of endpoints would be
expensive

Packages patterns as motifs
Can encode a high level of complexity in the patterns

Generic method for users to extend SST with additional communication patterns

Intended to be a driver for the Hermes, Firefly, and Merlin communication modeling
stack

Uses Hermes message API to create communications

Abstracted from low-level, allowing modular reuse of additional hardware models

Processor Memory Network/NoC

r

Network driver-1- Other 1

44 Ember: Overview

Processor

r High Level Communication Pattern and Logic
I I ..._ .L 1 r

Ember MOUT

Ember Engine

Hermes API

r
Firetly

Merlin Network

Memory Network/NoC

Generates communication events

Event to Message Call, Motif Management
Handles the tracking of the motif

Message Passing Semantics
Collectives, Matching, etc.

Packetization and Byte Movement Engine
Generates packets and coordinates with network

Flit Level Movement, Routing, Delivery
Moves flits across network, timing, etc.

(-\

Network driver
,

Other 1

45 Ember: Motifs

Motifs are lightweight patterns of communication
- Tend to have very small state

O Extracted from parent applications

O Models as an MPI program (serial flow of control)

Many motifs acting in the simulation create the parallel behavior

Example motifs
O Halo exchanges (1 , 2, and 3D)
O MPI collections — reductions, all-reduce, gather, barrier

O Communication sweeping (Sweep3D, LU, etc.)

Processor Memory Network/No' Network driver

46 Ember: Motifs (continued)

The EmberEngine creates and manages the motif
Creates an event queue which the motif adds events to when probed

The Engine executes the queued events in order, converting them to message semantic calls
as needed

When the queue is empty, the motif is probed again for events

Events correspond to a specific action
E.g., send, recv, allreduce, compute-for-a-period, wait, etc.

Processor Memory Network/NoC

r

Network driver-1- Other 1

47 Firefly: Network traffic

0 Purpose: Create network traffic, based on application communication patterns, at large
scale

Enables testing the impact of network topologies and technologies on application
communication at very large scale

Scales to I million nodes

Supports multiple "cores" per Node
Interaction between cores limited to message passing

Supports space sharing of the network
Multiple "apps" running simultaneously

Processor Memory Network/NoC

r

Network driver-1- Other 1

48 Firefly: Simulating large networks

A network node consists of
- Driver (the "application")

0 NIC

0 Router

Nodes are connected together via routers to form a network
Fat tree, torus, etc.

Firefly is the interface between the driver and the router
Message passing library 4 Firefly Hades

NIC 4 Firefly NIC

Processor Memory Network/NoC

r

Network driver-1- Other 1

Ember
(driver)

Firefly Hades

Firefly NIC

1

Merlin Router

49 I Scheduler: Job scheduling

Models HPC system-wide job scheduling

0 Three components
O Sched: schedules and allocates resources for a stream of jobs

O Node runs scheduled jobs on their allocated resources

O FaultInjection, injects failures onto the resources

The scheduler can be a stand-alone element library
The schedComponent and nodeComponent must be used together

The faultlnjectionComponent is optional

Can be used with Ember/Firefly/Merlin stack
Examine topology aware scheduling and allocation

Processor Memory Network/NoC Network drive Other 1

50 Other Libraries

More information on these and other element libraries and external components is
available on the wiki
0 www.sst-simulator.org

PACT 2019 TUTORIAL

Getting help and extending SST

PACT 2019 TUTORIAL

52 Extending SST

SST was designed for extensibility
Components/subcomponents can be added without touching SST Elements

Example: write a new prefetcher and have memH caches use it 4 no changes to memHierarchy

SST-Core APls are stable 4 one year deprecation period

Element APls may be less so but generally try to keep them consistent

Many users start with SST Elements and then build their own customized libraries

Partially or completely replacing SST Element functionality

Many approaches to using SST
Core only:Write your own components from scratch

Start from existing Elements and replace components/subcomponents to meet your needs

Wrap existing simulators and insert as components or subcomponents

PACT 2019 TUTORIAL

53 Extending SST: Resources

Example element library
Components demonstrating links, ports, clocks, event handling, etc.

sst-elements/src/sst/elements/simpleElementExample/

simpleSimulation
Simulates a car wash (a little more complex than example elements)

Example external element library

- Demonstrates building and registering a new element library

0 https://github.com/sstsimulator/sst-external-element

Website
Getting Started Extending SST (a little out ofdate)

Building Element Libraries outside SST source tree

Past tutorial material (under Downloads)

sst-simulator.org/SSTwebsiteAPl documentation

PACT 2019 TUTORIAL

54 Finally: Getting help

SST wiki contains lots of information (www.sst-simulator.org)
O Downloading, installing, and running SST
O Element libraries and external components

O Guides for extending SST

O Information on APIs

Information about current development efforts

Past tutorial slides and exercises

SST Github
Current development

Issues track user questions as well as development plans, bugs, etc.

PACT 2019 TUTORIAL

55 I Part I wrap-up

0 SST is a parallel, flexible simulation framework
O Can simulate many systems at many granularities

O Capable of simulating modern architectures

O Modular design for extensibility

Please keep us posted on your uses of SST as well as any capabilities you've added or
would like to see added

The SST team wants to help you!
o Documentation?
o Examples?
o Kittens?

50LvE P116_015 cgEATE Fgems-15

I-COLS VOW TcO15 THAI- TCOLS THAT NEED' TOOL5 0405E TIFNUAL
rwr mac) WED MANUAL BUT 5TPCT5 LEK 'HOW lb

MANDPL- 141KKAL vota HAVE ONE HEAD MI5 MANIAC

PACT 2019 TUTORIAL

56

GPGPU-Sim is next...

PACT 2019 TUTORIAL

57 ■

PACT 2019 TUTORIAL

Extra: Use Cases

PACT 2019 TUTORIAL

59 SST: Use cases

SST has been used for a wide variety of studies
O Analyzing memory access patterns
O Comparing multi-level memory management techniques

O Evaluating application performance with different NVRAM organizations

O Design space exploration across network bandwidths and node performance

Designing job scheduling algorithms for use across thousands of nodes

Next: Some studies using SST

PACT 2019 TUTORIAL

60 Case #I: Multi-level memory

Future memory systems will be Multi-Level Memory
Multiple kinds of memory in the same system (DDR, HBM, NVRAM)

MLM can potentially offer more "usable" bandwidth, less cost

Challenges:
substantial software and hardware (co-)design

no "one size fits all"

SST can explore HW & SW organization

AMD

LC® Main Memory Proposal

CPU

nventional

Main Memory

11Final-Level Cache (FLC)
Smaller. Faster. Lower-Powet DRAM

L,A

High Speed

Marvell
PACT 2019 TUTORIAL

61 Analyzing Memory Accesses

Capture post-cache accesses

Setup:
"Quads" of 4 cores

Histogram generator implemented as a prefetcher

12SnoopParams =

}

{

"prefetcher": "cassini.AddrHistogrammer",

"prefetcher.histo bin width": 4096,

"prefetcher.heap_begin" "1 GiB"

"prefetcher.heap_end": "9 GiB"

DDR

Directory
Controller

Merlin
Router

uad"

L2

L1

Core

L1

Core

Ll

Core

L1

Core

Histogram

uad"

L2

L1

Core

L1

Core

L1

Core

L1

Core

Ariel Trace Capture

PIN

PACT 2019 TUTORIAL

62 I Analysis: Diverse Page Access Patterns

ad
dr
es
s
hi

st
og

ra
ms

 1200

1000

800

600

400

200

minife2.0-100x100x1
(16 cores: 32KB L1, 5121, 25000

Regular

0
0 0 0.5 1.0 1.5 2.0 2.5

Addresses

8000

7000

6000

v, 5000

a.)
8 4000
rao
3000

2000

1000

miniaero-256x32x32-
(16 cores: 32KB L1, 51

Few, Well-di
Region

0
0 0 0.2 0.4 0.6 0.8 1

Addresses

20000

2 15000

* • 10000

#
 o
f
ac
ce
ss
es

5000

lulesh2.0-100x100x100
(16 cores: 32KB L1, 512KB L2)

0
0

1200

1000

800

600

400

200

17, =0.64

=0.51

— reads

— writes

50000 100000 150000 200000 250000 300000
Pages (4K) sorted by descending order of accesses

0.0

minife2.0-100x100x100
(16 cores: 32KB L1, 512KB L2)

rsbench-large-300Kiter
cores: 32KB L1, 512KB L2)

Irregular

0.5 1.0

LC', =0.12

00

1_
0.17

— reads

— writes

20000 40000 60000 80000
Pages (4K) sorted by descending order of accesses

100000

1.5

Addresses

2.0

ulesh2.0-100x100x100
cores: 32KB L1, 512KB L2)

— reads

 writes

2.5 3 0
le7

Vlultiple
Zegions

).4 0.6
Addresses

0.8

— reads

writes

1.0 1 2
le9

PACT 2019 TUTORIAL

63 I Multi-Level Memory Simulation

Multiple memory types:

DDR DRAM (DramSim)

HMC-like Stacked Memory (VaultSim)

0 NVRAM (NVDIMMSim)

Addresses can be interleaved, or blocked
between memory types

dc.addParams({

"addr _range_start": start_pos,

"addr _range_end": end_pos,

"interleave size": interleave size/1024,_ _
"interleave step": interleave step,_ _
"entry_cache_size": 128*1024,

"clock": memclock,

"network address": netPort

})

Stacked
Vault

t
Logic
Lay

t

er

Directory
Controller

DDR

Directory
Controller

DDR

Directory
Controller

t f t
Merlin
Router

t__+ 'f__+
II uad" "Quad"

L2 L2

LI LI L1 LI LI L1 LI L1

Core Core Core Core Core Core Core Core

M M M M

Ariel Trace Capture

PIN

PACT 2019 TUTORIAL

65 MLM Automatic Page Moves

Can treat "fast" memory as a cache / page store

OS / Runtime / HW moves pages between memory levels

Early Exploration
"Addition" policy more important than
"Replacement" policy

i.e. What you put it is more important than what
you take out

1.4

1.2

2 0 8

o_
0.6

0.4

0.2

Lulesh: MLM Performance vs Policy

BiLRU

• FIFO
LRU

• SCLRU
LFU8

LFU

\-\ 2>Z>

6.64 <cc
aaa

Q-6.6

Add Policy

-r

PACT 2019 TUTORIAL

66 Case #2: Network

What is the network latency achieved by different platforms during a 3D halo
exchange?

Halo exchange: Exchange boundary data with neighbors

Platform I :"Fat" nodes — Eight 20TF/s ranks per node

Platform 2:"Medium" nodes —Two 20TF/s ranks per node

Platform 3:"Thin" nodes — One I OTF/s rank per node

Evaluate for I K to 64K participating ranks

Evaluate at three different link bandwidths
I 2.5GB/s, 50GB/s, I 25GB/s

PACT 2019 TUTORIAL

67 Network: Simulation setup

Use SST Ember to model nodes
Lightweight model focused on communication pattern

Estimates compute time using the node's FLOPS

Detailed model of communication

Use SST Firefly to model the NIC

Use SST Merlin to model the network
Detailed, cycle-accurate models for network (routers, links, etc.)

PACT 2019 TUTORIAL

68 Link bandwidth = I 2.5GB/s

Ex
ec
ut
io
n
t
i
m
e
 (
u
s
)
 600

500

400

300

200

100

J

Airm•••••••iirm...mow

9IL-Thin

Medium

-0-Fat

millromomomommit,

1K 2K 4K 8K 16K 32K 64K

MPI Ranks

PACT 2019 TUTORIAL

69 Link bandwidth 50GB/s

200

100

80

_.)

d"'

Thin

Medium

Fat

1

1K 2K 4K 8K 16K 32K 64K

MPI Ranks

PACT 2019 TUTORIAL

70 Link bandwidth = I 25GB/s

125

17-, 120
=
'-'115

a)
E 110
'1-.1
c 105
o
'zi 100
=
u 95a)
x
w 90

85

9IrThin

Medium

Fat

J
J

1K 2K 4K 8K 16K 32K 64K

MPI Ranks

PACT 2019 TUTORIAL

71 Case #3: Scheduling

PaCMap:Topology mapping of unstructured communication patterns onto non-contiguous
allocations (ICS 20 I 5)

Tuncer, Leung, and Coskun

Problem:Want to map a job's tasks to nodes in a way that reduces communication
overhead
Two optimizations: (l) allocate nodes to a job and (2) map a job's tasks to its allocated nodes

Traditionally: communication pattern-unaware allocation followed by communication pattern-
aware mapping

But, overhead affected by both allocation and mapping

Challenges: Non-contiguous allocation and irregular communication

PaCMap: Joint, communication-aware, allocation and mapping

PACT 2019 TUTORIAL

72 PaCMap: Simulation challenge

Big challenge for simulation
0 System has 30K-90K+ cores across thousands of nodes
0 Workloads run 1 K-3K jobs, each with up to I 15K tasks

Interested in system performance over a period of two weeks

Decision for current job affects future job's performance

Experimental methodology
Workloads:Trace-based

Create macro-level performance estimate

Coarse-grained performance estimate calibrated using data from real hardware

Tradeoff fidelity for simulation speed

Uses scheduler, METIS, LibTopoMap for partitioning and scheduling

PACT 2019 TUTORIAL

73 PaCMap: Results
Cumulative running time for jobs in (a) LLNL-Atlas and (b) CEA-Curie

for different allocator-mapper pairs

0.9

ME best-fit mcl xl PaCMap

RGrB PaCMap
(a)

RGrB PaCMap
(b)

PaCMap reduces cumulative running time by 2-3% (3000 node hours) over two weeks

For jobs with l K+ tasks, PaCMap reduces network traffic volume by up to 30% (not shown)

PACT 2019 TUTORIAL

74 Future/Current Directions

HDL Simulation viaVerilator or Chisel
o Low-level hardware design

o Path to tape-out (Chisel)

New Processor Models
RISCV

Improved NoC Models (Kingsley)
o Faster Performance

o NoC QoS

E*4

Control

DOR lia

PACT 2019 TUTORIAL

75 Future Directions: Neural Inspired

Custom processors / accelerators
Sandia Spiking Temporal Processing Unit

0 Programmability — Fugu framework

Explore
System Integration issues
Architectural Bottlenecks
Programmability / portability

Allows...
Exploration of conventional / NIC (Neuro-inspired
compute_ interface (e.g. different message routing
protocols)
Allows NIC to connect to conventional processors,
network, memory, etc. (explore 'speeds and feeds')
Parallel simulation: SST can utilize thread- and MPI-level
parallelism

Whetstone
(Spiking for

Keras)

Specialized Deep
Learning

Extensions

n earning

i
13Ltin2llaroLol-VLPILtfoziej

FUGU

EMI
Various Spiking
Kernels (xCorr,

SpikeSort, Strassen)

Neural
Random
Walkers

rical Computing Appli ations.011

CrossSim SST Component

Control

Unit
State machine?

CrossSim
set_matrix()

run_xbar()

etc...

Xyce

Neuron

Model

— —110-1 Buffers

i Dedicated I

(4110.1 Activation

HW

— — Network

Interface

CrossSim SST

Component

•Py
PYNN
Confi

nest ::

Neural

Core

I— 1
1 CPU 1
1 1
 J

Memory

i Dedicated II

I Activation
i HW I

Conv.

Proc

.131(
SST Config

Mem

• •anr•M

Tar

Net

1
1

PACT 2019 TUTORIAL

76 I Future Directions: More Framework Integration

Beyond Moore Computing
NewArchitectures (e.g. Neuromorphic)

New Devices (e.g. Memristor)

New Programming Models /Algorithms

Requires Cross-Stack Optimization
Multi-scale Codesign Framework

Device to System Level

Use of Dakota / INDRA / Machine Learning to automate
design space exploration

Requires Inter-disciplinary approach
SST Simulator as "Clearinghouse of Ideas"

Common language of exploration

/
•

1/ft
•

11\
Research <Mo els

community

♦

SST

System
Network Topology

File I/0

Node/Board
CPU

GPU

Chip / soc
Package Stacked Memory

Register File

Cornponent Cache

Bus

Circuit
Logic Gate

Memory Cell

Device Transistor

Dakota

Optirnization Framework

Multiscale Codesign Framework

ckeavIeSts

Semi-

automated

R&D Stakeholde s

Model

repository analytic

capabilities

tesMCF Data MCF Service Reports

PACT 2019 TUTORIAL

Extra: Other Libraries

PACT 2019 TUTORIAL

78 Cassini: Prefetchers

Library of subcomponents that plug into MemHierarchy caches and initiate prefetches
Via "CacheListener" interface

Next-block prefetch

Strided prefetch

"Pala" prefetch
Based on "Evaluating stream buffers as a secondary cache replacement" from Palacharla &
Kessler, ISCA '94

Cache

notifyAccess(4

i'v --------

eventHandler(...)

CacheListener

I

PACT 2019 TUTORIAL

79 CramSim

Collection of DRAM memory components
DDR, HBM

Cycle-accurate simulation

Developed by IBM and contributed back to sst-elements

PACT 2019 TUTORIAL

80 VaultSimC

Vault-like stacked memory
Generic HMC

Each vault operates independently

Constant access latency to vault

PACT 2019 TUTORIAL

81 Messier

Generic NVRAM simulator

Parameterizable to look like specific NV variants

PACT 2019 TUTORIAL

82 Samba

2-level TLB model

PACT 2019 TUTORIAL

83 Key objects

SST::Component

Simulation model

SST::Link

Communication path between two components

Poll or interrupt with EventHandler

SST::Event

A discrete event

SST::Clock::Handler

Function to handle a clock tick

SST::SubComponent

Add functionality to Components

I-
SST::Component

CPU

\ EventHandler

SST::Event
Data

SST::Event
Load

EventHandler

SST::Component
Cache

_}

PACT 2019 TUTORIAL

84 Component

Performs the actual simulation

Sends events over links to communicate with other components
Components define ports, links connect ports between components

0 PoHer' Register a clock handler to poll the link

0 Interrupt: Register an event handler to be called when an event arrives

Can Ioad SubComponents and Modules for additional functionality
Useful for parts of a component that should be swappable between simulations
Ex: scheduling algorithms, address mapping schemes, cache prefetchers

Useful for exposing interfaces to other components

Ex: network provides a subcomponent that can be loaded to handle traffic into/out of network

ROUTER

1

=ii.

0 0
TRAFFIC GENERATOR

$$

CACHE

PACT 2019 TUTORIAL

85 SubComponents and Modules

Add additional functionality to a Component
SubComponent (SC): shares common base class with
Component
Module (M): self-contained functionality (no access to
Component class functionality

Provide modularity
Generic interface which can be used by multiple SC/M
Components load SC/M at runtime

Tightly-coupled with a component
Components call SC/M as a C++ class instance
Do not need to communicate via links
SC/M cannot exist by themselves

Example
Miranda core loads a pattern generator subcomponent to
generate a sequence of memory ops

1.
Component: Core

SubComponent:
Stream Gen

Or

1
Component: Core

SubComponent:
SpMV Gen

 .2

or

Component: Core

SubComponent:
Random Gen

PACT 2019 TUTORIAL

86 Link

Connects two components
Connect a specific "Port" on componentA to a "Port" on component B

The ONLY mechanism by which components communicate
Necessary for parallel simulation

Has a minimum, non-zero latency for communication
- Except self-links

0 Except during init/complete phases (untimed)

Transparently handles any MPI / threaded communication

Component A /
N

Link 1 >
\ I/

Component B

PACT 2019 TUTORIAL

87 Event

Unit of communication between two components
Packet format is up to the communicating components

Some standardized interfaces
Facilitates "mix and match" capability

sst-core/interfaces/

O memor (simpleMem)

Defines commands & event format for communication with caches & memory

o NeLvvoff m (simpleNetwork)

- Defines a packet format for events sent through a network component

PACT 2019 TUTORIAL

88 Component/Link Interface

Components use these calls to manage links and events

SST::ComponencconfigureLink0
Registers a link and (optionally) a handler

SST::Link::recv0
Pull an event from a link

SST::Link::send()
Push an event down a link

SST::Component::registerClock()
Register a clock frequency and a handler to be called on each clock tick

PACT 2019 TUTORIAL

89 Simulation Configuration

<component>

<component>

Python
Config

'<component>

component>

<component>

<component

<component>

PACT 2019 TUTORIAL

90 Simulation Lifecycle

O Birth
Create graph of components using Python configuration file

Partition graph and assign components to MPI ranks

Instantiate components

Connect components via links

Initialize components using their init() functions, multi-phase initialization

Setup components using their setup() functions

O Life
Send events

Manage clock and event handlers

O Death
Complete simulation using components' complete() functions, multi-phase quiesce

Finalize components using their finish() functions

Output statistics

Cleanup simulation, delete components

PACT 2019 TUTORIAL

